
CBGTPy: An extensible cortico-basal ganglia-thalamic framework
for modeling biological decision making

Matthew Clapp†3 Jyotika Bahuguna†3 Cristina Giossi†1,2, Jonathan E. Rubin*4,5, Timothy
Verstynen*3,4, Catalina Vich*1,2

1 Departament de Ciències Matemàtiques i Informàtica, Universitat de les Illes Balears,
Palma, Spain.
2 Institute of Applied Computing and Community Code, Palma, Spain.
3 Department of Psychology & Neuroscience Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, United States of America.
4 Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America.
5 Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
of America.

† These authors contributed equally to this work.

* jonrubin@pitt.edu (JR); * timothyv@andrew.cmu.edu (TV); * catalina.vich@uib.es (CV)

Abstract

Here we introduce CBGTPy, a virtual environment for designing and testing goal-directed agents
with internal dynamics that are modeled on the cortico-basal-ganglia-thalamic (CBGT) pathways
in the mammalian brain. CBGTPy enables researchers to investigate the internal dynamics of the
CBGT system during a variety of tasks, allowing for the formation of testable predictions about
animal behavior and neural activity. The framework has been designed around the principle of
flexibility, such that many experimental parameters in a decision making paradigm can be easily
defined and modified. Here we demonstrate the capabilities of CBGTPy across a range of single
and multi-choice tasks, highlighting the ease of set up and the biologically realistic behavior that
it produces. We show that CBGTPy is extensible enough to apply to a range of experimental
protocols and to allow for the implementation of model extensions with minimal developmental
effort.

Author summary

We introduce a toolbox for producing biologically realistic simulations of the cortico-basal
ganglia-thalamic dynamics during a variety of experimental tasks. The purpose is to foster
the theory-experiment cycle, offering a tool for generating testable predictions of behavioral
and neural responses that can be validated experimentally, in a framework that allows for
simple updating as new experimental evidence emerges. We outline how our toolbox works and
demonstrate its performance on a set of normative cognitive tasks.

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

1 Introduction

With the rise of fields like cognitive computational neuroscience [1], there has been a resur-
gence of interest in building biologically realistic models of neural systems that capture prior
observations of biological substrates and generate novel predictions at the cellular, systems, and
cognitive levels. In many cases, researchers rely on off-the-shelf machine learning models that use
abstracted approximations of biological systems (e.g., rate-based activity and rectified linear unit
gating, among others) to simulate properties of neural circuits [2–4]. For researchers interested
primarily in cortical sensory pathways, these systems work well enough at making behavioral
and macroscopic network predictions [5], but they often fail to provide biologically realistic
predictions about underlying cellular dynamics that can be tested in vivo. Although there are a
wealth of biologically realistic simulations of cortical and non-cortical pathways that have helped
to significantly advance our understanding of BG function, these are often designed to address
very narrow behaviors and lack flexibility for testing predictions across multiple experimental
contexts [6–10].

Here we present a scientifically-oriented tool for creating model systems that emulate the
control of information streams during decision making in mammalian brains. Specifically, our
approach mimics how cortico-basal ganglia-thalamic (CBGT) networks are hypothesized to
regulate the evidence accumulation process as agents evaluate response options. The goal
of this tool, called CBGTPy, is to provide a simple and easy-to-use spiking neural network
simulator that reproduces the structural and functional properties of CBGT circuits in a variety
of experimental environments. The core aim of CBGTPy is to enable researchers to derive
neurophysiologically-realistic predictions about basal ganglia dynamics under hypothesis-driven
manipulations of experimental conditions.

A key advantage of our CBGTPy framework is that it separates most properties of the
behaving agent from the parameters of the environment, such that experimental parameters can
be tuned independently of the agent properties and vice versa. We explicitly distinguish the
agent (Section 2.3.1) from the environment (Section 2.3.2). The agent generates two behavioral
features – action choice and decision time – that match the behavioral data typically collected in
relevant experiments and affords users the opportunity to analyze the simultaneous activity of
all CBGT nuclei under experimental conditions. The flexibility of the environment component
in CBGTPy allows for the simulation of both simple and complex experimental paradigms,
including learning tasks with complex feedback properties, such as volatility in action-outcome
contingencies and probabilistic reward scenarios, as well as rapid action control tasks (e.g., the
stop signal task). On the biological side, CBGTPy incorporates biologically-based aspects of the
underlying network pathways and dynamics, a dopamine-dependent plasticity rule [10], and the
capacity to mimic targeted stimulation of specific CBGT nuclei (e.g., optogenetic stimulation).
CBGTPy also allows the easy addition of novel pathways, as well as modification of network and
synaptic parameters, so as to enable modeling new developments in the CBGT anatomy as they
emerge in the literature. After a brief review of the CBGT pathways in the next subsection, in
Section 2 we provide a full description of the structure, use, and input parameters of CBGTPy.
In Section 3, we go on to present examples of its usage on a variety of standard cognitive tasks,
before turning to a discussion in Section 4. Various appendices (S1.2, S2 Appendix, S4 Appendix,
S5 Appendix) present additional details about the CBGT model and CBGTPy toolbox, including
the implementation of synaptic plasticity and a guide for CBGTPy installation.

Recent findings have suggested that the simple concepts of rigidly parallel feedforward basal
ganglia (BG) pathways may be outdated [11, 12]1, and part of the motivation for CBGTPy
is to provide a tool for developing and exploring more nuanced, updated theories of CBGT
dynamics as new discoveries are made. Indeed, achieving a full understanding of CBGT circuit-
level computations requires the development of theoretical models that can adapt with and
complement the rapidly expanding empirical evidence on CBGT pathways. The fundamental
goal of the CBGTPy toolbox is to provide a framework for this rapid theoretical development,
which balances biological realism with computational flexibility and extensibility.

1We use traditional terminology of “direct” and “indirect” pathways and SPNs (e.g, Figure 1. While we
recognize that the idea of a unified indirect pathway is outdated, it is useful to maintain a term to refer to the
complement of the direct projection from dSPNs to GPi and the ascending pallidostriatal connections.

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 1: Overview of the CBGT network. The connectivity and cellular components of each
CBGT channel in a CBGTPy agent are based on known biology. Direct pathway connections are
shown in green, indirect pathway connections are shown in blue, and pallidostriatal connections
are represented in gold, with arrows ending in circles marking the postsynaptic sites of inhibitory
connections and those ending in triangles for excitatory connections. Dopaminergic feedback
signals associated with rewards following actions induce plastic changes in corticostriatal synapses
(pink arrows). A trial begins when the Cx population receives a stimulus and the model assumes
a decision is made when the activity of the Th population reaches a certain threshold. In
the current implementation of the network, the pallidostriatal pathways (gold colors) are only
considered for the stop signal task.

2 The toolbox

The core of the CBGTPy toolbox comprises an implementation of a spiking model CBGT
network tuned to match known neuronal firing rates and connection patterns that have been
previously used to study various aspects of basal ganglia function in cognitive tasks [13–16]. The
CBGT network model is composed of 6 different regions/nuclei shown in Figure 1: a cortical
component, segregated into excitatory (Cx) and inhibitory (CxI) subpopulations; striatum,
containing two subpopulations of spiny projection neuron (dSPNs involved in the so-called direct
pathway, and iSPNs, involved in the indirect pathway) and also fast-spiking interneurons (FSI);
external globus pallidus (GPe), which is divided into prototypical (GPeP) and arkypallidal
(GPeA) subpopulations; subthalamic nucleus (STN); internal segment of globus pallidus (GPi);
and a pallidal-receiving thalamic component (Th), which receives input from GPi and Cx and
projects to cortical and striatal units.

Within each region, we model a collection of spiking point neurons, modeled in a variant
of the integrate-and-fire framework [17] to include the spiking needed for synaptic plasticity
while still maintaining computational efficiency. Numerical integration is performed via custom
Cython code, rather than relying on existing frameworks, such as NEURON [18], BRIAN [19],
or NetPyNE [20], a design choice which simplified the overall software stack. The core strengths
of these frameworks are in the simulation of multi-scale or multi-compartment models, whereas
one of the strengths of the CBGTPy model is the high level of direct control that can be exerted
over the neural parameters throughout the interactions between the network and its environment
(see Section 2.1). The integration is performed in a partially-vectorized manner, in which each
variable is represented as a list of Numpy arrays, one array per neural population. Further details
of the implementation of this network, including all relevant equations and parameter values, are
provided in S1.2.

CBGTPy allows for the simulation of two general types of tasks that cover a variety of

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

behavioral experiments used in neuroscience research. The first of these tasks is a discrete
decision-making paradigm (n-choice task) in which the activity of the CBGT network results
in the selection of one choice among a set of options (see Section 3.1). If plasticity is turned
on during simulations, phasic dopamine, reflecting a reward prediction error, is released at the
corticostriatal synapses and can modify their efficacy, biasing future decisions. We note that
the inclusion of a biologically-realistic, dopamine-based learning mechanism, in contrast to the
error gradient and backpropagation schemes present in standard artificial agents, represents an
important feature of the model in CBGTPy. We present the details of this learning mechanism
in S2 Appendix.

The second of these tasks is a stop signal paradigm (stop signal task), where the network
must control the execution or suppression of an action, following the onset of an imperative cue
(see Section 3.2). Here activity of the indirect and pallidostriatal pathways, along with simulated
hyperdirect pathway control, determines whether a decision is made within a pre-specified time
window. The probability of stop and the relevant RT distributions can be recorded across
different values of parameters related to the stop signal.

2.1 Agent-Environment Paradigm

We have adopted an environment-agent implementation architecture, where the internal properties
of the CBGT network (the agent) are largely separated from the external properties of the
experiment (the environment). Interaction between the agent and environment is limited in
scope, as shown in Figure 2, and occurs only at key time points in the model simulation. The
core functionality of the agent is the mapping from stimuli to decisions and the implementation
of post-decision changes (e.g., synaptic strength updates) to the CBGT network, while the
environment serves to present stimuli, cues, and rewards.

Figure 2: Example of interactions between the environment and the agent (CBGT
network). The segregation of tasks between the environment and agent allows for independent
modification of both. Tables with green title box depict some of the variables that can be
easily modified by the user (see Section 2.3) while those in red are automatically updated or
set internally. We have divided these variables into two sections: agent-related (Section 2.3.1)
and environment-related (Section 2.3.2). The arrow from the environment to the agent block is
unidirectional because once the stimulation starts it is not possible to change the environment.
The arrow between the interface and network is bidirectional because they are always in constant
interaction with each other, the interface controlling the simulation while the actual agent evolves
the CBGT network.

CBGTPy uses a data-flow programming paradigm, in which the specification of computing
steps is separated from the execution of those steps [21]. Internally, the initialization and
simulation of the agent-environment system is divided into a large number of specialized functions,

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

each addressing specific tasks. These code blocks are then organized into sequences, referred to
as pipelines. Only after a pipeline is constructed is it executed, transforming any input data into
output data. The use of pipelines allows for individual code blocks to be rearranged, reused, and
modified as necessary, leading to efficient code reuse.

One of the main benefits of the data-flow design is its synergy with the Ray multiprocessing
library for Python. Ray operates on a client-server model and allows for the easy distribution of
tasks and worker processes based on the available resources [22]. While the sequence of steps
for running a simulation can be constructed locally, those same steps can be distributed and
performed remotely on the Ray server. As a result, CBGTPy directly supports running on
any system that can support a Ray server, which includes high-core-count computing clusters,
while maintaining the exact same interface and ease-of-use as running simulations on a local
machine. The user, however, can choose to run the model without any multiprocessing library
or an alternative multiprocessing library to Ray. These options are explained in detail in the
Section 2.2.

In the following subsections, we explain all the details of the toolbox by separately describing
the agent and environmental components that can be changed by the user. The CBGTPy toolbox
can be found in the Github repository https://github.com/CoAxLab/CBGTPy/tree/main. The
instructions to install it and the list of functions contained in the toolbox can be found in S3
Appendix and S4 Appendix, respectively.

2.2 Setting up a simulation

One of the objectives of CBGTPy is to enable end users to easily run simulations with default
experimental setups. Furthermore, users can specify parameter adjustments with minimal effort,
specifically through use of a configuration variable, which we describe in greater detail in the
following sections.

The following list contains a mandatory set of instructions to be executed in order to
implement the entire process associated with running a simulation. These instructions will
proceed with a default set of parameters. We also provide two example notebooks (n-choice
task and stop signal task), which can be found in the repository and include these steps and
commands.

• Import all relevant functions.

• Create the main pipeline.

• Import the relevant paramfile for the selected experiment type.

• Create configuration dictionary with default values.

• Run the simulation, specifying which multiprocessing library to use.

• Extract relevant data frames (e.g., firing rates, reaction times, performance).

• Save variables of interest as pickle files.

• Plot variables of interest (e.g., firing rates and reward data frames).

We explain each of these steps in detail. Note that if Ray multiprocessing is being used,
changing the local IP node (e.g., when the underlying Wi-Fi/LAN network has changed) requires
stopping the previous instance of the Ray server and restarting it with the newly assigned IP.
We also explain how to shut down the Ray server at the end of this section.

Import relevant functions. All the relevant imports can be implemented with the following
commands:

import pandas as pd

import numpy as np

import cbgt as cbgt

import pipeline_creation as pl_creat

import plotting_functions as plt_func

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://github.com/CoAxLab/CBGTPy/tree/main
https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

import plotting_helper_functions as plt_help

import postprocessing_helpers as post_help

Create the main pipeline. Here the user can choose to run either the n-choice task or the
stop signal task by assigning a variable experiment choice2. Depending on the choice of this
variable a relevant pipeline is created. A pipeline consists of all the modules required to run a
task and returns a pipeline object that can be used.

For a basic n-choice task, the experiment choice needs to be set as

experiment_choice = "n-choice"

while for a basic stop signal task, it is set as

experiment_choice = "stop -signal"

In both cases, the user also should decide how many choices or action channels the current
instance of CBGTPy should create and run, using the variable number of choices:

number_of_choices = 2

While a common version of this decision making task is run with number of choices = 2,
it can also be run for an arbitrary number of choices (i.e., number of choices ≥ 1). The
change in the number of choices and corresponding action channels requires scaling of some of
the parameters in order to ensure maintenance of the same amount of input to certain shared
CBGT nuclei irrespective of the number of action channels. We explain these scaling schemata
in S5 Appendix. Please note that some parameters have to be appropriately updated in the
configuration variables (e.g., Q data frame, channel names) according to the number of choices

selected. We explicitly mention which parameters should be updated with the number of choices
as we describe them below, and we include example notebooks in the repository for different
cases.

The pipeline is created with commands

pl_creat.choose_pipeline(experiment_choice)

pl = pl_creat.create_main_pipeline(runloop=True)

Import the relevant paramfile for the selected experiment type. The paramfile

contains dictionaries of default parameter values for the neural populations and plasticity model
based on the choice of the experiment.

if experiment_choice == ’stop -signal ’:

import stopsignal.paramfile_stopsignal as paramfile

elif experiment_choice == ’n-choice ’:

import nchoice.paramfile_nchoice as paramfile

The imported attributes, which can be listed out using dir(paramfile), can be modified
according to the user’s preferences. For example, setting the cellular capacitance value to 0.5 is
accomplished with

paramfile.celldefaults[’C’] = 0.5

Create configuration dictionary with default values. The configuration variable is
a dictionary in which some parameters take internally set default values, whereas others need
to be assigned values to run a simulation. A minimal configuration variable consists of the
following parameters, the details of which are described in S2 Table, S3 Table, S4 Table, S5
Table, S6 Table, S7 Table and explained separately in Section 2.3.

configuration = {

"experimentchoice": experiment_choice ,

"seed": 0,

2If the variable experiment choice is not set, the pipeline creation gives an error because of the ambiguity of
which experiment to run.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

"inter_trial_interval": None , # default = 600ms

"thalamic_threshold": None , # default 30sp/s

"movement_time": None , # default sampled from N(250 ,1.5)

"choice_timeout": None , # default 1000

"params": paramfile.celldefaults ,

"pops": paramfile.popspecific ,

"receps": paramfile.receptordefaults ,

"base": paramfile.basestim ,

"dpmns": paramfile.dpmndefaults ,

"dSPN_params": paramfile.dSPNdefaults ,

"iSPN_params": paramfile.iSPNdefaults ,

"channels": pd.DataFrame ([["left"], ["right"]], columns =["action"]),

"number_of_choices": number_of_choices ,

"newpathways": None ,

"Q_support_params": None ,

"Q_df": None ,

"n_trials": 3,

"volatility": [1,"exact"],

"conflict": (1.0, 0.0),

"reward_mu": 1,

"reward_std": 0.1,

"maxstim": 0.8,

"corticostriatal_plasticity_present":True ,

"record_variables": ["weight", "optogenetic_input"],

"opt_signal_present": [True],

"opt_signal_probability": [[1]] ,

"opt_signal_amplitude": [0.1] ,

"opt_signal_onset": [20.] ,

"opt_signal_duration": [1000.] ,

"opt_signal_channel": ["all"],

"opt_signal_population": ["dSPN"],

"sustainedfraction": 0.7

}

Note that the parameter corticostriatal plasticity present does not have to be intro-
duced in the configuration dictionary when running the stop signal task (see reference on the
example notebook). Additionally, it is important to include the stop signal parameters within
the configuration dictionary when executing the stop signal task.

configuration = {

"stop_signal_present": [True , True],

"stop_signal_probability": [1., 1.],

"stop_signal_amplitude": [0.6, 0.6],

"stop_signal_onset": [60. ,60.] ,

"stop_signal_duration": ["phase␣0" ,165.],

"stop_signal_channel": ["all","left"],

"stop_signal_population":["STN","GPeA"],

}

More details will be provided in the corresponding sections. For reference, you can find an
example notebook on github.

