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Abstract

Large bundles of myelinated axons, called white matter, anatomically connect dis-
parate brain regions together and compose the structural core of the human connectome.
We recently proposed a method of measuring the local integrity along the length of each
white matter fascicle, termed the local connectome [1]. If communication efficiency is fun-
damentally constrained by the integrity along the entire length of a white matter bundle
[2], then variability in the functional dynamics of brain networks should be associated
with variability in the local connectome. We test this prediction using two statistical
approaches that are capable of handling the high dimensionality of data. First, by per-
forming statistical inference on distance-based correlations, we show that similarity in the
local connectome between individuals is significantly correlated with similarity in their
patterns of functional connectivity. Second, by employing variable selection using sparse
canonical correlation analysis and cross-validation, we show that segments of the local con-
nectome are predictive of certain patterns of functional brain dynamics. These results are
consistent with the hypothesis that structural variability along axon bundles constrains
communication between disparate brain regions.

1 Introduction

The function of macroscopic neural networks is constrained by the integrity of structural
connections between disparate regions. This form of long-distance (i.e., centimeters) commu-
nication relies on dense bundles of axons that are known as white matter [3]. To prevent
degradation of action potentials across long distances, these fiber bundles are supported by
the myelin sheath, non-neuronal glial cells that insulate axons and facilitate communication
along the fascicle. As a result, the integrity of the myelin sheath is critical for synchronizing
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information transmission between distal brain areas [2], fostering the ability of these networks
to adapt over time [4]. Thus, variability in the myelin sheath, as well as other cellular support
mechanisms, would contribute to variability in functional coherence across the circuit.

To study the integrity of structural connectivity, we recently introduced the concept of
the local connectome. This is defined as the pattern of fiber systems (i.e., number of fibers,
orientation, and size) within a voxel, as well as immediate connectivity between adjacent
voxels, that can be quantified using diffusion MRI (dMRI) by measuring the fiber-wise density
of microscopic water diffusion within a voxel [1]. The collection of these multi-fiber diffusion
density measurements within all white matter voxels is termed the local connectome fingerprint
(LCF). The LCF is a high-dimensional feature vector that describes the unique configuration
of the structural connectome along the segments of white matter pathways [5]. Thus, the
LCF provides a diffusion-informed measure along the fascicles that supports inter-regional
communication, rather than determining the start and end positions of a particular fiber
bundle.

Since the LCF measures the local integrity along white matter bundles that connect regions
across the entire brain, it reflects the overall communication capacity of the brain [2]. Hence,
we expect to see that variations in the LCF should also correlate with those in the dynamics of
brain networks, measured by connectivity patterns in the resting-state functional MRI (fMRI).
To formally validate this intuition, we employ statistical approaches to examine the following
hypotheses:

Hypothesis 1 Similarity in the LCF, between individuals, is associated with similarity
in their functional connectivity patterns measured with resting-state fMRI.

Hypothesis 2 Variability in specific segments of the LCF is associated with patterns of
functional connectivity in specific circuits.

2 Materials and Methods

We summarize our abbreviations and notation in Table 1.

2.1 Data Acquisition

2.1.1 Participants

We used publicly available dMRI and fMRI data from the S900 (2015) release of the Hu-
man Connectome Project (HCP) [6], acquired by Washington University in St. Louis and
the University of Minnesota. Out of the 900 participants released, 841 genetically unrelated
participants (370 male, ages 22-37, mean age 28.76) had viable dMRI datasets. Among them,
n = 793 participants had at least one viable resting-state fMRI measurement. Our analysis
was restricted to this subsample. All data collection procedures were approved by the institu-
tional review boards at Washington University in St. Louis and the University of Minnesota.
The post hoc data analysis was approved as exempt by the institutional review board at
Carnegie Mellon University, in accordance with 45 CFR 46.101(b)(4) (IRB Protocol Number:
HS14-139).
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Table 1: Summary of Abbreviations and Notation

Notation Definition

LCF Local connectome fingerprint
FCG Functional correlation graph
HCP The Human Connectome Project (dataset)
n Number of subjects (793)
p Dimension of LCF vectors (433,386)
q Dimension of FCG vectors (195,625)
xi p-dimensional LCF vector of subject i
yi q-dimensional FCG vector of subject i
dX The scaled Euclidean distance between LCFs (1)
dY The Pearson correlation distance between FCGs (2)
DX Scaled Euclidean distance matrix between n LCFs
DY Pearson correlation distance matrix between n FCGs
X n× p matrix containing the n LCFs as rows
Y n× q matrix containing the n FCGs as rows

