Basic Principles of Fiber Tractography:

Lecture Date: 09/04/2014

Learning Goals

- What are the two different classes of fiber tractography algorithms?
- What can you (or can't you) infer with tractography?

Remember voxelwise reconstruction

How do you get from this map of voxel models to visualizing structural connectivity?

Principles of fiber tractography

Basic idea of fiber tracking

Use the underlying directional diffusion information to map out connections between areas.

Two General Approaches to Tractography

 Deterministic: Line reconstructed paths (e.g., fiber streamlines) between regions based on stochastic sampling methods.

 Probabilistic: Probabilistic estimate that any two voxels are connected based on the ODF/Tensor information of the adjoining voxels

Two General Approaches to Tractography

Tensor Image

Deterministic

Determination

Probabilistic

Descoteau et al. 2007, IEEE: Med Imaging, 28: 269-286

Example of whole-brain deterministic tractography

Deterministic:

One streamline per seed voxel

Probabilistic:

A probability distribution (sum of all streamline samples from all seed voxels)

Pros & Cons

Deterministic:

- Pro: Visualize the streamline paths below the voxel resolution
- Con: Cannot determine <u>uncertainty</u> of individual streamlines

Probabilistic:

- Pro: Easy interpretation of estimates of connectedness
- Con: Resolution limited to voxel-level

Utility of structural connectivity

Pros:

- Measure of direct connections.
- Known signal source.

Cons:

- High Type-II Error.
- Spatial bias (long range).
- Gyral bias.
- Poor estimate of degree of connectivity.

Applications of tractography

General Applications of Tractography

1. Network Mapping

2. Topography

3. Integrity

Network Mapping

Typically gray matter areas are segmented and the physical connections between these segmented regions is measured.

Network Mapping

Typically gray matter areas are segmented and the physical connections between these segmented regions is measured.

Topography

By mapping across individuals you can find areas that consistently connect to each other

Topography

Integrity

Rather than measure FA at individual voxels, you can measure it along the entire tract.

"How do I know what I'm looking at is real?"

You can't using only DWI:

Confirmation of neuroanatomical patterns can only be validated against direct histological validation.

However: It doesn't mean we can't indirectly infer patterns (e.g., same problem with fMRI and neural activity)

Water Diffusion

Microtubules

Summary

Learning Goals

- What are the two different classes of fiber tractography algorithms?
- What can you (or can't you) infer with tractography?

Putting it all together

- 1. Reconstruct single subject data
- 2. Compare three reconstruction approaches:
 - a. Diffusion Tensor Imaging
 - b. QBI
 - c. GQI
- 3. Visualize a complex fiber pathway.

Homework

Take a snapshot of the left centrum semiovale and highlight differences between the three methods you reconstructed today.