Run the simulation At this stage, the user can choose the number of cores to be used
(num cores) and the number of parallel simulations that should be executed with the same
configuration variable but a different random seed (num sims). Moreover, the user can
optionally specify one of the two supported multiprocessing libraries, Ray and Pathos, to use to
run the simulation. Ray is a library providing a compute layer for parallel processing. To start
the Ray server, on the command line, run Ray server to execute the head node and obtain the
local IP node, in the following way:

ray start --head --port =6379 --redis -password="cbgt"

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://github.com/CoAxLab/CBGTPy/blob/main/network_simulation-stop-signal.ipynb
https://github.com/CoAxLab/CBGTPy/blob/main/network_simulation-stop-signal.ipynb
https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

This command should list a local IP along with a port number. Hence, to initiate a Ray client
that connects to the server started above, the user will have to substitute the local IP node,
obtained from the previous command line, in place of <local ip node> in

ray start --address=<local ip node >:6379 --redis -password ="cbgt"

Any port number that is free to use in the machine can be used. Here port number 6379 is
used, which is the default port number for Ray. To use Ray, the last step consists of setting the
variable use library in the notebook to ‘ray’. As an alternative to Ray, Pathos is a library
that distributes processing across multiple nodes and provides other convenient improvements
over Python’s built-in tools. To use Pathos, no additional setup is required beyond setting the
variable use library to ‘pathos’. If the user does not want to use any of the above-mentioned
libraries, this should be specified by setting the variable use library to ‘none’. The simulation
is performed by filling in values for these variables in the following command and executing it:

results = cbgt.ExecutionManager

(cores=num_cores ,use=use_library).run([pl]*num_sims ,[configuration]* num_sims))

To ensure the simulation results are both reproducible and robust to minor changes in
initial conditions, CBGTPy offers control over the pseudorandom number generator seed. The
random seed controls the initial conditions of the network, including precisely which neurons
connect together, under the constraint of the given connection probabilities and the baseline
background activity levels of the CBGT nuclei. The simulation returns a results object, which
is a dictionary containing all the data produced by the model, typically organized into data
frames [23].

Extract relevant data frames Once the results object has been returned, specific variables
and tables of interest can be extracted (see S1 Fig). All the variables available can be listed by
accessing the keys of the variable results, which is done by executing the following command:

results [0]. keys()

All environmental variables passed to the simulation can also be accessed here for cross-checking.
Some additional data frames related to the simulation are also returned. One of these data

frames is results[0]["popfreqs"], which returns the population firing rate traces of all nuclei,
with each neuronal subpopulation as a column and each time bin of simulated time as a row (see
S2 Fig). This data frame can be addressed directly by executing its name in a command line.

Another relevant data frame is datatables[0], which contains a list of chosen actions,
optimal actions, reward outcomes, and decision times for all of the trials in the simulation (see
S3 Fig). When running multiple simulations in parallel (i.e., num sims > 1), datatables[i] is
returned, where i indicates the corresponding thread. This data frame can be extracted by first
executing the command

datatables = cbgt.collateVariable(results ,"datatables")

and next typing datatables[i] on the command line, to access the results of the ith simulation.
As part of the model’s tuning of dopamine release and associated dopamine-dependent cortico-

striatal synaptic plasticity, the model maintains Q-values for each action, updated according to
the Q-learning rule (details in S2 Appendix). These values are available in results["Q df"],
where each column corresponds to one of the possible choices (see S4 Fig). These data frames
are designed for easy interpretation and use in later data processing steps. It should be however
noted that while Q-values are updated and maintained by CBGTPy, the q-values do not influence
the selection of decision choice. The selection of decision choice is solely dependent on the
corticostriatal weights.

CBGTPy also provides a function to extract some of these data frames in a more processed
form. The specific command for the n-choice task is given by

firing_rates , reward_q_df , performance , rt_dist , total_performance =

plt_help.extract_relevant_frames(results , seed , experiment_choice)

where firing_rates provides a stacked up (pandas command melt) version of the results[0]["popfreqs"]
that can be used in the seaborn.catplot() plotting function, reward_q_df compiles data frames

8

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

for reward and q-values, performance returns the percentage of each decision choice, rt_dist
returns the reaction time distribution for the simulation, and total_performance compares the
decision and correctdecision in datatables[i] and calculates the performance of the agent.
Depending on the experiment choice, the function returns relevant data frames. Note that for
the stop signal task, the data frames returned are just firing_rates and rt_dist.

The time-dependent values of the recorded variables can also be extracted for both the
n-choice task and the stop signal task using the following command:

recorded_variables =

post_help.extract_recording_variables(results ,

results [0]["record_variables"],

seed)

Presently, for the n-choice task, CBGTPy only allows recording the variable weight or
optogenetic input. The former can be used to track the evolution of corticostriatal weights
during a n-choice experiment. The variable optogenetic input can be recorded and plotted to
check if the optogenetic input was applied as intended to the target nuclei. The list of variables to
be recorded should be specified in the configuration variable. In the example of the configuration
variable used above, both weight and optogenetic input are recorded.:

configuration = {

..

"record_variables": ["weight", "optogenetic_input"],

..

}

An example of plotting these data frames is included in the example python notebook in the
GitHub repository. In addition, for the stop signal task, CBGTPy also allows the recording of
the variable "stop input", which can be used to check if the stop signal inputs were applied
correctly to the target nuclei.

Save variables of interest as pickle files All the relevant variables can be compiled together
and saved in a single pickle file. Pickle files provide a method for saving complex Python data
structures in a compact, binary format. The following command saves the object results with
additional data frames of popfreqs and popdata into a pickle file network_data in the current
directory:

cbgt.saveResults(results , "network_data", ["popfreqs","popdata"])

Basic plotting functions (plot firing rates and reward data frame) CBGTPy provides
some basic plotting functions. The firing_rates data frame from the above functions can be
passed to function plot_fr, which returns a figure handle that can be saved (see Figure 3), as
follows:

FR_fig_handles = plt_func.plot_fr(firing_rates , datatables , results ,

experiment_choice , display_stim)

In addition to the firing rates data frame, the plotting function plot fr requires the datatables
(also extracted along with firing rates data frame), the original results variable, experiment choice

and display stim. The experiment choice ensures that relevant nuclei are plotted and the
display stim is a boolean variable that can be set to True/False. When set to True, the
stimulation information (e.g., optogenetic or stop signal) is indicated over all trials during which
the stimulation was applied. Note that, for a longer simulation, this may slow the plotting
function, because the function checks if a stimulation is applied on every trial before indicating
the result in the figure. The stop signal application is indicated as a bright horizontal red bar
above firing traces of the stimulated nuclei (e.g., Fig 7). The optogenetic stimulation is indicated
as a blue bar for excitatory stimulation and yellow for inhibitory stimulation (e.g., Fig 8).

The reward and Q-values data frame can be plotted with the function plot_reward_Q_df as
follows; note that a figure is shown in the example notebook:

reward_fig_handles = plt_func.plot_reward_Q_df(reward_q_df)

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://github.com/CoAxLab/CBGTPy/blob/main/network_simulation-n-choice.ipynb
https://github.com/CoAxLab/CBGTPy/blob/main/network_simulation-n-choice.ipynb
https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 3: Example figure showing firing rates for all the nuclei in the n-choice task.
Example figure showing firing rates for all nuclei for three consecutive trials of a 2-choice task,
color-coded to distinguish times associated with decision making (pink, decision phase) and
subsequent times of sustained activity in the selected channel (grey, consolidation phase) of each
trial. The unshaded regions between each pair of trials are the (inter-trial interval). In each
panel, the blue (orange) trace corresponds to activity in the left (right) action channel. In this
example, the model chooses right on the first trial and left on the second; in the third trial,
where decision making times out, no sustained activation is applied to the cortical channel (top
left subplot) during the consolidation phase (grey region).

Shut down Ray server In case the Ray server was selected as the multiprocessing library to
use to run the simulation, when the user is done working with the network, the Ray server can
be shut down via the terminal with the command

ray stop

or, if the processes have not all been deactivated, with the command

ray stop --force

2.3 User level modifications

CBGTPy allows for modifications of several parameters that a user can easily perform. All
the parameters in the configuration variable can be modified. A modified value is usually
in the form of a data frame or a dictionary. The underlying function (ModifyViaSelector) in
frontendhelpers.py iterates through all the features listed in the data frame/dictionary and
updates the default values with the new values passed to the configuration variable. If the
user wants to use the default value of a parameter, it is essential to specify the parameter value
as None, as also shown in Section 2.2. We can subdivide the parameters that can be modified
into two major classes, which we will discuss separately: a) parameters related to the agent,

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

which we call the agent parameters (Section 2.3.1); b) parameters related to the experimental
environment, which we call the environmental parameters (Section 2.3.2).

Through the adjustment of the appropriate parameters, the user can adapt the model to
study a variety of important scientific questions. For example, one could introduce new neural
pathways and vary their connectivity to study the effects on the system’s dynamics and behavior
(e.g., addition of a cortico-pallidal pathway, which may complement stopping mechanisms in the
BG pathways [24]). Alternatively, the user could study the effects of specific neural parameters
on decision-making and stop signal tasks. Additionally, by introducing optogenetic stimulation
to different populations, such as dSPN and iSPN striatal populations, the user could model
how the timing and intensity of this stimulation influences the plasticity and learning processes.
For example, it has been shown that inhibition of dSPNs during learning impairs performance
in a goal-directed learning task [25]. CBGTPy allows stimulation of multiple populations at
different phases of a task, which enhances the options for exploring possible functional pathways
and their roles in task performance. Lastly, CBGTPy allows many environmental parameters
to be modified for an n-choice or stop-signal task while simulating the activity of the CBGT
network. For example, one could test the idea that the slowing down of decision times in healthy
humans [26] when there is a high conflict or similarity between choices is related to increased
activity in the STN [27]. Taken together, the large number of both network and environmental
parameters available for the end user to control is a strength of the CBGTPy framework and
greatly increases its ultimate scientific utility.

A detailed list of features of the CBGTPy package that can be easily modified by the user
can be found in table S1 Table.

2.3.1 Agent parameters

General neuron parameters The parameters common to all neurons can be modified
using the params field in the dictionary configuration. A complete list of editable neuronal
parameters is listed in S2 Table. For example, the following dictionary entry can be modified to
change the capacitance (C) of all neurons:

"params": pd.DataFrame ([[30]] , columns =["C"]),

Population-specific neuronal parameters The neuronal parameters of a specific population
can be modified using the field pops in the dictionary configuration. These parameters will
override the default values set by the params field. A complete list of editable parameters is
given in S3 Table. In the following example, the membrane time constant (Taum) of the neurons
in the FSI population is specified:

"pops": {"FSI": {"Taum": [60]}} ,

Synaptic parameters The parameters of the synapses (GABA, AMPA or NMDA) can be
modified through the field receps in the configuration variable. A complete list of editable
synaptic parameters is given in S4 Table. In the following example, the membrane time constants
of AMPA and GABA synapses (Tau AMPA, Tau GABA) are specified:

"receps": pd.DataFrame ([[100 , 100]] , columns =["Tau_AMPA", "Tau_GABA"]),

Population-specific baseline input parameters Each neuron receives a background input
from a random Gaussian process with a specified mean frequency and variance equal to 1.
Depending on the nature of the background input, the Gaussian process can be excitatory
(AMPA and NMDA) or inhibitory (GABA). The user can specify the mean frequency, the
efficacy, and the number of connections from the background Gaussian process to the neurons in
the population with the dictionary base. A complete list of editable input parameters is given
in S5 Table. In the following example, the frequency of the external AMPA inputs (FreqExt AMPA)
applied to FSI neurons is specified:

"base": {"FSI": {"FreqExt_AMPA": [100]}} ,

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

Dopamine-specific parameters The dopamine-related parameters can be modified via the
dpmns parameter, which takes as its input a data frame containing the field name and the names
of the parameters to be updated. A complete list of these editable parameters is given in S6
Table. In the following example, the dopamine decay rate (dpmn tauDOP) is specified:

"dpmns": pd.DataFrame ([[5]] , columns =["dpmn_tauDOP"]),

SPN-specific dopaminergic parameters The SPN-specific dopaminergic parameters for
corticostriatal projections to dSPNs and iSPNs can be modified via d1 and d2, respectively,
which take as their input a data frame containing the field name and the parameters to be
updated. The complete list of these editable parameters is given in S7 Table. In the following
example, the learning rate (dpmn alphaw) and the maximal value for the corticostriatal weights
(dpmn wmax) are specified:

"dSPN_params": pd.DataFrame ([[39.5 , 0.08]] , columns =["dpmn_alphaw", "dpmn_wmax"]),

"iSPN_params": pd.DataFrame ([[-38.2 , 0.06]] , columns =["dpmn_alphaw", "dpmn_wmax"]),

New pathways The parameters of a specific pathway can be changed by using the variable
newpathways. This variable can also be used to add new connections. This takes as its input a
data frame that lists the following features of the pathway: source population (src), destination
population (dest), receptor type (receptor), channel-specific or common (type), connection
probability (con), synaptic efficacy (eff) and the type of the connection (plastic), which can
be plastic (True) or static (False). An example of a cortico-pallidal pathway involving AMPA
synapses with 50% connection probability, synaptic strength 0.01, and no plasticity is presented
in the following dictionary entry:

"newpathways": pd.DataFrame ([["Cx", "GPe", "AMPA", "syn", 0.5, 0.01, False]])

If the user wishes to change multiple pathways at once, then the variable can be given a list of
data frames as input.

Q-learning process CBGTPy uses Q-learning to track the internal representations of the
values of the possible choices, which depend on the rewards received from the environment.
The parameters of this process can be modified via the variable Q support params. The two
parameters that can be modified are C scale and q alpha. The former controls the scaling
between the change in phasic dopamine and the change in weights, and the latter controls the
change in choice-specific q-values with reward feedback from the environment. An example of
how to specify these two parameters is presented in the following dictionary entry:

"Q_support_params": pd.DataFrame ([[30 , 0.1]] , columns =["C_scale", "q_alpha"]),

The equations showing the roles of these parameters are described in detail in S2 Appendix.

Q-values data frame The choices available to the agent can be initialized with identical
values (e.g., 0.5) representing an unbiased initial condition. Alternatively, non-default values for
the Q-values data frame (such as values biased towards one choice) can be initialized using the
variable Q df. An example of how to specify this variable is presented in the following dictionary
entry:

"Q_df_set": pd.DataFrame ([[0.3 , 0.7]] , columns =["left", "right"]),

Note that this parameter should be updated according to the number of choices specified in the
variable number of choices. The above example shows an initialization for a 2-choice task.

Cortical activity In addition to the background inputs that generate the baseline activity of
all of the CBGT nuclei, the cortical component provides a ramping input to the striatal and
thalamic populations, representing the presence of some stimulus or internal process that drives
the consideration of possible choices. The maximum level of this input can be defined by the
parameter maxstim and specified using the following dictionary line:

"maxstim": 0.8,

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

Corticostriatal plasticity The corticostriatal plasticity in the n-choice experiment can be
switched on and off using the corticostriatal plasticity present parameter. When it is
set to True, the corticostriatal weights change based on rewards and dopaminergic signals (for
more details see S2 Appendix). When it is set to False, the simulation proceeds without any
update in the corticostriatal weights and the Q-values. The value of this parameter is set to
True using the following dictionary line:

"corticostriatal_plasticity_present": True ,

Sustained activation to the action channel for the selected choice In order to resolve
the temporal credit assignment problem [14], we rely on post-decision sustained activation to
keep the selected channel active during the phasic dopaminergic activity [28, 29]. After the
choice has been made, following the onset of a trial (decision phase), the cortical component
of the action channel associated with the selected choice continues to receive inputs, while the
unselected channels do not (consolidation phase); see Figure 3. This phase may also represent
the movement time of the agent. The assumption here is that this activation provides an
opportunity for corticostriatal plasticity that strengthens the selected choice. The parameter
sustainedfraction is the fraction of input stimulus maintained during the consolidation phase
in the cortical channel corresponding to the action selected by the agent, and it can be specified
using the following dictionary entry:

"sustainedfraction": 0.7,

Once the dopamine signal has been delivered at the end of the consolidation phase, all cortical
inputs are turned off for the inter-trial interval. See Section 3.1 and Fig 4 for more details on
the trial phases.

Thalamic threshold In the default set-up, when the thalamic firing rate of either choice
reaches 30 Hz, that choice is selected. This threshold can be specified by the user by setting the
parameter thalamic threshold in the following way:

"thalamic_threshold": 30,

2.3.2 Environment parameters

Experiment choice The parameter experiment choice is set at the beginning of the simula-
tion (see Section 2.2). It also needs to be sent as a configuration variable, so that the specific
functions and network components relevant to the appropriate experiment are imported.