‖·‖1, ‖·‖2 The `1- and `2-norm of a real-valued vector
Sn The permutation group on {1, . . . , n}

2.1.2 Diffusion MRI Acquisition

The dMRI data were acquired on a Siemens 3T Skyra scanner using a 2D spin-echo single-shot
multiband EPI sequence with a multi-band factor of 3 and monopolar gradient pulse. The
spatial resolution was 1.25 mm isotropic (TR = 5500 ms, TE = 89.50 ms). The b-values were
1000, 2000, and 3000 s/mm2 . The total number of diffusion sampling directions was 90 for
each of the three shells in addition to 6 b0 images. The total scanning time was approximately
55 minutes.

2.1.3 LCF Reconstruction

An outline of the pipeline for generating LCFs is shown in Fig. 1. The dMRI data for
each subject was reconstructed in a common stereotaxic space using q-space diffeomorphic
reconstruction (QSDR) [7], a nonlinear registration approach that directly reconstructs water
diffusion density patterns into a common stereotaxic space at 1 mm resolution. The LCF
reconstruction was conducted using DSI Studio (http://dsi-studio.labsolver.org), an open-
source diffusion MRI analysis tool for connectome analysis. To compute the LCF, the axonal
direction in each voxel was derived from the HCP dataset, and all of the data and source code
for this analysis are publicly available on the same website.

A spin distribution function (SDF) sampling framework was used to provide a consistent
set of directions to sample the magnitude of SDFs along axonal directions in the cerebral white
matter. Since each voxel may have more than one axonal direction, multiple measurements
were extracted from the SDF for voxels that contained crossing fibers, while a single measure-
ment was extracted for voxels with fibers in a single direction. The appropriate number of
density measurements from each voxel was sampled by the left-posterior-superior voxel order
and compiled into a sequence of scalar values. Gray matter was excluded using the ICBM-
152 white matter mask (MacConnell Brain Imaging Centre, McGill University, Canada). The
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Figure 1: Pipeline for generating LCFs. See [5] for details.

cerebellum was also excluded due to different slice coverage in cerebellum across participants.
Since the density measurement has arbitrary units, the LCF was scaled to make the variance
equal to 1 [5]. For each subject i = 1, . . . , n, we denote this high-dimensional LCF of the ith
subject, across p = 433, 386 sampled directions, as xi ∈ Rp. The collection of all n LCFs are
compactly represented as a data matrix X = [x1, . . . ,xn]T ∈ Rn×p with each LCF as a row
vector.

2.1.4 Functional MRI Acquisition & Processing

We analyzed the minimally processed resting-state fMRI data acquired as part of the Human
Connectome Project (HCP) [6, 8] which used a multi-band gradient echo-planar imaging pro-
tocol (see [9] for details on aquisition parameters). The dataset contains volumetric NIFTI
data for resting-state fMRI scans (14 minutes each), motion parameters, and physiological
data. Only data for the first resting-state scan collected at the A-P phase encoding direc-
tion were used for analyses. Using these measurements, we computed the average BOLD
(blood-oxygen-level dependent) signals at each of the 626 regions of interest (ROIs) [10] and
regressed out the linear effects of the noise terms via ordinary least-squares (OLS). The 16
noise terms include the global signal, 12 motion parameters (6 estimates from a rigid-body
transformation to the SBRef image acquired at the start of each scan; 6 temporal derivatives
of these estimates), and the top-3 principal component projections of the voxel-level white
matter signals (measured at each of 2,258 voxels and 840 seconds). The resulting residual
terms were then filtered by a first-order Butterworth bandpass filter [11] between frequencies
0.08Hz and 0.15Hz.

2.1.5 Functional Correlation Graph Construction

For each subject, given a pre-processed time series (840s; 1Hz) at each ROI, we computed the
functional correlation graph (FCG), alternatively called the functional connectome fingerprint
in [12], by computing the Pearson correlation between time series at every pair of ROIs. For
each subject i = 1, . . . , n, we use yi ∈ Rq to denote the vector of these q =

(
626
2

)
= 195, 625
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Pearson correlations, which we collectively refer to as the ith FCG. The collection of all n
FCGs are compactly represented as a data matrix Y = [y1, . . . ,yn]T ∈ Rn×q with each FCG
as a row vector.