Inter-trial interval The parameter inter trial interval allows the user to specify the
inter-trial interval duration. The inter-trial interval also corresponds to the duration of the
inter-trial-interval phase of the simulation, where the network receives no external input and
shows spontaneous activity. When no value is specified (None), a default value of 600ms is used.
The user can set the value of this parameter using the following dictionary entry:

"inter_trial_interval": 600,

Movement time After a choice is made, the chosen action channel receives sustained activation
at some fraction (with a default value of 70%) of the initial cortical input strength. As noted in
the previous section, this phase of the simulation (consolidation phase) represents the movement
time, which is distinct from the reaction time, provides a key window for corticostriatal synaptic
plasticity to occur, and remains unaffected by the selected choice. The length of this phase
can be controlled with the parameter movement time. The default value of the movement time
(when this parameter is set to None) is sampled from a normal distribution N (250, 1.5). However,
the user can choose to set it to a constant value by passing a list ["constant", N], where N

represents the constant value of movement time for all trials. The other option is to sample from
a normal distribution of specified mean N using ["mean", N]. The movement time can be set to
a fixed value as follows:

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

"movement_time": ["constant", 300],

Choice time out The parameter choice timeout controls the duration of the time interval
in which a choice can be made. The default value of this parameter (when it is set to None) is
1000ms. This parameter can be changed as follows:

"choice_timeout": 300,

Choice labels The data frame channels allows the labels for the action channels to be changed.
The new labels can be used to access information about the action channels. An example is
shown below:

"channels": pd.DataFrame ([["left"], ["right"]], columns =["action"]),

Note that this parameter should be updated according to the number of choices specified in the
variable number of choices. The above example shows an initialization for a 2-choice task.

Number of trials The n trials parameter sets the number of trials to be run within a
simulation. Note that this number should be greater than the volatility parameter (described
in the following paragraph). However, if only 1 trial is to be simulated, then volatility

parameter should be set to None. Examples of how to set this parameter are as follows:

"n_trials": 2,

"n_trials": 1,

...

"volatility": [None , "exact"]

For more details about setting volatility parameter, please refer to the following paragraph.

Volatility The parameter volatility indicates the average number of trials after which the
reward contingencies switch between the two choices. The volatility parameter is a list consisting
of two values, [λ, ‘option’], where option can be set as exact or poisson. The λ parameter
generates a reward data frame where the reward contingency changes after an average of λ trials.
The option exact ensures that the reward contingency changes exactly after λ trials whereas
the option poisson samples the change points from a Poisson distribution with parameter λ.
However, note that this parameter cannot be 0 or the total number of trials. To perform a
simulation in which the reward contingencies do not change until the end of the simulation, set
this parameter to n trials−1 and drop the last trial from the analysis. An example of how to
define and specify the volatility is shown in the following command line:

"volatility": [2, "exact"],

Note that for a 1-choice task or stop signal task, the volatility parameter is not applicable and
hence should be defined differently; specifically, the parameter λ should be set to None as follows:

"volatility": [None , "exact"],

Reward probability The parameter conflict represents the reward probability of the reward
data frame and is defined as a tuple of reward probabilities for the n choices. In the following
example, for a 2-choice task, the first reward probability corresponds to the first choice listed in
the channels parameter (e.g., "left"). The reward probabilities for the choices are independent,
thereby allowing reward structure to be set in the format (p1, p2) as in the two following
examples, representing unequal and equal reward probabilities, respectively:

"conflict": (0.75 , 0.25) ,

"conflict": (0.75 , 0.75) ,

Note that this parameter should be updated according to the number of choices specified in
variable number of choices. The above example shows an initialization for a 2-choice task. For
example, for a 3-choice task the reward probabilities can be defined as:

"conflict": (1.0, 0.5, 0.2),

14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

Reward parameters The trial-by-trial reward size is generated by a random Gaussian process,
with a mean (reward mu) and a standard deviation (reward std) that can be assigned. To
simulate binary rewards, choose mean = 1 and standard deviation = 0, as follows:

"reward_mu": 1,

"reward_std": 0.0,

Optogenetic signal If the experiment requires an optogenetic signal to be applied, then this
should be indicated in the configuration variable by setting opt signal present to True,
with each boolean variable corresponding to each nucleus specified in the list of populations to
be stimulated, as shown below:

"opt_signal_present": [True],

...

..

"opt_signal_population": ["dSPN"],

The above example shows the case, when only one population (i.e dSPNs) is stimulated. More
than one population can be stimulated simultaneously as shown below:

"opt_signal_present": [True , True],

...

..

"opt_signal_population": ["dSPN", "iSPN"],

Optogenetic signal probability The opt signal probability parameter accepts either a
float or a list. The float represents the probability of the optogenetic signal being applied in any
given trial. For example, the user wants all the trials in the simulation to be optogenetically
stimulated, i.e opt signal probability = 1.0, it should be defined as shown below:

"opt_signal_probability": [1.0] ,

Alternatively, a specific list of trial numbers during which optogenetic stimulation should be
applied can also be passed. An example is shown below:

"opt_signal_probability": [[0, 1]],

In the above example, a list of trial numbers [0, 1] indicates that the optogentic stimulation is
applied to trial numbers 0 and 1.

Please note that if more than one nucleus will be stimulated, the opt signal probability

expects a list of floats (probabilities) or list of list (list of trial numbers). For example, as
mentioned in an example above, say the user wants to stimulate two populations (dSPN and
iSPN) at trial numbers [0,1] and [1,2] respectively:

"opt_signal_present": [True , True],

..

"opt_signal_population": ["dSPN", "iSPN"],

"opt_signal_probability": [[0, 1],[1, 2]],

Optogenetic signal amplitude The amplitude of the optogenetic signal can be passed as a
list of floats to the parameter opt signal amplitude. A positive value represents an excitatory
optogenetic signal, whereas a negative value represents an inhibitory optogenetic signal. An
example of excitation is shown below:

"opt_signal_amplitude": [0.1] ,

If we want to send different amplitudes of optogenetic signals to different populations, for example,
an excitatory (0.3) to dSPNs and inhibitory (−0.25) to iSPNs, then the amplitudes should be
specified as :

"opt_signal_present": [True , True],

..

"opt_signal_population": ["dSPN", "iSPN"],

"opt_signal_amplitude": [0.3, -0.25],

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

Optogenetic signal onset The opt signal onset parameter sets the onset time for the
optogenetic signal. The onset time is measured relative to the start of the decision phase. For
example, to specify that optogenetic stimulation will start 20ms after the decision phase begins,
the appropriate command is:

"opt_signal_onset": [20.] ,

Optogenetic signal duration The duration for which the optogenetic signal is applied can be
controlled by the parameter opt signal duration. This parameter accepts a numerical value
in ms as well as phase names as strings. For example, to apply the optogenetic stimulation for
1000ms after the signal onset, the command is:

"opt_signal_duration": [1000.] ,

However, in order to apply optogenetic stimulation during the whole decision phase, the duration
variable should be the string “phase 0” as shown below:

"opt_signal_duration": ["phase␣0"],

This allows the user to specifically target decision (“phase 0”), consolidation (“phase 1”) and
inter-trial interval (“phase 2”) phases with optogenetic stimulation.

Optogenetic signal channel The user can also control whether the optogenetic signal is
applied globally to all action channels (all), to a randomly selected action channel (any), or
to a specific action channel (for instance, left). To do so, the parameter opt signal channel

needs to be specified as in the example below:

"opt_signal_channel": ["all"],

Optogenetic signal population The optogenetic stimulation can be applied to a single or mul-
tiple populations in the same simulation. In either case, the population names should be defined
as a list. The target population can be specified using the parameter opt signal population.
In the example below, the dSPN population is set as the target population:

"opt_signal_population": ["dSPN"],

Although the optogenetic-related parameters can be used to mimic the effect of a stop signal
manifested as the application of a step input current to a population, the network also has a
number of modifiable parameters that are specific to injecting the stop signal to target nuclei via
a box-shaped current.

Recorded variables CBGTPy allows recording of time-dependent values of both the corti-
costriatal weights and any optogenetic inputs to any CBGT nuclei that are being stimulated
by using the parameter record variables. The first component of record variables can be
used to track the evolution of the weights from cortex to dSPNs or iSPNs during an n-choice
experiment. The latter component records the optogenetic input applied to the target population
and is especially useful for debugging purposes. Both of these variables can be extracted as a
data frame by calling the function extract recording variables as described in Section 2.2.
Note that, for the parameter weight, cortical weights to both dSPNs and iSPNs for all choice
representations (channels) are recorded. In addition, when running the stop signal task, the stop
signal inputs can be recorded as well. Here, we can see an example of how to extract the weights
and the optogenetic input:

"record_variables": ["weight", "optogenetic_input"],

In addition, for the stop signal task, CBGTPy also allows the recording of the variable
"stop input", which can be used to check if the stop signal inputs were applied correctly
to the target nuclei.

"record_variables": ["stop_input"],

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

Stop signal If the experiment requires the stop signal to be applied, then this option should
be selected in the configuration variable by setting stop signal present to True. Different
stop signals can be applied to different target populations during the same execution. For these,
the stop signal present variable is defined as a list whose length depends on the number of
target populations. For example, if we apply stop signals to two different populations, we have
to set this variable as follows:

"stop_signal_present": [True , True],

Note that the user can apply the stop signals to as many nuclei as desired.

Stop signal populations The target populations for the stop signal can be specified using the
parameter stop signal population. In the example below, the STN and GPeA populations
are set as the target populations:

"stop_signal_populations": ["STN", "GPeA"],

All the examples presented below corresponding to the stop signal task are designed taking into
account that the stop signal is injected into these two populations.

Stop signal probability The stop signal probability can be specified using the parameter
stop signal probability, which is a list whose entries can take a float or a list as input. If a
float (between 0 and 1) is introduced, then this value represents the probability to which the stop
signal is applied. These trials are picked randomly from the total number of trials. Alternatively,
if a sublist is specified, then it must contain the numbers of those trials where the user wants
the stop signal to be applied. Note that the entries in the main list refer to the populations
specified in the same order as in the variable stop signal populations. For example, within
the statement

"stop_signal_probability": [1.0, [2, 3, 6]],

the first float value represents a 100% probability of applying the ”first” stop signal to the first
specified nucleus (STN), while the subsequent list of values represents the numbers of the trials
on which the ”second” stop signal will be applied to the other target region (GPeA).

Stop signal amplitude The amplitude of the stop signal can be passed as a float to the
parameter stop signal amplitude. Note that this parameter is a list and that every value
refers to the corresponding population. The order should follow the order of the populations.
For example,

"stop_signal_amplitude": [0.4, 0.6],

Stop signal onset The parameter stop signal onset sets the times when the stop signals
are injected into the target nuclei. The onset time is measured with respect to the start of the
decision phase. In the example proposed below, the stop signal stimulation at the STN starts
30ms after the decision phase begins, while that applied to the GPeA starts 60ms after the
decision phase begins:

"stop_signal_onset": [30., 60.]

Stop signal duration How long each stop signal is maintained can be controlled using the
parameters stop signal duration. As in the previous cases, this is a list whose order must
follow that of the target populations. In the following example, a stop signal lasting 100ms is
applied to the STN while another with duration 160ms is applied to the GPeA:

"stop_signal_duration": [100. , 160.]

In order to apply the stop signal throughout an entire phase, the duration variable should be set
to a string containing the name of the phase when the user wants to apply the stop signal, as
shown below:

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

"opt_signal_duration": ["phase␣0", "phase␣1"],

This allows the user to specifically target decision (“phase 0”), consolidation (“phase 1”) and
inter-trial interval (“phase 2”) phases with persistent stop signal stimulation.

Stop signal channel The user can also control if the stop signal applied to a specific population
is presented to all action channels (all), to a uniformly and randomly picked action channel
(any), or to a specific action representation (for instance, left). These can be specified using
the parameter stop signal channel. In the following example, one stop signal is presented to
the STN populations of all of the action channels, while the second stop signal is applied only to
the GPeA population corresponding to the “left” action channel:

"stop_signal_channel": ["all", "left"]

3 Experiments

In this section, we present some details about examples of the two primary experiments that
CBGTPy is designed to implement.

3.1 An n-choice task in an uncertain environment

This task requires the agent to select between n choices (e.g., left/right in a 2-choice task).
The selection of each choice leads to a reward with a certain probability. Moreover, the reward
probability associated with each choice can be abruptly changed as part of the experiment. Thus,
there are two forms of environmental uncertainty associated with this task: a) conflict, or the
degree of similarity between reward probabilities; and b) volatility, or the frequency of changes in
reward contingencies. Higher conflict would represent a situation where the reward probabilities
are more similar across choices, making detection of the optimal choice difficult, whereas a lower
conflict represents highly disparate values of reward probabilities and easier detection of the
optimal choice. Conflict is not specified directly in CBGTPy; rather, the reward probabilities are
explicitly set by the user (Section 2.3.2). An environment with high (low) volatility corresponds
to frequent (rare) switches in the reward contingencies. The volatility can be set by the parameter
λ, which determines the number of trials before reward probabilities switch. The user can choose
between whether the trials are switched after exactly λ trials or whether switches are determined
probabilistically, in which case λ represents the rate parameter of a Poisson distribution that
determines the number of trials before reward probabilities switch (Section 2.3.2).

Using the reward probabilities and volatility, the backend code generates a reward data
frame that the agent encounters during the learning simulation. The reward data frame is used
in calculating the reward prediction error and the corresponding dopaminergic signals, which
modulate the plasticity of the corticostriatal projections.

At the beginning of the simulation, the CGBT network is in a resting phase during which
all CBGT nuclei produce their baseline firing rates. When a stimulus is presented, the network
enters a new phase, which we call phase 0 or decision phase. We assume that at the start of this
stage a stimulus (i.e., an external stimulus, an internal process, or a combination of the two) is
introduced that drives the cortical activity above baseline. Cortical projections to the striatal
populations initiate ramping dynamics there, which in turn impacts activity downstream in the
rest of the BG and Th. We also assume that when the mean firing rate of a thalamic population
exceeds a designated threshold value of 30 spikes per second (the so-called decision boundary),
the CBGT network, and hence the agent, has made a choice. This event designates the end of
phase 0, and the duration of this phase is what we call the reaction time. If a decision is not
made within a time window ∆max ms after the start of the phase, then we say that none of the
available choices have been selected and the decision is recorded as “none”. Such trials can be
excluded from further analysis depending on the hypothesis being investigated.

To allow for selection between n different choices we instantiate n copies of all CBGT
populations except FSI and CxI. This replication sets up action channels representing the
available choices that can influence each other indirectly through the shared populations and
otherwise remain separate over the whole CBGT loop. To distinguish between the firing ratse of

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 4: Representation of the different phases of the simulated decision process.
This sketch represents the simulation of one trial of the 2-choice task in which a left choice is
made. The first red vertical line, at time 0, represents the time of onset of a ramping stimulus to
Cxi for both i, which indicates the start of the trial. The second red vertical thick line depicts
the decision time (end of phase 0). The third red vertical line depicts the end of the motor
response period associated with the decision (end of phase 1), which is also the time when reward
delivery occurs and hence dopamime level is updated. After this time, the reset phase (phase 2)
starts; this ends after 600ms (inter trial interval), when a new trial starts (right-hand vertical
red line). Orange and blue traces represent the mean thalamic firing rates Thi for i ∈ {left,
right}, respectively, and the horizontal black dotted line highlights the decision threshold.

the populations within channels, we will call them Popi, where Pop refers to the corresponding
CBGT region and i refers to the channel name (e.g., Cxleft, Cxright for n = 2).

The presentation of a stimulus to the cortical population is simulated by increasing the
external input frequency in all copies of the cortical Cx populations that ramp to a target firing
rate Itarget. The ramping current Iramp(t) is calculated as

Iramp(t) = Iramp(t− dt) + 0.1
[
Itarget(t)− Iramp(t− dt)

]
where dt is the integrator time step, and the external input frequency also changes according to

fext,x(t) = fext,x,baseline(t− dt) + Iramp(t).

After a Th population reaches the threshold and hence a decision is made, the ramping
input to Cx is extinguished and a subsequent period that we call phase 1 or consolidation
phase begins, which by default has duration sampled from a normal distribution N (µ = 250ms,
σ = 1.5ms) but can also be fixed to a given duration. This phase represents the period of
the motor implementation of the decision. Activity during phase 1 strongly depends on what
happened in phase 0 such that, if a decision i occurred at the end of phase 0, then Cxi will
be induced to exhibit sustained activity during phase 1 [28] (see S2 Appendix), while in any
non-selected action channels, the cortical activity returns to baseline. If no decision has been
made by the network (within a time window ∆max ms, with a default value of 1000 ms), then
no sustained activity is introduced in the cortex (see Figure 3, 3rd trial, the top left subplot
showing cortical activity).

Finally, each trial ends with a reset phase of duration 600ms (although this can be adjusted
by the user), which we call phase 2 or the inter-trial interval phase, when the external input is
removed and the network model is allowed to return to its baseline activity, akin to an inter-trial
interval.

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

A visualization of the decision phases is shown in Figure 4, where two different options, right
and left, are considered. The blue trace represents the thalamic activity for the right channel,
Thright, while the orange trace represents that for the left channel, Thleft. At the end of phase 0,
we can see that Thleft reaches the decision threshold of 30 spikes per second before Thright has
done so, resulting in a left choice being made. During phase 1, the Thleft activity is maintained
around 30 spikes per second by the sustained activity in Cxleft.

In this task, critical attention should be paid to phase 0, as this represents the process of
evidence accumulation where the cortical input and striatal activity of both channels ramp
until one of the thalamic populations’ firing rates reaches the threshold of 30Hz. To be largely
consistent with commonly used experimental paradigms, the maximal duration of this phase
is considered to be ∆max = 1000ms such that, if the agent makes no decision within 1000
ms, the trial times out and the decision is marked as “none”. These trials can be conveniently
removed from the recorded data before analysis. If a decision is made, then the simulation
proceeds as though a reward is delivered at the end of phase 1 – that is, at the end of the
motor sensory response – such that phase 1 represents the plasticity phase, where the choice
selected in phase 0 is reinforced with a dopaminergic signal. During this phase, the cortical
population of the selected channel receives 70% of the maximum cortical stimulus applied during
the ramping phase, although the user can change this percentage. This induces sustained activity
that promotes dopamine- and activity-dependent plasticity as described in S2 Appendix. The
activity-dependent plasticity rule strengthens (weakens) the corticostriatal weight to dSPNs
(iSPNs) of the selected channel when dopamine rises above its baseline level. CBGTPy allows
for the specification of other parameters such as learning rate, maximum weight values for
the corticostriatal projections and dopamine-related parameters (see details with examples in
Section 2.3).