2.2 Statistical Inference of Distance-based Correlations

Our first goal is to test whether there is a statistically significant relationship between LCFs
and FCGs. However, because both the structural and functional feature vectors are high-
dimensional, fully multivariate statistical tests of dependence are intractable and uninter-
pretable. This means that we need to find a way to effectively reduce the dimensionality of
each feature vector.

For each pair of subjects, we first compute the pairwise distance between their feature
vectors. This gives us one distance matrix between their structural features (LCFs) and
another between their functional features (FCGs). Then, we measure the correlation between
the resulting pair of structural and functional distance matrices.

Our hypothesis states that if two subjects have similar LCFs, then they are more likely
to also have similar FCGs. This hypothesis derives from previous research that found (a)
similar LCFs imply genetic similarity [5] and (b) identical FCGs imply that the two graphs
most likely come from the same individual [12]. By formally defining a notion of similarity, it
is possible to derive distribution-free statistical inference methods that can test whether the
two high-dimensional feature vectors are correlated or not. This approach overcomes the high
dimensionality while being statistically and theoretically rigorous.

2.2.1 Choice of Distance Metrics

In [5], Yeh et al. establish that LCFs are highly specific to each individual. More precisely,
they show that the Euclidean distance between any pair of LCFs effectively captures the
genetic (and temporal) difference between the two measurements, achieving 100% accuracy
across 17,398 leave-one-out identification tasks. Therefore, to quantify individual variability
in structural features, we use the Euclidean distance, scaled by the number of features as in
[5]:

dX (x,x′) =
1

p

∥∥x− x′
∥∥
2

=
1

p

√√√√ p∑
k=1

(xk − x′k)2 (1)

To estimate distance between functional features, we follow the approach that Finn et al. [12]
used on FCGs of the Q2-released version of the HCP dataset. They successfully predicted
identity with 92.9-94.4% test set accuracy using the Pearson correlation, and the accuracy
increased to 98-99% when comparing specific sub-networks (the medial frontal network and
the frontoparietal network). Since our goal is to capture individual variability, not maximize
prediction accuracy, we use the Pearson correlation distance on the entire FCG:

dY(y,y′) = 1− ρ(y,y′)

= 1−
∑q

l=1(yl − y)(y′l − y′)√∑q
l=1(yl − y)2

√∑q
l=1(y

′
l − y′)2

(2)

where ρ denotes the Pearson correlation and y = 1
q

∑l
l=1 yl denotes the mean of all entries

in the vector y. We note that dY is not a proper distance metric in the mathematical sense,
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because it does not satisfy positive definiteness or triangle inequality. It is nevertheless non-
negative, symmetric, and is exactly zero when the two inputs are identical (it is also zero when
two inputs are scalar multiples of each other).

Given these choices of metrics, we can represent all such distances on our data compactly
in two n× n distance matrices, DX ∈ Rn×n and DY ∈ Rn×n, such that DXij = dX (xi,xj) and
DYij = dY(yi,yj).

2.2.2 Setting Up a Valid Hypothesis Test

In general, it is highly nontrivial to set up a proper statistical test comparing distance matrices,
because the entries of each distance matrix are not independent from each other. Intuitively, for
any pair of subjects i and j, the distance between the ith and jth feature vectors is correlated
with the distance between the ith feature vector and any other feature vector. Thus, standard
statistical approaches that rely on the i.i.d. assumption will not give valid results if they are
naïvely applied to distance matrices.

We instead use the distance matrices to construct null and alternative hypotheses and
derive proper statistical inference strategies. Given independent copies of random vectors
(x,y) ∼ PXY , where PXY is the joint distribution of x and y, we test

H0 : R(x,y) = 0 and H1 : R(x,y) > 0 (3)

where

R(x,y) = ρ(dX (x,x′), dY(y,y′))

=
Cov (dX (x,x′), dY(y,y′))√

Var (dX (x,x′))
√
Var (dY(y,y′))

(4)

In short, R is the Pearson correlation between the two random distances, each of which is a
function of two independent and identically distributed random variables. In our approach,
the null hypothesis states that the Euclidean distance between the LCFs of two subjects is
uncorrelated with the correlation distance between their FCGs. The alternative hypothesis
states that the two distances are in fact positively correlated. Note that it is natural to consider
a one-sided hypothesis here because we know that both distances are likely to increase as two
subjects become more genetically distant [5, 12].

While there are no known parametric statistical tests corresponding to (3), we can extend
the permutation test of Pearson correlation in standard linear regression to our case. Given
the structural and functional distance matrices DX ∈ Rn×n and DY ∈ Rn×n, let DX =
1

(n2)

∑
i<j D

X
ij and DY = 1

(n2)

∑
i<j D

Y
ij , where Σi<j denotes the double sum

∑n
i=1

∑n
j=i+1.

Then, the sample test statistic for (3) is given by

R̂n(X,Y) =

∑
i<j

(
DXij −DX

)(
DYij −DY

)
√∑

i<j

(
DXij −DX

)2√∑
i<j

(
DYij −DY

)2 (5)

Given (5), a permutation test can be devised by randomly shuffling one of the feature
vectors (say x, without loss of generality) among the n subjects. This corresponds to permuting
the rows of the data matrix X ∈ Rn×p. Mathematically, for a random permutation σ ∈ Sn of
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n elements, the empirical distribution of permuted correlations

R̂n,σ(X,Y) =

∑
i<j

(
DXσ(i),σ(j) −DX

)(
DYij −DY

)
√∑

i<j

(
DXij −DX

)2√∑
i<j

(
DYij −DY

)2 (6)

estimates the null distribution of R(x,y). If the sample correlation (5) deviates from this null
distribution significantly, then we can reject the null hypothesis of the test in (3).

This test can be viewed as a variant of the Mantel test [13], which jointly permutes both
features among the n subjects to test the same statistic. Yet, because our version does not
permute the feature dimension, it does not introduce unintended bias coming from spatial
correlations [14].

Note that a nonzero correlation will imply statistical dependence, but not the other way
around. When we take dY to be the Euclidean distance instead of the correlation distance,
however, we obtain distance correlation (dCor) [15], where a zero value implies statistical
independence. We will consider the statistical test (3) both when dY is the correlation distance
and when dY is the Euclidean distance. In the latter case, we use the unbiased version of the
statistic that leads to a t-test [16].1

2.2.3 Constructing a Valid Confidence Interval with Subsampling

The permutation test is nonparametric, but it does not readily yield confidence intervals
unless a stronger assumption (and tedious computation) is made [17, 18]. Subsampling [19]
is an alternative approach to statistical inference that makes less assumptions and gives a
confidence interval as its outcome. It estimates the true distribution of R(x,y) by computing
the empirical version of the statistic many times on different random subsamples of the full
data.

Subsampling notably differs from the more standard bootstrapping because it samples
without replacement and only samples a fraction of the n data points. The first difference is
crucial in our scenario, because any duplicate sample from bootstrapping will zero out entries
of DX and DY and thus lead to a biased (higher) estimate of R(x,y).

2.3 High-Dimensional Canonical Correlation Analysis with Cross-Validation

While statistical inference of the distance-based correlation will provide some insights to the
structure-function relationship, this measure of correlation aggregated over so many features
may not be as intuitive or informative. In search of more detailed and interpretable relation-
ships between the two sets of features, we attempt to find small subsets of the LCF that are
predictive of small subsets of the FCG on a held-out set.

2.3.1 Canonical Correlation Analysis

For a pair of random vectors, canonical correlation analysis (CCA) [20] finds a pair of linear
transformations (“alignments”) onto the same Euclidean space such that the projections are the
most correlated. Assuming centered data X = [x1, . . . ,xn]T ∈ Rn×p and Y = [y1, . . . ,yn]T ∈

1We implement the unbiased dCor t-test [16] by (substantially) modifying the MATLAB implementation
found in http://mathworks.com/matlabcentral/fileexchange/39905-distance-correlation.
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Rn×q, CCA solves the following biconvex constrained optimization problem:

maximize
u∈Rp,v∈Rq

〈Xu,Yv〉 (7)

subject to ‖Xu‖22 ≤ 1

‖Yv‖22 ≤ 1

The objective is often written alternatively as uT Σ̂xyv, up to a 1
n constant, where Σ̂xy =

1
nX

TY is the empirical cross-covariance matrix. When the columns of X and Y are further
standardized, the solution to this biconvex problem is given by the left and right singular
vectors of the empirical cross-covariance matrix Σ̂xy that correspond to its largest singular
value.

Intuitively, CCA captures the directions in X and Y that explain the largest cross-correlation.
If we assume that X and Y indeed have some correlation structures, then CCA will find the
linear transformations that recover such structures.