0.0

0.5

1.0

P(
A)

reward probability: (P(A) = 1.0, P(B) = 0.0)

0.0

0.5

1.0

P(
A)

reward probability: (P(A) = 0.9, P(B) = 0.1)

0 5 10 15 20 25 30 35 40
Trials

0.0

0.5

1.0

P(
A)

reward probability: (P(A) = 0.75, P(B) = 0.25)

Figure 5: Probability of choosing the more rewarded action (e.g., A or B) for different
levels of conflict in a 2-choice task. The reward contingencies flip between the two choices
every 10 trials (marked by vertical dashed lines), at which point the probability of choosing the
more rewarded option drops below chance. The probability of choosing A is high in the 1st and
3rd blocks; however, the probability to choose A drops in the 2nd and 4th blocks (where B is
rewarded with a higher probability). Performance, measured in terms of probability of selecting
option A, degrades in general as conflict increases, but sensitivity to change points drops. The
performance was averaged over 50 random seeds for each conflict level.

At the beginning of the simulation, with baseline network parameters, the selection proba-
bilities are at chance level (i.e., 50% for a 2-choice task). If the network experiences rewards,
however, the dopamine-dependent plasticity strengthens the corticostriatal projection to the
dSPN population of each rewarded choice, thereby increasing the likelihood that it will be
selected in the future. CBGTPy allows for probabilistic reward delivery associated with each

20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

option, as well as switching of these probabilities between the two actions (Figure 5). When such
a change point occurs, the previously learned action now elicits a negative reward prediction
error, forcing the network to unlearn the previously learned choice and learn the new reward
contingency.

3.2 A stop signal task

The stop signal task represents a common paradigm used in cognitive psychology and cognitive
neuroscience for the study of reactive inhibition [30]. In this task, participants are trained to
respond as fast as possible after the presentation of a “Go” cue. Sometimes the “Go” cue is
followed by the presentation of a “Stop” cue, which instructs subjects to withhold their decision
and hence, if successful, prevents any corresponding movement before it begins.

Imaging and electrophysiological studies in humans, rodents, and monkeys agree in reporting
that STN neurons become activated in response to a stop signal [31], providing a fast, non-
selective pause mechanism that contributes to action suppression through the activation of the
cortical hyperdirect pathway [32,33]. However, this mechanism, by itself, mostly fails to inhibit
locomotion, appearing to be not selective and long-lasting enough to prevent a late resurgence of
the evidence accumulation process as needed to guarantee a complete cancellation of the execution
of the motor response [34]. A complementary slower but selective mechanism is thought to be
provided by the activation of arkypallidal neurons in the GPe in response to an external stimulus
that instructs the network to brake the ongoing motor planning process [33–35]. According to
this idea, a long-lasting action inhibition results from the activation of pallidostriatal GABAergic
projections. For more details on how this mechanism takes place see [12].

To reproduce these mechanisms and to simulate the interruption of the action selection
process, we inject two independent, external, excitatory currents directly into STN and GPeA
neurons during a typical CBGT simulation. This choice is based on the findings of Mallet et. al.
(2016) [34]. The stop signal is excitatory and hence is simulated by up regulating the baseline
input frequency to the AMPA receptors

fext,x(t) = fext,x(t) + stop amplitude,

where stop amplitude defines the magnitude of the stop signal stimulation. The currents
injected as a step function cause an increase in the firing rates of the target nuclei. Both of these
external currents are defined using parameters that can be modified in an easy and user-friendly
way, without requiring any familiarity or advanced knowledge of the details of the implementation
(see Section 2.3 for further details and examples).

The following list of parameters characterizes each one of these currents:

(a) amplitude, specifying the magnitude of the stimulation applied;

(b) population, specifying the CBGT region or sub-population being stimulated.

(c) onset, specifying the onset time of the stimulation, with respect to the trial onset time (i.e.,
the beginning of phase 0);

(d) duration, defining the duration of the stimulation. Since the length of phase 0 is not fixed
and is dependent on how long it takes for the thalamic firing rates to reach the decision
threshold (30Hz), this parameter should be set carefully;

(e) probability, determining the fraction of trials on which the stop signal should be introduced;

(f) channel, defining which action channels are stimulated.

A more detailed description of all of these parameters can be found in Section 2.3.2. The details
of the stop parameters used to reproduce Figure 7 are included in S9 Table.

The characterization of the different network phases described in Section 2 slightly changes
when performing the stop signal task (see Figure 6). During the decision phase (phase 0,
which in this task lasts for a maximum of 300 ms) the stop signals are directly presented to
the target populations by injecting independent external currents. The user can choose the
moment of the injection by manipulating the variable stop signal onset time. These signals

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 6: Representation of the phases of the stop signal task with two action
channels. This sketch represents one trial of the simulation. The first red vertical line indicates
the presentation of the cortical stimulus (causing ramping of cortical activity), which represents
the start of the trial. Red and green horizontal bars depict the presentation of two stop currents,
according to the onset time and duration values chosen by the user. In this example, the two
stop signals are considered to be applied with different onset times t1 and t2, respectively. The
second red vertical line depicts either the moment when an action has occurred (end of phase 0)
or that 300ms has expired and no action has been triggered, so a successful stop has occurred.
The third red vertical line depicts the end of the motor sensory response phase (end of phase
1), if an action is triggered (failed stop). Here, the stop was successful (no decision threshold
crossing within the decision window), so no motor sensory response is visible. Finally, the reset
phase (phase 2) occurs, after which a new trial begins. Blue and orange traces represent the
mean thalamic firing rates Thx for x ∈ {right,left}, respectively, and the horizontal black dotted
line marks the decision threshold.

are kept active for a period equal to stop signal duration, with a magnitude equal to the
stop signal amplitude. These values do not need to be the same for all of the stop signals
used. At this stage, two possible outcomes follow: (a) despite the presentation of the stop signals,
the network still manages to choose an action; or, (b) the network is not able to make an action
after the presentation of the stop signals, and phase 0 ends with no action triggered, which
represents a stop outcome. The former option could arise for various reasons; the strength of
the stop signal may not be sufficient to prevent the network from triggering an action or the
evaluation process may still have enough time to recover, after the stop signal ends, to allow the
thalamic firing rates to reach the decision threshold (e.g., 30Hz) within the permitted decision
window.

In Figure 7 we show an example of stop signal stimulation applied to STN and GPeA
populations, independently, in a 1-choice task. The onset of the stimulation applied to STN
occurred at 30ms while that for the stimulation of GPeA was set to 60ms; both signals were
applied for a duration of 145ms. Both stimulations were applied in both of the trials shown.
Note that trial number 1 corresponds to a correct stop trial (no decision was made within phase
0), whereas the following trial corresponds to a failed stop trial. These outcomes can be inferred
from the activity of various populations at the end of the decision making windows: the thalamic
firing rate reaches a higher level there and the firing traces in GPi decrease more for the failed
stop trial than for correct stop, while cortical activity is sustained beyond this time specifically
when stop fails.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 7: Example figure showing firing rates for all nuclei for two consecutive stop
trials. Note that the simulation has been run in a 1-channel regime and two stop currents have
been applied to STN and GPeA, respectively (see thick red bars). Segments of the simulation are
color-coded to distinguish times associated with decision making (pink, phase 0) and subsequent
times of motor response (grey, phase 1, showing sustained activity in the selected channel when a
decision is made) in each trial. The unshaded regions after the trials are the inter-trial-intervals
(phase 2).

3.3 Optogenetic stimulation

CBGTPy also allows for simulation of optogenetic stimulation of CBGT nuclei while an agent
performs the available tasks (stop signal or n-choice). Optogenetic stimulation is implemented
by setting a conductance value for one of two opsins dependant upon the mode of stimulation,
channelrhodopsin-2 for excitation and halorhodopsin for inhibition. The excitatory or inhibitory
optogenetic input is applied as a current Iopto added to the inward current Iext of all neurons in
a nucleus or subpopulation during a typical CBGT simulation such that

Iopto(t) =

{
gopto(V (t)− VChR2) gopto ≥ 0

−gopto(V (t)− VNpHR) gopto < 0

where the conductance gopto is a signed value entered via the configuration variable in the
notebooks. The reversal potential of channelrhodopsin (VChR2) was considered to be 0mV and
halorhodopsin (VNpHR) was considered to be −400mV [36].

The stimulation paradigm includes the following parameters:

(a) amplitude, the sign of which specifies the nature (positive→excitatory / negative→inhibitory)
and the absolute value of which specifies the magnitude of the conductance applied;

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

(b) population, specifying the CBGT region or sub-population being stimulated;

(c) onset, specifying the onset time of the stimulation;

(d) duration, defining the duration of the stimulation;

(e) probability, indicating the fraction of trials or a list of trial numbers to include stimulation;

(f) channel, specifying which action channels are stimulated.

The parameter population should be entered as a list of the subpopulations to be stimulated.
The parameter onset is calculated from the beginning of phase 0 ; for example, if this parameter is
10, then the optogenetic stimulation starts 10ms after phase 0 starts. The parameter duration
controls the duration of the optogenetic stimulation. This parameter either accepts a numeric
value in ms or a string specifying which phase should be stimulated. The numeric value stipulates
that the list of selected populations will be stimulated from the specified onset time for the
specified time duration. The string (e.g., “phase 0”) stipulates that the stimulation should
be applied throughout the specified phase, thereby allowing the user to specifically target the
decision, consolidation or inter-trial interval phase. If an optogenetic configuration results in
extending the duration of a phase (e.g., strongly inhibiting dSPN may extend phase 0), a time
out is specified for every phase to prevent a failure to terminate the phase. The default timeouts
for phase 0, 1 and 2 are 1000ms, 300ms and 600ms respectively unless specified by the user.

The parameter probability offers the flexibility of either assigning a number that determines
the fraction of trials (randomly sampled from the full collection of trials) on which the stimulation
is to be delivered or else entering a list of specific trial numbers. Lastly, the parameter channel
specifies the name of the action channel, such as “left”, onto which the stimulation should be
applied. This parameter also accepts two additional options, “all” or “any”, the former of which
leads to the application of a global stimulation to the same population in all channels and the
latter of which randomly selects a channel for stimulation on each trial. The details of the
optogenetic input is included in S10 Table.

We show an example of optogenetic stimulation applied to a list of iSPN and dSPN populations
in a 3-choice task (Figure 8). The excitatory stimulation (shown as thick blue bar), with an
amplitude of 0.1, was applied to the iSPN populations of all the channels (namely A, B, and C) in
the first trial, for the duration of phase 0. An increased activity in the iSPN population (activation
of the indirect pathway) caused a choice time out on this trial. In the subsequent second trial,
an inhibitory stimulation with an amplitude of −0.5 was applied to the dSPNs (shown as yellow
bar) for 400ms. This resulted in brief but strong inhibition of dSPNs (direct pathway), thereby
delaying the action selection. This can be observed by comparing the durations of the decision
phase between the second and third trials, where no such manipulation was imposed.

4 Discussion

Here we introduce CBGTPy, an extensible generative modeling package that simulates
responses in a variety of experimental testing environments with agent behavior driven by
dynamics of the CBGT pathways of the mammalian brain. A primary strength of this package
is the separation of the agent and environment components, such that modifications in the
environmental paradigm can be made independent of the modifications in the CBGT network.
This allows the user to derive predictions about network function and behavior in a variety of
experimental contexts, which can be vetted against empirical observations. Moreover, various
changes in the parameters of the network, as well as the experimental paradigm, can be made
through the higher-level configuration variable that is sent as an argument in running the
simulation, thereby avoiding a considerable coding effort on the part of the user. CBGTPy
also returns behavioral outcomes (e.g., choices made and decision times) and “recordings” of
neuronal outputs (instantaneous firing rates) for all of the CBGT nuclei in the form of easily
usable and readable data frames. Overall, CBGTPy allows for theorists and experimentalists
alike to develop and test novel theories of the biological function of these critical pathways.

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

Figure 8: Example figure showing optogenetic stimulation for the nuclei ‘iSPN’ and
‘dSPN’. The configuration specified was: amplitude: [0.5, -0.5], duration: [‘phase

0’, 400], trial numbers: [[0], [1]], channels: [‘all’, ‘all’]. The excitatory op-
togenetic stimulation given to iSPN (shown as blue bar) and lasts all through phase 0, whereas
inhibitory stimulation to dSPN (shown as yellow bar) lasted for 400ms. In both cases, stimulation
were applied to all

channels (namely A, B and C) of the nuclei.

The individual components of CBGTPy are all designed to enable maximum flexibility.
The basal ganglia model is constructed in an organized series of steps, beginning with high-
level descriptions of the model and gradually providing more fine-grained details. Developing
a modification to the network becomes a matter of inserting or modifying the appropriate
components or steps, allowing high-level redesigns to be implemented as easily as more precise
low-level modifications. CBGTPy’s high degree of extensibility can, in large part, be attributed
to its use of a data-flow programming paradigm. Neural pathways between major populations, for
example, can be specified at a very high level, requiring only a single entry in the pathway table to
describe how each subpopulation is connected. If the connectivity of a particular subpopulation,
or even a particular neuron, needs adjustment, then the later steps in network construction can
be adjusted to implement those changes. CBGTPy was designed with this degree of flexibility
to ensure that in the future, more complex biological models of the CBGT network can be
developed and implemented in an efficient manner.

Of course, CBGTPy is not the only neural network model of these cortical-subcortical
networks. Many other models exist that describe the circuit-level dynamics of CBGT pathways
as either a spiking [24,37–42] or a rate-based [7,8,43–49] system. CBGTPy has some limitations
worth noting, such as not being as computationally efficient as rate-based models in generating
macroscale dynamics, including those observed using fMRI or EEG, and associated predictions.
Also, the properties of the cortical systems modeled in CBGTPy are quite simple and do
not capture the nuanced connectivity and representational structure of real cortical systems.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

For these sorts of questions, there are many other modeling packages that would be better
suited for generating hypotheses (e.g., [50]). Where CBGTPy excels is in its a) biologically
realistic description of subcortical pathways, b) scalability of adding in new pathways or network
properties as they are discovered, c) flexibility at emulating a variety of typical neuroscientific
testing environments, and d) ease of use for individuals with relatively limited programming
experience. These benefits should make CBGTPy an ideal tool for many researchers interested
in basal ganglia and thalamic pathways during behavior.

One issue that has been left unresolved in our toolbox is the problem of parameter fitting
[51,52]. Spiking network models like those used in CBGTPy have an immense number of free
parameters. The nature of both the scale and variety of parameters in spiking neural networks
makes the fitting problem substantially more complex than that faced by more abstracted neural
network models, such as those used in deep learning and modern artificial intelligence [53,54].
This is particularly true when the goal is to constrain both the neural and behavioral properties
of the network. Models like CBGTPy can be tuned to prioritize matching cellular level properties
observed empirically (for example see [15]) or to emphasize matching task performances to
humans or non-human participants (see [16]). We view this as a weighted cost function between
network dynamics and behavioral performance whose balance depends largely on the goals of the
study. To the best of our knowledge, there is no established solution to simultaneously fitting
both constraints together in these sorts of networks. Therefore, CBGTPy is designed to be
flexible to a wide variety of tuning approaches depending on the goal of the user, rather than
constrain to a single fitting method.

Because our focus is on matching neural and behavioral constraints based on experimental
observations, CBGTPy’s environment was designed to emulate the sorts of task paradigms used
in systems and cognitive neuroscience research. We purposefully constructed the environment
interface to accommodate a wide variety of traditional and current experimental behavioral tasks.
These tasks are often simpler in design than the more complex and naturalistic paradigms used
in artificial intelligence and, to an increasing degree, cognitive science. Nonetheless, a long-term
goal of CBGTPy development is to interface with environments like OpenAI’s Gym [55] in order
to provide not only a mechanistic link towards more naturalistic behavior, but also a framework
to test hypotheses about the underlying mechanisms of more dynamic and naturalistic behaviors.

In summary, CBGTPy offers a simple way to start generating predictions about CBGT
pathways in hypothesis-driven research. This tool enables researchers to run virtual experiments
in parallel with in vivo experiments in both humans and non-human animals. The extensible
nature of the tool makes it easy to introduce updates or expansions in complexity as new
observations come to light, positioning it as a potentially important and highly useful tool for
understanding these pathways.

Acknowledgements

We would like to thank all the member of exploratory intelligence group, especially Julia
Badyna and Dr. Eric Yttri, for their helpful inputs. MC, JB, TV and JER are partly supported
by NIH awards R01DA053014 and R01DA059993 as part of the CRCNS program. CG and
CV are supported by the PCI2020-112026 project, and CV is also supported by the PCI2023-
145982-2, both funded by MCIN/AEI/10.13039/501100011033 and by the European Union
“NextGenerationEU”/PRTR as part of the CRCNS program. CG is also supported by the
Conselleria de Fons Europeus, Universitat i Cultura del Govern de les Illes Balears under grant
FPU2023-008-B.

Conflict of interest

The authors declare no conflict of interest.

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

References

[1] N. Kriegeskorte and P. K. Douglas, “Cognitive computational neuroscience,” Nature
neuroscience, vol. 21, no. 9, pp. 1148–1160, 2018.

[2] W. J. Ma and B. Peters, “A neural network walks into a lab: towards using deep nets as
models for human behavior,” arXiv preprint arXiv:2005.02181, 2020.

[3] O. Guest and A. E. Martin, “On logical inference over brains, behaviour, and artificial
neural networks,” Computational Brain & Behavior, pp. 1–15, 2023.

[4] J. S. Bowers, G. Malhotra, M. Dujmović, M. L. Montero, C. Tsvetkov, V. Biscione,
G. Puebla, F. Adolfi, J. E. Hummel, R. F. Heaton et al., “Deep problems with neural
network models of human vision,” Behavioral and Brain Sciences, pp. 1–74, 2022.

[5] D. L. Yamins and J. J. DiCarlo, “Using goal-driven deep learning models to understand
sensory cortex,” Nature neuroscience, vol. 19, no. 3, pp. 356–365, 2016.

[6] A. B. Nelson and A. C. Kreitzer, “Reassessing models of Basal Ganglia function and
dysfunction.” Annual review of neuroscience, vol. 37, pp. 117–35, jul 2014. [Online].
Available: http://www.ncbi.nlm.nih.gov/pubmed/25032493

[7] B. Girard, J. Lienard, C. E. Gutierrez, B. Delord, and K. Doya, “A biologically constrained
spiking neural network model of the primate basal ganglia with overlapping pathways
exhibits action selection,” European Journal of Neuroscience, vol. 53, no. 7, pp. 2254–2277,
2021.

[8] K. Gurney, T. J. Prescott, and P. Redgrave, “A computational model of action selection in
the basal ganglia. I. A new functional anatomy,” Biological Cybernetics, vol. 84, no. 6, pp.
401–410, 2001. [Online]. Available: http://link.springer.com/10.1007/PL00007984

[9] K. Dunovan and T. Verstynen, “Believer-Skeptic meets actor-critic: Rethinking the role of
basal ganglia pathways during decision-making and reinforcement learning,” Frontiers in
Neuroscience, vol. 10, no. MAR, pp. 1–15, 2016.

[10] C. Vich, K. Dunovan, T. Verstynen, and J. Rubin, “Corticostriatal synaptic weight
evolution in a two-alternative forced choice task: a computational study,” Communications
in Nonlinear Science and Numerical Simulation, vol. 82, p. 105048, 2020.

[11] A. Nambu and S. Chiken, “External segment of the globus pallidus in health and disease:
Its interactions with the striatum and subthalamic nucleus,” Neurobiology of Disease, vol.
190, p. 106362, 2024.

[12] C. Giossi, J. Rubin, A. Gittis, T. Verstynen, and C. Vich, “Rethinking the external globus
pallidus and information flow in cortico-basal ganglia-thalamic circuits,” Eur J Neurosci,
2024.

[13] K. Dunovan, C. Vich, M. Clapp, T. Verstynen, and J. Rubin, “Reward-driven changes
in striatal pathway competition shape evidence evaluation in decision-making,” PLoS
computational biology, vol. 15, no. 5, p. e1006998, 2019.

[14] J. E. Rubin, C. Vich, M. Clapp, K. Noneman, and T. Verstynen, “The credit assignment
problem in cortico-basal ganglia-thalamic networks: A review, a problem and a possible
solution,” European Journal of Neuroscience, vol. 53, no. 7, pp. 2234–2253, 2021.

[15] C. Vich, M. Clapp, J. E. Rubin, and T. Verstynen, “Identifying control ensembles for infor-
mation processing within the cortico-basal ganglia-thalamic circuit,” PLOS Computational
Biology, vol. 18, no. 6, p. e1010255, 2022.

[16] K. Bond, J. Rasero, R. Madan, J. Bahuguna, J. Rubin, and T. Verstynen, “Competing
neural representations of choice shape evidence accumulation in humans,” Elife, vol. 12, p.
e85223, 2023.

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

http://www.ncbi.nlm.nih.gov/pubmed/25032493
http://link.springer.com/10.1007/PL00007984
https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

[17] G. D. Smith, C. L. Cox, S. M. Sherman, and J. Rinzel, “Fourier analysis of sinusoidally
driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model,” J.
Neurophysiol., vol. 83, no. 1, pp. 588–610, 2000.

[18] N. T. Carnevale and M. L. Hines, The NEURON Book. Cambridge University Press,
2006.

[19] D. F. Goodman and R. Brette, “Brian: a simulator for spiking neural networks
in python,” Frontiers in Neuroinformatics, vol. 2, 2008. [Online]. Available: https:
//www.frontiersin.org/journals/neuroinformatics/articles/10.3389/neuro.11.005.2008

[20] S. Dura-Bernal, B. A. Suter, P. Gleeson, M. Cantarelli, A. Quintana, F. Rodriguez,
D. J. Kedziora, G. L. Chadderdon, C. C. Kerr, S. A. Neymotin, R. A. McDougal,
M. Hines, G. M. Shepherd, and W. W. Lytton, “Netpyne, a tool for data-driven multiscale
modeling of brain circuits,” eLife, vol. 8, p. e44494, apr 2019. [Online]. Available:
https://doi.org/10.7554/eLife.44494

[21] T. B. Sousa, “Dataflow programming concept, languages and applications,” in Doctoral
Symposium on Informatics Engineering, vol. 130, 2012.

[22] The Ray Team, “Ray 1.x architecture,” Sept 2020. [Online]. Available: https://docs.ray.io/

[23] W. McKinney, “Data Structures for Statistical Computing in Python,” in Proceedings of
the 9th Python in Science Conference, Stéfan van der Walt and Jarrod Millman, Eds.,
2010, pp. 56 – 61.

[24] L. Goenner, O. Maith, I. Koulouri, J. Baladron, and F. H. Hamker, “A spiking model of
basal ganglia dynamics in stopping behavior supported by arkypallidal neurons,” European
Journal of Neuroscience, vol. 53, no. 7, pp. 2296–2321, 2021.

[25] P. Rothwell, S. Hayton, G. Sun, M. Fuccillo, B. Lim, and R. Malenka, “Input-
and Output-Specific Regulation of Serial Order Performance by Corticostriatal
Circuits,” Neuron, vol. 88, no. 2, pp. 345–356, 2015. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0896627315008247

[26] M. J. Frank, J. Samanta, A. a. Moustafa, and S. J. Sherman, “Hold your
horses: impulsivity, deep brain stimulation, and medication in parkinsonism.” Science
(New York, N.Y.), vol. 318, no. 5854, pp. 1309–12, dec 2007. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/17962524

[27] K. a. Zaghloul, C. T. Weidemann, B. C. Lega, J. L. Jaggi, G. H. Baltuch, and
M. J. Kahana, “Neuronal activity in the human subthalamic nucleus encodes decision
conflict during action selection.” The Journal of neuroscience : the official journal
of the Society for Neuroscience, vol. 32, no. 7, pp. 2453–60, feb 2012. [Online].
Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3296967&tool=
pmcentrez&rendertype=abstract

[28] P. Cisek and J. F. Kalaska, “Neural correlates of reaching decisions in dorsal
premotor cortex: Specification of multiple direction choices and final selection
of action,” Neuron, vol. 45, no. 5, pp. 801–814, Mar 2005. [Online]. Available:
https://doi.org/10.1016/j.neuron.2005.01.027

[29] S. Nonomura, K. Nishizawa, Y. Sakai, Y. Kawaguchi, S. Kato, M. Uchigashima, M. Watan-
abe, K. Yamanaka, K. Enomoto, S. Chiken et al., “Monitoring and updating of action
selection for goal-directed behavior through the striatal direct and indirect pathways,”
Neuron, vol. 99, no. 6, pp. 1302–1314, 2018.

[30] F. Verbruggen, A. R. Aron, G. P. Band, C. Beste, P. G. Bissett, A. T. Brockett, J. W.
Brown, S. R. Chamberlain, C. D. Chambers, H. Colonius et al., “A consensus guide to
capturing the ability to inhibit actions and impulsive behaviors in the stop-signal task,”
elife, vol. 8, p. e46323, 2019.

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/neuro.11.005.2008
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/neuro.11.005.2008
https://doi.org/10.7554/eLife.44494
https://docs.ray.io/
http://linkinghub.elsevier.com/retrieve/pii/S0896627315008247
http://www.ncbi.nlm.nih.gov/pubmed/17962524
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3296967&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3296967&tool=pmcentrez&rendertype=abstract
https://doi.org/10.1016/j.neuron.2005.01.027
https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

[31] A. Nambu, H. Tokuno, and M. Takada, “Functional significance of the cortico–subthalamo–
pallidal ‘hyperdirect’pathway,” Neuroscience research, vol. 43, no. 2, pp. 111–117, 2002.

[32] R. Schmidt, D. K. Leventhal, N. Mallet, F. Chen, and J. D. Berke, “Canceling actions
involves a race between basal ganglia pathways,” Nature neuroscience, vol. 16, no. 8, pp.
1118–1124, 2013.

[33] R. Schmidt and J. D. Berke, “A pause-then-cancel model of stopping: evidence from basal
ganglia neurophysiology,” Philosophical Transactions of the Royal Society B: Biological
Sciences, vol. 372, no. 1718, p. 20160202, 2017.

[34] N. Mallet, R. Schmidt, D. Leventhal, F. Chen, N. Amer, T. Boraud, and J. D. Berke,
“Arkypallidal cells send a stop signal to striatum,” Neuron, vol. 89, no. 2, pp. 308–316, 2016.

[35] A. Aristieta, M. Barresi, S. A. Lindi, G. Barriere, G. Courtand, B. de la Crompe, L. Guil-
hemsang, S. Gauthier, S. Fioramonti, J. Baufreton et al., “A disynaptic circuit in the
globus pallidus controls locomotion inhibition,” Current Biology, vol. 31, no. 4, pp. 707–721,
2021.

[36] B. Y. Chow, X. Han, and E. S. Boyden, “Genetically encoded molecular tools for light-
driven silencing of targeted neurons,” Progress in Brain Research, vol. 196, no. type I, pp.
49–61, 2012.

[37] M. D. Humphries, R. D. Stewart, and K. N. Gurney, “A physiologically plausible model of
action selection and oscillatory activity in the basal ganglia.” The Journal of neuroscience
: the official journal of the Society for Neuroscience, vol. 26, no. 50, pp. 12 921–42, dec
2006. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/17167083

[38] A. Mandali, M. Rengaswamy, V. Srinivasa Chakravarthy, and A. A. Moustafa, “A spik-
ing Basal Ganglia model of synchrony, exploration and decision making,” Frontiers in
Neuroscience, vol. 9, no. MAY, pp. 1–21, 2015.

[39] S. Santaniello, M. M. McCarthy, E. B. Montgomery Jr, J. T. Gale, N. Kopell, and S. V.
Sarma, “Therapeutic mechanisms of high-frequency stimulation in parkinson’s disease and
neural restoration via loop-based reinforcement,” Proceedings of the National Academy of
Sciences, vol. 112, no. 6, pp. E586–E595, 2015.

[40] M. Lindahl and J. Hellgren Kotaleski, “Untangling Basal Ganglia Network
Dynamics and Function: Role of Dopamine Depletion and Inhibition Investigated
in a Spiking Network Model,” eNeuro, vol. 3, no. 6, 2016. [Online]. Available:
http://www.eneuro.org/content/3/6/ENEURO.0156-16.2016

[41] O. Maith, F. Villagrasa Escudero, H. Ü. Dinkelbach, J. Baladron, A. Horn, F. Irmen, A. A.
Kühn, and F. H. Hamker, “A computational model-based analysis of basal ganglia pathway
changes in Parkinson’s disease inferred from resting-state fMRI,” European Journal of
Neuroscience, vol. 53, no. 7, pp. 2278–2295, 2021.

[42] K. Chakravarty, S. Roy, A. Sinha, A. Nambu, S. Chiken, J. H. Kotaleski, and A. Kumar,
“Transient Response of Basal Ganglia Network in Healthy and Low-Dopamine State,”
eNeuro, vol. 9, no. 2, 2022.

[43] M. J. Frank, “Hold your horses: A dynamic computational role for the subthalamic nucleus
in decision making,” Neural Networks, vol. 19, no. 8, pp. 1120–1136, 2006.

[44] A. Leblois, T. Boraud, W. Meissner, H. Bergman, and D. Hansel, “Competition
between feedback loops underlies normal and pathological dynamics in the basal ganglia.”
Journal of Neuroscience, vol. 26, no. 13, pp. 3567–3583, 2006. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/16571765

[45] S. J. van Albada and P. a. Robinson, “Mean-field modeling of the basal ganglia-
thalamocortical system. I Firing rates in healthy and parkinsonian states.” Journal
of theoretical biology, vol. 257, no. 4, pp. 642–63, apr 2009. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/19168074

29

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

http://www.ncbi.nlm.nih.gov/pubmed/17167083
http://www.eneuro.org/content/3/6/ENEURO.0156-16.2016
http://www.ncbi.nlm.nih.gov/pubmed/16571765
http://www.ncbi.nlm.nih.gov/pubmed/19168074
https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

[46] R. Bogacz and T. Larsen, “Integration of reinforcement learning and optimal decision-
making theories of the basal ganglia,” Neural Computation, vol. 23, no. 4, pp. 817–851,
2011.

[47] M. Guthrie, A. Leblois, A. Garenne, and T. Boraud, “Interaction between cognitive and
motor cortico-basal ganglia loops during decision making: A computational study,” Journal
of Neurophysiology, vol. 109, no. 12, pp. 3025–3040, 2013.

[48] A. J. Nevado-Holgado, N. Mallet, P. J. Magill, and R. Bogacz, “Effective
connectivity of the subthalamic nucleus - globus pallidus network during Parkinsonian
oscillations.” The Journal of physiology, pp. 1–12, mar 2014. [Online]. Available:
http://www.ncbi.nlm.nih.gov/pubmed/24344162

[49] K. N. Gurney, M. D. Humphries, and P. Redgrave, “A New Framework for Cortico-Striatal
Plasticity: Behavioural Theory Meets In Vitro Data at the Reinforcement-Action
Interface,” PLoS Biology, vol. 13, no. 1, p. e1002034, jan 2015. [Online]. Available:
http://dx.plos.org/10.1371/journal.pbio.1002034

[50] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. C. Stewart, D. Rasmussen, X. Choo,
A. R. Voelker, and C. Eliasmith, “Nengo: a python tool for building large-scale functional
brain models,” Frontiers in neuroinformatics, vol. 7, p. 48, 2014.

[51] O. K. Oyedotun, E. O. Olaniyi, and A. Khashman, “A simple and practical review of over-
fitting in neural network learning,” International Journal of Applied Pattern Recognition,
vol. 4, no. 4, pp. 307–328, 2017.

[52] M. G. Abdolrasol, S. S. Hussain, T. S. Ustun, M. R. Sarker, M. A. Hannan, R. Mohamed,
J. A. Ali, S. Mekhilef, and A. Milad, “Artificial neural networks based optimization
techniques: A review,” Electronics, vol. 10, no. 21, p. 2689, 2021.

[53] K. D. Carlson, J. M. Nageswaran, N. Dutt, and J. L. Krichmar, “An efficient automated
parameter tuning framework for spiking neural networks,” Frontiers in neuroscience, vol. 8,
p. 10, 2014.

[54] C. Rossant, D. F. Goodman, B. Fontaine, J. Platkiewicz, A. K. Magnusson, and R. Brette,
“Fitting neuron models to spike trains,” Frontiers in neuroscience, vol. 5, p. 9, 2011.

[55] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[56] V. S. Chakravarthy, D. Joseph, and R. S. Bapi, “What do the basal ganglia do? a modeling
perspective,” Biological cybernetics, vol. 103, pp. 237–253, 2010.

[57] S. Bariselli, W. Fobbs, M. Creed, and A. Kravitz, “A competitive model for striatal action
selection,” Brain research, vol. 1713, pp. 70–79, 2019.

[58] G. E. Alexander, M. R. DeLong, and P. L. Strick, “Parallel organization of functionally
segregated circuits linking basal ganglia and cortex,” Annual review of neuroscience, vol. 9,
no. 1, pp. 357–381, 1986.

[59] R. L. Albin, A. B. Young, and J. B. Penney, “The functional anatomy of basal ganglia
disorders,” Trends in neurosciences, vol. 12, no. 10, pp. 366–375, 1989.

[60] J. W. Mink, “The basal ganglia: focused selection and inhibition of competing motor
programs,” Progress in neurobiology, vol. 50, no. 4, pp. 381–425, 1996.

[61] A. V. Kravitz, L. D. Tye, and A. C. Kreitzer, “Distinct roles for direct and indirect pathway
striatal neurons in reinforcement,” Nature neuroscience, vol. 15, no. 6, pp. 816–818, 2012.

[62] N. Mallet, B. R. Micklem, P. Henny, M. T. Brown, C. Williams, J. P. Bolam, K. C.
Nakamura, and P. J. Magill, “Dichotomous organization of the external globus pallidus,”
Neuron, vol. 74, no. 6, pp. 1075–1086, 2012.

30

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

http://www.ncbi.nlm.nih.gov/pubmed/24344162
http://dx.plos.org/10.1371/journal.pbio.1002034
https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

[63] W. Maass, “On the computational power of winner-take-all,” Neural computation, vol. 12,
no. 11, pp. 2519–2535, 2000.

[64] J. C. Hedreen and M. R. Delong, “Organization of striatopallidal, striatonigral, and
nigrostriatal projections in the macaque,” Journal of Comparative Neurology, vol. 304,
no. 4, pp. 569–595, 1991.

[65] C. R. Gerfen, T. M. Engber, L. C. Mahan, Z. Susel, T. N. Chase, F. J. Monsma Jr, and
D. R. Sibley, “D1 and d2 dopamine receptor-regulated gene expression of striatonigral and
striatopallidal neurons,” Science, vol. 250, no. 4986, pp. 1429–1432, 1990.

[66] W. Schultz, “Predictive reward signal of dopamine neurons,” Journal of Neurophysiology,
vol. 80, no. 1, pp. 1–27, 1998.

[67] M. J. Frank, L. C. Seeberger, and R. C. O’reilly, “By carrot or by stick: cognitive
reinforcement learning in parkinsonism.” Science (New York, N.Y.), vol. 306, no. 5703, pp.
1940–3, dec 2004. [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/15528409

[68] K. Morita and A. Kato, “Striatal dopamine ramping may indicate flexible reinforcement
learning with forgetting in the cortico-basal ganglia circuits.” Frontiers in neural circuits,
vol. 8, no. April, p. 36, jan 2014. [Online]. Available: http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=3988379&tool=pmcentrez&rendertype=abstract

[69] G. Cui, S. B. Jun, X. Jin, M. D. Pham, S. S. Vogel, D. M. Lovinger, and R. M. Costa,
“Concurrent activation of striatal direct and indirect pathways during action initiation,”
Nature, vol. 494, no. 7436, p. 238, 2013.

[70] F. Tecuapetla, S. Matias, G. P. Dugue, Z. F. Mainen, and R. M. Costa, “Balanced activity
in basal ganglia projection pathways is critical for contraversive movements,” Nature
communications, vol. 5, p. 4315, 2014.

[71] J. H. Shin, D. Kim, and M. W. Jung, “Differential coding of reward and movement infor-
mation in the dorsomedial striatal direct and indirect pathways,” Nature communications,
vol. 9, no. 1, pp. 1–14, 2018.

[72] J. G. Parker, J. D. Marshall, B. Ahanonu, Y.-W. Wu, T. H. Kim, B. F. Grewe, Y. Zhang, J. Z.
Li, J. B. Ding, M. D. Ehlers et al., “Diametric neural ensemble dynamics in parkinsonian
and dyskinetic states,” Nature, vol. 557, no. 7704, pp. 177–182, 2018.

[73] J. T. Dudman and J. W. Krakauer, “The basal ganglia: from motor commands to the
control of vigor,” Current opinion in neurobiology, vol. 37, pp. 158–166, 2016.

[74] R. S. Turner and M. Desmurget, “Basal ganglia contributions to motor control: a vigorous
tutor,” Current opinion in neurobiology, vol. 20, no. 6, pp. 704–716, 2010.

[75] P. E. Rueda-Orozco and D. Robbe, “The striatum multiplexes contextual and kinematic
information to constrain motor habits execution,” Nature neuroscience, vol. 18, no. 3, pp.
453–460, 2015.

[76] D. Thura and P. Cisek, “The basal ganglia do not select reach targets but control the
urgency of commitment,” Neuron, vol. 95, no. 5, pp. 1160–1170, 2017.

[77] E. A. Yttri and J. T. Dudman, “Opponent and bidirectional control of movement velocity
in the basal ganglia,” Nature, vol. 533, no. 7603, pp. 402–406, 2016.

[78] T. Hashimoto, C. M. Elder, M. S. Okun, S. K. Patrick, and J. L. Vitek, “Stimulation
of the subthalamic nucleus changes the firing pattern of pallidal neurons,” Journal of
neuroscience, vol. 23, no. 5, pp. 1916–1923, 2003.

[79] W. Wei, J. E. Rubin, and X.-J. Wang, “Role of the indirect pathway of the basal ganglia in
perceptual decision making,” Journal of Neuroscience, vol. 35, no. 9, pp. 4052–4064, 2015.

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

http://www.ncbi.nlm.nih.gov/pubmed/15528409
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3988379&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3988379&tool=pmcentrez&rendertype=abstract
https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

[80] C.-C. Lo and X.-J. Wang, “Cortico–basal ganglia circuit mechanism for a decision threshold
in reaction time tasks,” Nature neuroscience, vol. 9, no. 7, pp. 956–963, 2006.

[81] A. Kumar, S. Cardanobile, S. Rotter, and A. Aertsen, “The role of inhibition in generating
and controlling parkinson’s disease oscillations in the basal ganglia,” Frontiers in systems
neuroscience, vol. 5, p. 86, 2011.

[82] C. J. Wilson, “Active decorrelation in the basal ganglia,” Neuroscience, vol. 250, pp.
467–482, 2013.

[83] A. Klaus, G. J. Martins, V. B. Paixao, P. Zhou, L. Paninski, and R. M. Costa, “The
spatiotemporal organization of the striatum encodes action space,” Neuron, vol. 95, no. 5,
pp. 1171–1180, 2017.

[84] J. Frost Nylén, J. J. Hjorth, A. Kozlov, I. Carannante, J. Hellgren Kotaleski, and S. Grillner,
“The roles of surround inhibition for the intrinsic function of the striatum, analyzed in
silico,” Proceedings of the National Academy of Sciences, vol. 120, no. 45, p. e2313058120,
2023.

[85] A. H. Gittis, A. B. Nelson, M. T. Thwin, J. J. Palop, and A. C. Kreitzer, “Distinct
roles of gabaergic interneurons in the regulation of striatal output pathways,” Journal of
Neuroscience, vol. 30, no. 6, pp. 2223–2234, 2010.

[86] M. D. Bevan, P. A. Booth, S. A. Eaton, and J. P. Bolam, “Selective innervation of
neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat,” Journal
of Neuroscience, vol. 18, no. 22, pp. 9438–9452, 1998.

[87] V. L. Corbit, T. C. Whalen, K. T. Zitelli, S. Y. Crilly, J. E. Rubin, and A. H. Gittis,
“Pallidostriatal projections promote β oscillations in a dopamine-depleted biophysical
network model,” Journal of Neuroscience, vol. 36, no. 20, pp. 5556–5571, 2016.

[88] M. Ketzef and G. Silberberg, “Differential synaptic input to external globus pallidus
neuronal subpopulations in vivo,” Neuron, vol. 109, no. 3, pp. 516–529, 2021.

[89] C. Fox and J. Rafols, “The striatal efferents in the globus pallidus and in the substantia
nigra.” Research Publications-Association for Research in Nervous and Mental Disease,
vol. 55, pp. 37–55, 1976.

[90] Y. Smith, M. Bevan, E. Shink, and J. P. Bolam, “Microcircuitry of the direct and indirect
pathways of the basal ganglia.” Neuroscience, vol. 86, no. 2, pp. 353–387, 1998.

[91] A. Abdi, N. Mallet, F. Y. Mohamed, A. Sharott, P. D. Dodson, K. C. Nakamura, S. Suri,
S. V. Avery, J. T. Larvin, F. N. Garas et al., “Prototypic and arkypallidal neurons in the
dopamine-intact external globus pallidus,” Journal of Neuroscience, vol. 35, no. 17, pp.
6667–6688, 2015.

[92] A. Saunders, K. W. Huang, and B. L. Sabatini, “Globus pallidus externus neurons expressing
parvalbumin interconnect the subthalamic nucleus and striatal interneurons,” PloS one,
vol. 11, no. 2, p. e0149798, 2016.

[93] V. M. Hernández, D. J. Hegeman, Q. Cui, D. A. Kelver, M. P. Fiske, K. E. Glajch, J. E.
Pitt, T. Y. Huang, N. J. Justice, and C. S. Chan, “Parvalbumin+ neurons and npas1+
neurons are distinct neuron classes in the mouse external globus pallidus,” Journal of
Neuroscience, vol. 35, no. 34, pp. 11 830–11 847, 2015.

[94] P. D. Dodson, J. T. Larvin, J. M. Duffell, F. N. Garas, N. M. Doig, N. Kessaris, I. C.
Duguid, R. Bogacz, S. J. Butt, and P. J. Magill, “Distinct developmental origins manifest
in the specialized encoding of movement by adult neurons of the external globus pallidus,”
Neuron, vol. 86, no. 2, pp. 501–513, 2015.

[95] F. Fujiyama, T. Nakano, W. Matsuda, T. Furuta, J. Udagawa, and T. Kaneko, “A
single-neuron tracing study of arkypallidal and prototypic neurons in healthy rats,” Brain
Structure and Function, vol. 221, pp. 4733–4740, 2016.

32

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

[96] K. J. Mastro, R. S. Bouchard, H. A. Holt, and A. H. Gittis, “Transgenic mouse lines
subdivide external segment of the globus pallidus (gpe) neurons and reveal distinct gpe
output pathways,” Journal of Neuroscience, vol. 34, no. 6, pp. 2087–2099, 2014.

[97] K. E. Glajch, D. A. Kelver, D. J. Hegeman, Q. Cui, H. S. Xenias, E. C. Augustine, V. M.
Hernández, N. Verma, T. Y. Huang, M. Luo et al., “Npas1+ pallidal neurons target striatal
projection neurons,” Journal of Neuroscience, vol. 36, no. 20, pp. 5472–5488, 2016.

[98] L. A. Steiner, F. J. B. Tomás, H. Planert, H. Alle, I. Vida, and J. R. Geiger, “Connec-
tivity and dynamics underlying synaptic control of the subthalamic nucleus,” Journal of
Neuroscience, vol. 39, no. 13, pp. 2470–2481, 2019.

[99] A. Pamukcu, Q. Cui, H. S. Xenias, B. L. Berceau, E. C. Augustine, I. Fan, S. Chalasani,
A. W. Hantman, T. N. Lerner, S. M. Boca et al., “Parvalbumin+ and npas1+ pallidal
neurons have distinct circuit topology and function,” Journal of Neuroscience, vol. 40,
no. 41, pp. 7855–7876, 2020.

[100] M. Kimura, “Behavioral modulation of sensory responses of primate putamen neurons,”
Brain research, vol. 578, no. 1-2, pp. 204–214, 1992.

[101] T. Aosaki, A. M. Graybiel, and M. Kimura, “Effect of the nigrostriatal dopamine system
on acquired neural responses in the striatum of behaving monkeys,” Science, vol. 265, no.
5170, pp. 412–415, 1994.

[102] T. D. Barnes, Y. Kubota, D. Hu, D. Z. Jin, and A. M. Graybiel, “Activity of striatal
neurons reflects dynamic encoding and recoding of procedural memories,” Nature, vol. 437,
no. 7062, pp. 1158–1161, 2005.

[103] B. Panigrahi, K. A. Martin, Y. Li, A. R. Graves, A. Vollmer, L. Olson, B. D. Mensh, A. Y.
Karpova, and J. T. Dudman, “Dopamine is required for the neural representation and
control of movement vigor,” Cell, vol. 162, no. 6, pp. 1418–1430, 2015.

[104] A. Pavlides, S. J. Hogan, and R. Bogacz, “Computational models describing possible
mechanisms for generation of excessive beta oscillations in parkinson’s disease,” PLoS
computational biology, vol. 11, no. 12, p. e1004609, 2015.

[105] Y. Tachibana, H. Iwamuro, H. Kita, M. Takada, and A. Nambu, “Subthalamo-pallidal
interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia,”
European Journal of Neuroscience, vol. 34, no. 9, pp. 1470–1484, 2011.

[106] A. Nambu and Y. Tachibana, “Mechanism of parkinsonian neuronal oscillations in the
primate basal ganglia: some considerations based on our recent work,” Frontiers in systems
neuroscience, vol. 8, p. 74, 2014.

[107] M. Pessiglione, D. Guehl, A.-S. Rolland, C. François, E. C. Hirsch, J. Féger, and L. Tremblay,
“Thalamic neuronal activity in dopamine-depleted primates: evidence for a loss of functional
segregation within basal ganglia circuits,” Journal of Neuroscience, vol. 25, no. 6, pp.
1523–1531, 2005.

[108] V. de Lafuente, M. Jazayeri, and M. N. Shadlen, “Representation of accumulating evidence
for a decision in two parietal areas,” Journal of Neuroscience, vol. 35, no. 10, pp. 4306–4318,
2015.

33

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

S1 Appendix CBGT network

S1.1 Overview of CBGT pathways

While many of the circuit-level details of the basal ganglia (BG) pathways are complex, with
new cell types and connections being discovered with increased frequency as our biological
tools improve, the consensus conceptualization of the canonical BG circuits has long remained
stable [9, 56,57]. Much of the theoretical work on this topic relates to a profoundly influential
framework for representing the passage of top-down signals through the BG, which describes the
network as a collection of feed-forward pathways, starting from a cortical input source and flowing
to output units that project to certain thalamic nuclei and other subcortical targets [31, 58–61]
(Fig 1 in the manuscript). In the direct pathway, cortical inputs drive a subpopulation of spiny
projection neurons (dSPNs) in the striatum. These dSPNs send inhibitory projections directly
to basal ganglia output units, which we refer to as the globus pallidus internal segment (GPi),
but which can be tuned to represent other outputs such as the substantia nigra pars reticulata
(SNr) to suit a user’s interests. As these output units are comprised of GABAergic neurons that
are suppressed by inhibition from the dSPNs, the traditional view posits that the direct pathway
may act to facilitate action selection by disinhibiting populations downstream from the BG.

The traditional indirect pathway starts with cortical inputs to a second striatal subpopulation
of spiny projection neurons (iSPNs). Like dSPNs, iSPNs send inhibition to the globus pallidus,
specifically its external segment (GPe). Unlike the GPi, however, the GPe is not itself an output
unit. GABAergic GPe efferents project to the GPi/SNr, to another region called the subthalamic
nucleus (STN), and back to the striatum itself. The GPe feedback signals to the striatum, part
of what is called the pallidostriatal circuit, rely both on prototypical (GPeP) and arkypallidal
(GPeA) GPe cells [62] and are not considered part of the indirect pathway [35]. The STN relays
signals to the GPi/SNr, but via glutamatergic rather than GABAergic synapses. Although
complex in its structural organization, the “indirect” pathway framework produces a simple
prediction: the net effect of cortical activation of iSPNs will be to inhibit GPe neurons. As
a result, GPi/SNr neurons are directly disinhibited, and STN neurons are also disinhibited,
which yields a surge in excitation to GPi/SNr that further enhances their firing and hence the
suppression of downstream targets.

A key piece for adapting this framework to action selection is the concept of action channels.
These channels represent putative parallel pathways, each responsible for whether a specific
action (perhaps a specific muscle contraction or limb movement, perhaps the performance of a
more complete action comprising multiple movements) is implemented or suppressed [60]. Thus,
the framework conceptualizes the basal ganglia as a collection of independent action channels [60],
with evidence accumulation or other processing occurring in parallel across channels, until this
competition results in victory for one action, while the others are suppressed (i.e., winner-take-all
selection [63]). Outside of these canonical pathways, however, a third hyperdirect pathway stands
ready to relay excitation from cortex directly to the STN, providing a proposed mechanism for
reactive stopping that can abruptly interrupt or block all actions [31].

Beyond action selection, the CBGT pathways are also notable for their critical role in learning.
Nigrostriatal pathways send dopaminergic projections directly to the striatal SPNs [64], where
the dSPNs and iSPNs predominantly express D1 and D2 dopamine receptors, respectively [65].
Phasic dopamine signals differentially modulate D1 and D2 pathways in response to post-action
feedback [49], sculpting corticostriatal synapses over time to effectively promote or inhibit actions
in order to maximize future returns. The critical learning signal arises from a discrepancy
between a received reward and the expected reward, known as the reward prediction error
(RPE), which appears to be encoded in the firing of dopaminergic neurons in the substantia nigra
pars compacta (SNc) [66]. Corticostriatal neural plasticity depends on the levels and timing of
dopamine signals, which leads to computational models of reinforcement learning that integrate
the RPE concept [10,46,49,67]; such a model has even been used to suggest the computational
underpinning for the temporal profile of the dopamine signal [68].

Of course, the reality of the CBGT pathways is more complicated than would expected
from the simple canonical model. For example, from the onset of a decision process to the
execution of an action, dSPN and iSPN activity has been observed to co-vary, contrasting
with the idea that the two subpopulations activate at different times as simple “go” or “no-

34

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

go” switches, respectively [69–72]. In addition, activity of these pathways has been found to
impact the kinematics of a movement that is made, rather than or in addition to which action is
chosen [73–77]. Continuous stimulation of the STN with deep brain stimulation in individuals with
parkinsonism has been shown to fundamentally change BG output [78], impacting impulsiveness
without compromising the selection of learned actions. Finally, the idea that hyperdirect pathway
activation of the STN acts as a brake that can prevent planned actions via direct activation
of the GPi has come into doubt as new cell types (e.g., arkypallidal cells in the GPe) and new
connections (e.g., GPe arkypallidal outputs and thalamic projections to the striatum), have been
recognized as playing critical roles in stopping [24,33–35].

S1.2 CBGT model details

The total number of neurons per population is provided in Table S1 1 Table.

Population CxI Cx dSPN iSPN FSI GPeA GPeP GPi STN Th
Number of neurons 186 204 75 75 75 190 560 75 750 75

S1 1 Table: Number of neurons considered in each population. When no distinction between
GPeA and GPeP is considered, the total number of neurons at GPe is the sum of arkypallidals
and prototypicals (750).

As in previous works [13, 15, 79], the activity of each neuron is described by the integrate-
and-fire-or-burst model [17], with equations given by

C
dV

dt
= −gL(V (t)− VL)− gTh(t)H(V (t)− Vh)(V (t)− VT)− Isyn(t) + Iext(t),

dh

dt
=

{
−h(t)/τ−h when V ≥ Vh,

−(1− h(t))/τ+h when V < Vh,

(1)

where V (t) denotes the activity of the membrane potential at time t. The equation describing the
evolution of the membrane potential (dV/dt) contains the leak current, with constant conductance
gL and reversal potential VL; the low-threshold Ca2+ current, with constant conductance gT ,
gating variable h(t), and reversal potential VT ; the synaptic current Isyn(t); and, finally, the
external current Iext(t). Parameter C stands for the capacitance of the membrane potential.
The evolution (dh/dt) of the gating variable h(t) changes according to a the relation of V to a
constant voltage threshold for burst activation, Vh, where τ+h and τ−h represent, respectively, the
decay time constant when the membrane potential is below or above Vh . Finally, H(·) represents
the Heaviside step function. As with all integrate-and-fire models, a reset condition is added to
the model to control the spike generation such that if V (t) crosses a certain threshold value Vth,
then the membrane potential is reset to ta hyperpolarized membrane potential Vre, simulating
the spike onset time. That is, if V (t−) > Vth, then V (t+) = Vre and a spike has been made by
the specific neuron. Parameters of the neuronal model are provided in Table S1 2 Table.

All neurons in the network communicate through the simulated release of neurotransmitters
across synapses. When action potentials arrive at postsynaptic neurons, the activity of each
neuron’s AMPA, GABA, and NMDA receptors increases according to the synaptic weight and
neurotransmitter type. The activation of these receptors induces cellular currents which, in turn,
drive future action potentials. The synaptic current Isyn(t) is therefore modeled as

Isyn(t) = gAMPAsAMPA(t)(V (t)− VE) +
gNMDAsNMDA(t)

,
1 + e−0.062V (t)/3.57(V (t)− VE)

+gGABAsGABA(t)(V (t)− VI),

where gx, for x ∈ {AMPA, NMDA, GABA}, stands for the maximal conductance in each
channel; VE and VI are the excitatory and inhibitory reversal potentials, respectively; and finally,
the variable sx(t), for x ∈ {AMPA, NMDA, GABA}, corresponds to the fraction of open

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

Population C (cm2) gL (mS/cm2) gT (mS/cm2) VL (mV) Vh (mV) VT (mV) Vth (mV) Vre (mV) τ−h (ms) τ+h (ms)

CxI 1 1/10 0 −55 −60 120 −50 −55
Cx 1 1/20 0 −55 −60 120 −50 −55 20 100

dSPN 1 1/20 0 −55 −60 120 −50 −55 20 100
iSPN 1 1/20 0 −55 −60 120 −50 −55 20 100
FSI 1 1/10 0 −55 −60 120 −50 −55 20 100
∗GPe 1 1/20 0.06 −55 −60 120 −50 −55 20 100
GPeA 1 1/20 0.06 −55 −60 120 −50 −55 20 100
GPeP 1 1/20 0.06 −55 −60 120 −50 −55 20 100
GPi 1 1/20 0 −55 −60 120 −50 −55 20 100
STN 1 1/20 0.06 −55 −60 120 −50 −55 20 100
Th 1 1/27.78 0 −55 −60 120 −50 −55 20 100

S1 2 Table: Neuronal parameters. Parameters used in the integrate-and-fire-or-burst model
(see equation (1)) where C is the membrane capacitance and coincide with the inverse of the
membrane time constant, gL is the leak conductance, gT is the low threshold Ca2+ maximal
conductance, VL is the leak reversal potential, Vh is the threshold potential for the burst
activation, VT is the low threshold Ca2+ reversal potential, τ−h is the burst duration, and τ+h
is the hyperpolarization duration. ∗ Values in this row are the ones used when no intrinsic
separation of neurons is considered.

channels of each type. The latter variables evolve according to the differential equations

dsAMPA

dt
=

∑
j δ(t− tj)−

sAMPA

τAMPA
,

dsNMDA

dt
= α(1− sNMDA)

∑
j δ(t− tj)−

sNMDA

τNMDA
,

dsGABA

dt
=

∑
j δ(t− tj)−

sGABA

τGABA

where tj stands for the j−th spike onset time; α is a constant rate; τx, for x ∈ {AMPA, NMDA, GABA},
is the decay time constant of the corresponding sx. The term (1− sNMDA) has been designed in
order to prevent sNMDA from exceeding the value of 1. Finally, δ(·) stands for the Dirac delta
function.

Individual neurons within the same population are connected to each other with a population-
specific probability (px) and connection strength (weights, wx), such that the maximal con-
ductance for a specific receptor x, for x ∈ {AMPA, NMDA, GABA}, is given by gx = pxwx.
Connections between populations similarly are characterized by probabilities and strengths.
These connections are depicted with arrows in Fig 1 in the manuscript. The direct (green
connections), indirect (blue connections), and pallidostriatal (yellow connections) pathways are
present. Depending on the type of receptors, these connections can be inhibitory (arrows ending
in a circle) or excitatory (arrows ending in a triangle). Parameters used for the connectivity are
provided in Table S1 3 Table.

All populations have an external current Iext to tune their baseline firing rate, given by

Iext(t) = Sext,AMPA(V (t)− VE) + Sext,GABA(V (t)− VI)

where Sext,x for x ∈ {AMPA, GABA} is a mean-reverting random walk derived from the
stochastic differential equation

dSext,x =
(µext,x − Sext,x)

τx
dt+ σext,x

√
2

τx
dWt.

Here, Wt is a Wiener process, τx is the time decay of the external current, and µext,x and σext,x

are computed as
µext,x = 0.001Eext,xfext,xNext,xτx,

σext,x = Eext,x

√
0.0005fext,xNext,xτx.

The parameter fext,x is the external input frequency, Eext,x is the mean efficacy of the external
connections, Next,x is the number of connections, and τx the time decay constant. Values of
all of these parameters are specified in Tables S1 3 Table and S1 4 Table. Connections were
adjusted to reflect empirical knowledge about local and distal connectivity associated with

36

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

different populations (see [13, 79–81] and the specific connection references in Table S1 3 Table),
as well as resting and task-related firing patterns (see Table S1 5 Table and [15]). We note that
our connection probabilities are generally high (unlike some experimental work such as [82]) due
to the fact that we simulate a small number of action channels [83]. In addition, the SPN outputs
have been scaled to reflect the fact that the SPN population in our model is relatively small.

all pathways network direct/indirect pathways network
Connected Receptor Connection Connection Connected Receptor Connection Connection
populations type Probability strength populations type Probability strength
CxI − CxI GABA 1 1.075 CxI − CxI GABA 1.0 1.075
CxI − Cx GABA 0.5 1.05 CxI − Cx GABA 0.5 1.05
Cx− Cx AMPA 0.13 0.0127 Cx− Cx AMPA 0.13 0.0127

NMDA 0.13 0.1 NMDA 0.13 0.08
Cx− CxI AMPA 0.0725 0.113 Cx− CxI AMPA 0.0725 0.113

NMDA 0.0725 0.525 NMDA 0.0725 0.525
Cx− dSPN AMPA 1 0.022 Cx− dSPN AMPA 1.0 0.015

NMDA 1 0.03, NMDA 1.0 0.02
Cx− iSPN AMPA 1 0.022 Cx− iSPN AMPA 1.0 0.015

NMDA 1 0.028 NMDA 1.0 0.02
Cx− FSI AMPA 1 0.085 Cx− FSI AMPA 1.0 0.19
Cx− Th AMPA 1 0.025 Cx− Th AMPA 1.0 0.025

NMDA 1 0.029 NMDA 1.0 0.029
dSPN − dSPN [84] GABA 0.45 0.28 dSPN − dSPN GABA 0.45 0.28

dSPN − iSPN [84, 85] GABA 0.45 0.28 dSPN − iSPN GABA 0.45 0.28
dSPN −GPi GABA 1 1.8 dSPN −GPi GABA 1.0 2.09

dSPN −GPeA [86–88] GABA 0.4 0.054
iSPN − iSPN [84] GABA 0.45 0.28 iSPN − iSPN GABA 0.45 0.28

iSPN − dSPN [84, 85] GABA 0.5 0.28 iSPN − dSPN GABA 0.5 0.28
iSPN −GPeA [35, 86–88] GABA 0.4 0.61 iSPN −GPe [89, 90] GABA 1.0 4.07
iSPN −GPeP [35, 86,88] GABA 1 4.07

FSI − FSI GABA 1 2.7 FSI − FSI GABA 1.0 3.25833
FSI − dSPN [85] GABA 1 1.25 FSI − dSPN GABA 1.0 1.2
FSI − iSPN [85] GABA 1 1.15 FSI − iSPN GABA 1.0 1.1
GPeA −GPeA GABA 0.4 0.15

GPeA − iSPN [62, 88,91–93] GABA 0.4 0.12
GPeA − dSPN [62, 88,91–93] GABA 0.4 0.32
GPeA − FSI [62, 86–88,91–93] GABA 0.4 0.01

GPeP −GPeP GABA 0.4 0.45 GPe−GPe GABA 0.0667 1.75
GPeP −GPeA [35, 48,88,94,95] GABA 0.5 0.3
GPeP − STN [86, 91,92,96,97] GABA 0.1 0.37 GPe− STN [98] GABA 0.0667 0.35
GPeP −GPi [86, 91,92,96,97] GABA 1 0.058 GPe−GPi GABA 1.0 0.058
GPeP − FSI [62, 87,91,92,97] GABA 0.4 0.1

STN −GPeP [35, 88,99] AMPA 0.161666 0.10 STN −GPe [98] AMPA 0.161666 0.07
NMDA 0.161666 1.51 NMDA 0.161666 1.51

STN −GPeA [35, 88,99] AMPA 0.161666 0.026
NMDA 0.161666 0.075

STN −GPi AMPA 1 0.0325 STN −GPi AMPA 1.0 0.038
GPi− Th GABA 1 0.3315 GPi− Th GABA 1.0 0.3315
Th− dSPN AMPA 1 0.3285 Th− dSPN AMPA 1.0 0.3825
Th− iSPN AMPA 1 0.3285 Th− iSPN AMPA 1.0 0.3825
Th− FSI AMPA 0.8334 0.1 Th− FSI AMPA 0.8334 0.1
Th− Cx NMDA 0.8334 0.03 Th− Cx AMPA 0.8334 0.03
Th− CxI NMDA 0.8334 0.015 Th− CxI AMPA 0.8334 0.015

S1 3 Table: CBGT connectivity parameters. Two blocks of 4 columns each are depicted.
The first block contains information regarding the network when the 4 different pathways
are simulated (see Fig 1 in the manuscript), while the second block contains information
regarding the network when only direct/indirect pathways are simulated. Columns in each
block describe the parameters used to compute, in each population (1st columns), the maximal
conductances gx, for x ∈ {AMPA, NMDA, GABA} (2nd column), which is the product of the
probability of connectivity (3rd column) times the strength of connection (4th column). The
rest of parameters are common such that τAMPA = 2ms, τNMDA = 100ms, τGABA = 5ms,
VE = 0mV , VI = −70mV , and α = 0.6332.

S2 Appendix Dopamine-dependent plasticity of corticos-
triatal weights

Synaptic plasticity in CBGTPy is implemented using a dopamine-dependent plasticity rule,
in which the synaptic updates are governed solely by local factors, without requiring individual
neurons to access information about the global system state. This rule is an adaptation of the
plasticity mechanism presented in [10].

37

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

all pathways network direct/indirect pathways network
External External External External External External
input connection connections input connection connections

Population Receptor frequency efficacy number Population Receptor frequency efficacy number

CxI AMPA 3.7 1.2 640 CxI AMPA 3.7 1.2 640
Cx AMPA 2.5 2.0 800 Cx AMPA 2.3 2.0 800

dSPN AMPA 1.3 4.0 800 dSPN AMPA 1.3 4.0 800
iSPN AMPA 1.3 4.0 800 iSPN AMPA 1.3 4.0 800
FSI AMPA 4.8 1.55 800 FSI AMPA 3.6 1.55 800
GPeA GABA 2.0 2.0 2000

AMPA 2.5 2.0 800
GPeP GABA 2.0 2.0 2000 ∗GPe GABA 2.0 2.0 2000

AMPA 4.0 2.0 800 AMPA 4.0 2.0 800
GPi AMPA 0.84 5.9 800 GPi AMPA 0.8 5.9 800
STN AMPA 4.45 1.65 800 STN AMPA 4.45 1.65 800
Th AMPA 2.2 2.5 800 Th AMPA 2.2 2.5 800

S1 4 Table: External current parameters. Parameters used to describe the external current
(Iext) arriving at the different populations of the CBGT network. From the third column to
the last, we specify the different parameters used to describe the external current impinging in
each population specified in column 1 and for the specific type of receptors. A non described
receptor type means that the parameters are considered to be zero. The time decay constant τ
is the same for all populations and only depends on the type of receptor being τ = 2ms if the
receptor type is AMPA and τ = 5ms if it is GABA. ∗ Values in this row are the ones used when
no intrinsic separation of neurons is considered.

Population baseline FR full FR References
range (Hz) range (Hz)

dSPN [0, 5] [0, 35] [100–103]
iSPN [0, 5] [0, 35] [100–103]
GPe [40, 90] [40, 150] [104–106]
GPi [40, 90] [40, 150] [106]
STN [10, 35] [10, 55] [104–106]
Th [5, 20] [5, 85] [107]
Cx [0, 100] [108]
FSI [5, 40] [5, 70] [108]

S1 5 Table: Firing frequency ranges observed in different brain populations. The
second column refers to the firing frequency ranges observed experimentally during baseline for
each population set in the first column, whereas the third column refers to the ranges observed
during decision tasks. In both cases, the ranges reflect experimental data from primates and rats
(see references in the last column).

At each corticostriatal AMPA synapse, the model tracks three key values: eligibility E(t),
weight w(t), and conductance gx(t). The conductance is associated with the synaptic current.
How much the conductance grows with each pre-synaptic spike is determined by the weight.
The weight is the plastic element in the system, which changes over time depending on the time
courses of eligibility and dopamine release.

At a computational level, E(t), which represents a synapse’s eligibility to undergo weight
modification, depends on the relative spike times of the pre- and post-synaptic neurons involved in
the synapse. To compute this quantity, we first define the variables APRE(t) and APOST (t), which
serve as instantaneous estimates of the recent levels of pre- and post-synaptic spiking, respectively.
Each time a spike occurs in the pre- or post-synaptic cell, these values are increased by a fixed
amount (∆PRE and ∆POST , respectively), and between spikes, they decay exponentially with a
time decay constant τPRE and τPOST , respectively. That is,

dAPRE

dt
=

1

τPRE
(∆PREXPRE (t)−APRE(t)) ,

dAPOST

dt
=

1

τPOST
(∆POSTXPOST (t)−APOST (t))

38

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

where XPRE(t) and XPOST (t) are sums of Dirac delta functions representing the spike trains of
the two neurons. That is,

XPRE =
∑

ts∈XCx

δ(t− ts), XPOST =
∑

ts∈XSPN

δ(t− ts),

where ts is the spike onset, XCx is the set of all cortical neurons projecting to the postsynaptic
neuron of interest, and XSPN refers to the identity of that postsynaptic neuron within the
striatum.

Eligibility (E(t)) changes over time according to

dE

dt
=

1

τE
(XPOST (t)APRE(t)−XPRE (t)APOST (t)− E) (2)

where τE is a time constant. Note that based on equation (2), E(t) tends toward a level that is
boosted whenever a post-synaptic spike occurs soon enough after a pre-synaptic spike and is
reduced whenever a pre-synaptic spike occurs soon enough after a post-synaptic spike.

The corticostriatal synaptic conductance gx takes the value of the synaptic weight, w(t), at
each pre-synaptic spike time and decays exponentially in-between these spikes:

dgx
dt

=
∑
j

w(tj)δ(t− tj)−
gx

τAMPA
,

where x stands for the specific connection, tj denotes the time of the j−th spike in the cortical
presynaptic neuron, δ(t) is the Dirac delta function, τAMPA is the decay time constant associated
with AMPA synapses, and w itself changes over time based on dopamine release and the
post-synaptic neuron’s eligibility. The evolution of w is given by

dw

dt
= [αj

wE(t)f(KDA)(w
j
max − w)]+ + [αj

wE(t)f(KDA)(w − wj
min)]

−, (3)

where the nomenclature [·]+ ([·]−) represents a function whose output is the value inside the
brackets if it is positive (negative) and 0 otherwise. The learning rate is denoted in equation (3)
by αj

w, for j ∈ {dSPN, iSPN}, depending on to which of the two populations the post-synaptic
neuron belongs. This rate has a positive sign for dSPN neurons and a negative one for iSPN
neurons to reproduce the observation that positive feedback signals lead to a strengthening of the
eligible direct pathway connections and a weakening of the eligible indirect pathway connections.
Furthermore, wj

max and wj
min are upper and lower bounds for the weight w, respectively, for

j ∈ {dPSN, iSPN}.
In equation (3), the variable KDA represents the level of available dopamine in the network,

which is computed from the amount of dopamine released through the effect of the differential
equation

dKDA

dt
= Cscale

∑
i

(DAinc(ti)−KDA)δ(ti)−
KDA

τDA
,

where DAinc(tj) the increment of dopamine, relative to a baseline level, that is delivered at time
tj . That is, after a specific decision i is made at time tj , a reward value ri(tj) associated to
action i is received, which induces a dopamine increment based on the reward prediction error

DAinc(tj) = ri(tj)−Qi(tj),

where Qi(tj) is the expected reward for action i at time tj . This expected reward obeys the
update rule

Q(tj+1) = Qi(tj) + αQ(ri(tj)−Qi(tj)),

where αQ ∈ [0, 1] is the value learning rate. More precisely, note that to account for the motor
sensory response, the reward is delivered to the network at the end of phase 1, 300ms after
the decision is made (see Fig 3 in the manuscript); Q and DAinc are updated together at this
reward delivery time, and the update of DAinc in turn impacts the evolution of KDA. Finally,

39

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

the function f(KDA) in equation (3) represents the impact that the available dopamine KDA

has on plasticity, such that, if the target neuron lies in the dSPN population, then

f(KDA) =

{
−γ, if KDA < −µ,
γ

µ
KDA, if KDA ≥ −µ,

while if the target neuron lies in the iSPN population, then

f(KDA) =

{
ε
γ

µ
KDA, if KDA < µ,

εγ, if KDA ≥ µ.

for fixed, positive scaling parameters γ, µ. Parameters values used for the plasticity implementa-
tion can be found in Table S8 Table

Parameter Value

δPRE 0.8
δPOST 0.04
τPRE 15ms
τPOST 6ms
τE 100ms

αdSPN
w 39.5

αiSPN
w −38.2

wdSPN
max 0.055

wiSPN
max 0.035

wdSPN
min 0.001

wiSPN
min 0.001
ε 0.3
γ 3.0
µ 0.5

Cscale 85
τDA 2.0ms
αQ 0.6

S2 1 Table: Parameters used for the plasticity implementation.

To achieve effective learning, it is critical to address the credit assignment problem of ensuring
that the pathways promoting the choice of selected action are the ones that are reinforced by
the reward following that action. To achieve this alignment, we introduce a sustained activation
signal to the action channel associated with the selected action throughout phase 1, based
on the patterns of sustained activity that have been observed in motor planning tasks [28].
Specifically, during this phase, the internal gain of cortical stimulation is altered so that the
cortical population corresponding to the selected action maintains elevated activity (at 70% of
its firing rate from the end of phase 0), while cortical populations corresponding to other actions
return to baseline firing now that those actions are no longer under consideration. The localized,
sustained cortical activation ensures that the downstream striatal neurons in the appropriate
action channel have high eligibility [14].

Taken together, the alteration of the direct-indirect pathway balance increases the tendency
of the network to select the rewarded action, giving rise to learning. By using a realistic plasticity
rule to produce learning, CBGTPy will enable users to investigate the interplay between the
dopaminergic system and basal ganglia dynamics in a way that would be impossible with a less
physiologically-accurate learning rule.

S3 Appendix CGBTpy installation and dependencies

The CBGTPy codebase is written in Python 3.8. If the user is using Python version < 3,
e.g. 2.7, some of the dependent libraries may not work. Further details about the installation
procedure can be found on our github repository.

40

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://github.com/CoAxLab/CBGTPy/blob/main/README.md
https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

S4 Appendix List of files

Here we provide the list of the files that are found on our Github repository and that make
up the network, including a short reference to what is implemented in each of them. We
distinguish between different sets of files: some are common and used regardless of the type
of experiment performed. The remainder have separate versions specific to each experiment
type, either the n-choice experiment or the stop-signal task, enabling easier swapping between
alternative configurations.

The common files are:

• agentmatrixinit.py: builds the CBGT network.

• backend.py: functions for handling pipeline modules, also connects to the Ray server.

• frontendhelpers.py: deals with the environment variable passed.

• generateepochs.py: where rewards and changepoints are defined; rewards are probabilistic
and delivered according to which action has been chosen.

• pipeline creation.py: creates all modules constituting the pipeline.

• plotting functions.py: implementation of functions useful for data visualization.

• plotting helper functions.py: implementation of functions useful for extracting relevant
data.

• postprocessing helpers.py: contains code to extract the data frames for recorded variables.

• qvalues.py: sets up and updates the parameters for the Q-learning algorithm on every trial.

• setup.py: cythonizes the corresponding core simulator code in agent timestep.pyx.

• tracetype.py: defines wrapper classes that can pair numeric values with metadata.

• generate opt dataframe.py: reads in all optogenetic signal-related parameters and generates
a data frame.

The files that are used for the simulation of the plasticity experiments are:

• agent timestep nchoice.pyx: contains code for simulating the timesteps of the spiking
network.

• init params nchoice.py: sets neurons’ parameters, receptors’ parameters, populations’
parameters, dopamine-related parameters for dSPNs and iSPNs, and action channels’
parameters with either the defaults or values passed as arguments from the notebook.

• interface nchoice.py: main simulation controller loop, interacts between environment and
the CBGT network.

• popconstruct nchoice.py: sets up connections between populations and corresponding
parameters such as the probability of connection, the mean synaptic efficacy, and the
parameters associated with synaptic plasticity (S2 Appendix).

The files that belong to the stop-signal task experiment are:

• agent timestep stopsignal.pyx: contains code for simulating the timesteps of the spiking
network.

• generate stop dataframe.py: reads in all stop signal-related parameters and generates a
data frame.

41

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://github.com/CoAxLab/CBGTPy/blob/main/README.md
https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

• init params stopsignal.py: sets neurons’ parameters, receptors’ parameters, populations’
parameters, dopamine-related parameters for dSPNs and iSPNs, and action channels’
parameters with either the defaults or values passed as arguments from the notebook;
this version differs from the one used to perform the plasticity experiment since different
populations are considered for the simulation of the two experiments.

• interface stopsignal.py: main simulation controller loop, interacts between environment
and the CBGT network.

• popconstruct stopsignal.py: sets connections between populations and corresponding
parameters such as the probability of connection, the mean synaptic efficacy, and the
parameters associated with synaptic plasticity.

S5 Appendix Network scaling

The CBGTPy model allows for the simulation of networks with an arbitrary number of action
channels, with a default setting of 2 channels. As the number of channels is varied, certain
pathways are automatically adjusted to ensure that the overall quantity of synaptic input to each
subpopulation remains constant, allowing the neurons to maintain their proper baseline firing
rates. To determine which pathways require scaling, the connectivity pattern of each pathway
is compared to a set of cases, which are outlined in Figure S5 1 Fig. If, for a given pathway,
each target subpopulation only receives input from a single channel or from a shared source, no
scaling factor is applied. If, however, each target subpopulation receives input from all action
channels, then that pathway requires a scaling factor. This factor is calculated as 2/n, where
n is the new number of action channels. When n > 2, the scaling factor is used to reduce the
connection probability so that the expected number of afferent synapses per neuron remains
constant. As a special case, when n = 1 and the scaling factor is 2, the weights of the synapses
are increased rather than the connection probability, to avoid potentially setting the pathway’s
connection probability over 100%. For a detailed listing of connections to which a scaling factor
is applied, see Table S5 1 Table.

S6 Appendix Supporting tables

S7 Appendix Supporting Figures

42

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

S5 1 Fig: Overview of scaling rules. Pathways featuring solely divergent (A) or parallel
(B,C) connectivity never have a scaling factor applied. As the number of incoming connections
to each target subpopulation remains constant, no scaling of the pathway parameters is needed.
When the number of action channels is reduced from 2 to 1, pathways defined by convergent (D)
or all-to-all (E) connectivity have their synaptic weights scaled up by a factor of 2. When the
number of action channels is increased above 2, convergent (F) and all-to-all (G) pathways have
their synaptic connection probabilities decreased via the scaling factor.

S1 Fig: List of parameters and data frames that are returned from the simulation.

43

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

all pathways network direct/indirect pathways network
Connected Receptor Scaling rule Connected Receptor Scaling rule
populations type applied? populations type applied?
CxI − CxI GABA no CxI − CxI GABA no
CxI − Cx GABA no CxI − Cx GABA no
Cx− Cx AMPA no Cx− Cx AMPA no

NMDA no NMDA no
Cx− CxI AMPA yes Cx− CxI AMPA yes

NMDA yes NMDA yes
Cx− dSPN AMPA no Cx− dSPN AMPA no

NMDA no NMDA no
Cx− iSPN AMPA no Cx− iSPN AMPA no

NMDA no NMDA no
Cx− FSI AMPA yes Cx− FSI AMPA yes
Cx− Th AMPA no Cx− Th AMPA no

NMDA no NMDA no
dSPN − dSPN GABA no dSPN − dSPN GABA no
dSPN − iSPN GABA no dSPN − iSPN GABA no
dSPN −GPi GABA no dSPN −GPi GABA no
dSPN −GPeA GABA no
iSPN − iSPN GABA no iSPN − iSPN GABA no
iSPN − dSPN GABA no iSPN − dSPN GABA no
iSPN −GPeA GABA no iSPN −GPe GABA no
iSPN −GPeP GABA no
FSI − FSI GABA no FSI − FSI GABA no
FSI − dSPN GABA no FSI − dSPN GABA no
FSI − iSPN GABA no FSI − iSPN GABA no
GPeA −GPeA GABA yes
GPeA − iSPN GABA no
GPeA − dSPN GABA no
GPeA − FSI GABA yes
GPeP −GPeP GABA yes GPe−GPe GABA yes
GPeP −GPeA GABA no
GPeP − FSI GABA yes
GPeP − STN GABA no GPe− STN GABA no
GPeP −GPi GABA no GPe−GPi GABA no
GPeP − FSI GABA no
STN −GPeP AMPA no STN −GPe AMPA no

NMDA no NMDA no
STN −GPeA AMPA no

NMDA no
STN −GPi AMPA yes STN −GPi AMPA yes
GPi− Th GABA no GPi− Th GABA no
Th− dSPN AMPA no Th− dSPN AMPA no
Th− iSPN AMPA no Th− iSPN AMPA no
Th− FSI AMPA yes Th− FSI AMPA yes
Th− Cx AMPA yes Th− Cx AMPA yes
Th− CxI AMPA yes Th− CxI AMPA yes

S5 1 Table: Scaling rule application per connection. Two blocks of 2 columns each are
depicted. The first block applies to the full network containing all pathways, while the second
block applies to the reduced network containing only the direct/indirect pathways.

S2 Fig: Example of results[’popfreqs’] data frame.

44

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

Table of reference Possibility of
parameters in the modification

Feature manuscript Specifications by the user

Number of neurons
considered in

each population

S1 Appendix:
Table S1 1

Yes

Neural parameters

S1 Appendix:
Table S1 2

Suppl. Tables:
S2 Table, S3 Table,
S4 Table, S5 Table

Yes

CBGT connectivity
parameters

S1 Appendix:
Table S1 3

Receptors type
Conn. probability
Conn. strength
Conn. presence

No
Yes
Yes
Yes

External current
parameters

S1 Appendix:
Table S1 5

Receptor
Frequency
Conn. efficacy
Conn. number

No
Yes
Yes
No

Parameters used for
the plasticity

implementation

S2 Appendix:
Table S2 1

Suppl. Tables:
S6 Table, S7 Table,
S8 Table

Yes

Parameters used for
the stop signal

implementations

Suppl. Tables:
S9 Table

Yes

Parameters used for
the optogenetic
implementations

Suppl. Tables:
S10 Table

Yes

Scaling rule
application per

connection.

S5 Appendix:
Table S5 1

No

S1 Table: Relation of all parameters editable by the user. Here we list all those features
that the user can modify and those that cannot. If so, we indicate in which table of the
Supplementary information the specific parameters are described.

S3 Fig: Example of datatables[0] data frame.

S4 Fig: Example of Q df data frame.

45

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

Parameter Definition

N Number of receptors of the neuron
C Capacitance in nF

Taum Membrane time constant in ms
RestPot Neuron resting potential in mV
ResetPot Neuron reset potential in mV
Threshold Neuron reset potential in mV
RestPot ca Resting potential for calcium ions

Alpha ca Amount of increment of [Ca] with each spike discharge
Tau ca Time constant of Ca-related conductance
Eff ca Calcium efficacy
tauhm Duration of the burst in ms
tauhp Duration of hyperpolarization necessary to recruit a maximal

post-inhibitory rebound response in ms
V Threshold for bursts activation in mV

V T Low-threshold of Ca reversal potential in mV
g T Low-threshold of Ca maximal conductance in mS/cm2

g adr max Maximum value of the conductance
V adr h Potential for g adr max
V adr s Slop of g adr at V adr h, defining how sharp the shape of g ard is

ADRRevPot Reverse potential for ADR
g k max Maximum outward rectifying current

V k h potential for g k max
V k s Defines how sharp the shape of g k is

tau k max Maximum time constant for outward rectifying K current
n k Gating variable for outward rectifying K channel
h Gating variable for the low-threshold Ca current

S2 Table: Neuronal parameters editable by the user. These parameters can be modified
through the data frame params.

Parameter Definition

N Population-specific number of neurons in the nuclei
C Capacitance in nF

Taum Membrane time constant in ms
gT Ca low-threshold maximal conductance in mS/cm2

S3 Table: Population-specific neuron parameters changeable by the user. These
parameters can be modifiable through the dictionary pops, addressing the population of interest.

Parameter Definition

Tau AMPA AMPA time constant in ms
RevPot AMPA AMPA reversal potential in mV

Tau GABA GABA time constant in ms
RevPot GABA GABA reversal potential in mV

Tau NMDA NMDA time constant in ms
RevPot NMDA NMDA reversal potential in mV
RevPot ChR2 Channelrhodopsin-2 reversal potential in mV
RevPot NpHR Halorhodopsin reversal potential in mV

S4 Table: Synaptic and channel parameters changeable by the user. These parameters
can be modified through the data frame receps.

46

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

Parameter Definition

FreqExt AMPA Baseline input firing rate to AMPA receptors
MeanExtEff AMPA AMPA conductance
MeanExtCon AMPA average of AMPA connections

FreqExt GABA input firing to GABA receptors
TMeanExtEff GABA GABA conductance
MeanExtCon GABA average of GABA connections

S5 Table: Population-specific baseline parameters modifiable by the user. These
parameters can be modified through the dictionary base, addressing the population of interest.

Parameter Definition

dpmn DOP Time constant of the dopamine trace
dpmn DAt Tonic dopamine

dpmn dPRE Fixed increment for pre-synaptic spiking (Apre)
dpmn dPOST fixed increment for post-synaptic spiking (Apost)

dpmn tauE Eligibility trace decay time constant
dpmn tauPRE Decay time constant for the pre-synaptic spiking trace (Apre)

dpmn tauPOST Decay time constant for the post-synaptic spiking trace (Apost)
dpmn m Motivation, that modulates the strength of the dopamine level
dpmn E Eligibility trace

dpmn DAp Phasic dopamine
dpmn APRE Pre-synaptic spiking trace

dpmn APOST Post-synaptic spiking trace
dpmn XPRE Pre-synaptic spike time indicators

dpmn XPOST Post-synaptic spike time indicators
dpmn fDA D1 f(DA) value for D1-SPNs
dpmn fDA D2 f(DA) value for D2-SPNs
dpmn x FDA threshold for f(DA) function
dpmn y FDA threshold for f(DA) function

dpmn d2 DA eps Scaling factor for dopamine levels of D2-SPNs as compared
to D1-SPNs

S6 Table: Dopamine-related parameters editable by the user. These parameters can be
modified through the data frame dpmns.

Parameter Value

dpmn type 1 for dopamine-related variables of dSPNs or 2 for iSPN neurons
dpmn alphaw weight increment proportional to the dopamine discharge
dpmn wmax upper bound for W

S7 Table: Dopamine-related parameters for corticostriatal projections to dSPN and
iSPN neurons. Each of the striatal SPN population, dSPN and iSPN, maintain a copy of this
data structure which can be independently modified through the data frames dSPN params and
iSPN params defined in the configuration dictionary in the notebooks.

47

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

Parameter Value

δPRE 0.8
δPOST 0.04
τPRE 15ms
τPOST 6ms
τE 100ms

αdSPN
w 39.5

αiSPN
w −38.2

wdSPN
max 0.055

wiSPN
max 0.035

wdSPN
min 0.001

wiSPN
min 0.001
ε 0.3
δ 3.0
µ 0.5

Cscale 85
τDA 2.0ms
αQ 0.6

S8 Table: Parameters used for plasticity implementation. For more details about the
plasticity parameters, please refer to S2 Appendix. The parameters without a subscript can be
modified using data frame dpmns, whereas the parameters with a subscript dSPN or iSPN can be
modified through the data frames dSPN params and iSPN params respectively.

Parameter Description Example

Stop signal present List of boolean variables [True, True]

Stop signal probability
Proportional of trials to be
randomly selected or list of trial
numbers per nuclei

[1., 1.]

Stop signal amplitude Excitatory conductance [0.4, 0.4]
Stop signal onset Onset time in ms [70., 70.]

Stop signal duration
Duration time in ms or
phase of the simulation

[145., 145.]

Stop signal channel
List of channels
(“all” or channel name)

[“all”,“all”]

Stop signal population List of nuclei [“STN”,“GPeA”]

S9 Table: Parameters that can be set for stop signal stimulation. The example values
included in the table describe the parameters used to generate Figure 7.

Parameter Description Example

Optogenetic signal present List of boolean variables [True, True]

Optogenetic signal probability
Proportional of trials to be
randomly selected or list of
trial numbers per nuclei

[[0],[1]]

Optogenetic signal amplitude
Excitatory or inhibitory
conductance

[0.5, -0.5]

Optogenetic signal onset Onset time in ms [10., 10.]

Optogenetic signal duration
Duration time in ms or
phase of the simulation

[“phase 0”, 400.]

Optogenetic signal channel
List of channels
(“all” or channel name)

[“all”,“all”]

Optogenetic signal population List of nuclei [“iSPN”,“dSPN”]

S10 Table: Parameters that can be set for optogenetic stimulation. The example values
included in the table describe the parameters used to generate Figure 8.

48

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 4, 2024. ; https://doi.org/10.1101/2023.09.05.556301doi: bioRxiv preprint

https://doi.org/10.1101/2023.09.05.556301
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	The toolbox
	Agent-Environment Paradigm
	Setting up a simulation
	User level modifications
	Agent parameters
	Environment parameters

	Experiments
	An n-choice task in an uncertain environment
	A stop signal task
	Optogenetic stimulation

	Discussion
	CBGT network
	Overview of CBGT pathways
	CBGT model details

	Dopamine-dependent plasticity of corticostriatal weights
	CGBTpy installation and dependencies
	List of files
	Network scaling
	Supporting tables
	Supporting Figures