2.3.2 Sparse CCA

In high dimensions, i.e. when the data dimensions p and q are large compared to the sample size
n, the estimate Σ̂xy of the true cross-covariance is no longer consistent unless more structural
assumptions are made [21, 22]. It is also considered a more difficult problem than sparse
PCA [23, 24], which itself is considered challenging due to the poor behavior of the sample
covariance matrix as an estimate [25]. To obtain a reliable estimate of the high-dimensional
cross-correlation structure, we assume that there are interesting low-dimensional correlation
structures between subsets of the structural and functional features. This allows us to focus
on a sparse subset of each set of features that are the most correlated to one another.

A popular approach to finding sparse subsets of features is to use `1-regularization. In our
case, we add an `1-penalty to the alignment vectors in (7):

‖u‖1 ≤ c1 and ‖v‖1 ≤ c2 (8)

where c1, c2 > 0 are sparsity parameters. The `1-penalty, most commonly used in the Lasso
[26], performs variable selection by forcing some of the entries to be precisely zero when the
sparsity parameters are sufficiently small. A penalized version of CCA that combines (7)
and (8) has been called sparse CCA in the literature, and an alternating convex optimization
algorithm can be used to find a sparse solution [27, 28].

Yet, the `1-penalty alone is not sufficient for effective variable selection in our setting. One
reason is that both the LCF and the FCG naturally contain interesting correlation structures
within their entries, while `1-regularization tends to select only one entry from a correlated
group [29]. Another reason is that `1-penalized CCA from (7) and (8) is not strictly biconvex
in high dimensions, so that the optimization problem can be unstable. Both of these issues
can be alleviated by further including an `2-penalty:

‖u‖2 ≤ d1 and ‖v‖2 ≤ d2 (9)

with constants d1, d2 > 0.2 The resulting optimization problem can be viewed as the elastic
net [29] applied to CCA. It is now a strictly biconvex problem, and we can find a feasible
solution efficiently by alternately applying existing convex optimization solvers. We note that,

2For simplicity, we fix these constants to be 1 in our analysis.
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in general, there is no known algorithm for this biconvex problem that guarantees a globally
optimal solution [27]. For our analysis, we use the MATLAB implementation from [30] that
is freely available online.3

2.3.3 k-Fold Cross-Validation

For sparse CCA, we use k-fold cross-validation to find the set of sparsity parameters that give
the highest canonical correlations between subsets of the LCFs and the FCGs.

Specifically, using k = 5, we first split the n subjects into training and test sets with the
ratio of 5 to 1. Then, we randomly partition the training set (size d5/6en) into 5 equally
sized subsamples, fit sparse CCA with each candidate set of sparsity parameters to 4 of the
subsamples, and use the fitted alignment vectors u and v to align the feature vectors from
the unused subsample (i.e. the validation set). The resulting canonical correlation on the
validation set can be viewed as an estimate of canonical correlation on unseen data. By
leaving out each of the 5 subsamples in the previous step, we obtain 5 such estimates of
the canonical correlation, and the average of these 5 estimates can be used to validate the
performance of the candidate set of sparsity parameters. After these steps, we choose the set
of sparsity parameters that give the largest average canonical correlation on the validation set.

The resulting alignment vectors can transform unseen feature vectors coming from the
same distribution as our dataset, so that the LCFs are the most correlated to the FCGs in
the transformed space. The final performance of these alignment vectors is measured by the
correlation between the alignments of the test set, which was unused throughout the cross-
validation steps.

3 Results

3.1 Exploratory Analysis

We first present exploratory analysis results for the inter-subject distances in LCFs and FCGs.
Fig. 2 shows that the feature distances between different subjects appear substantially distant
from zero. This in part reproduces the results from [5] and [12], in which it is shown that the
distances between different individuals are significantly greater than those between the same
subjects. This justifies our choice of distances (1) and (2) for the permutation test as well as
the subsampling-based confidence interval.

3.2 Statistical Inference

In Table 2, we summarize our results from the permutation test, the dCor t-test, and the
subsampling-based confidence interval. Significance levels are marked with * (p < .05), **

(p < .01), and *** (p < .001). Significant confidence intervals are marked with +. We used
100, 000 random permutations for the hypothesis tests as well as 100, 000 subsamples for
the confidence interval construction. Subsampling ratio was chosen as 0.135, following the
procedure in [31].

Using a significance level of α = 0.05, we find from the permutation test that there is
indeed a statistically significant correlation between the Euclidean distances in LCFs and the
correlation distances in FCGs. The dCor t-test of independence confirms that the two sets of
features are statistically dependent, despite the fact that the test makes strong assumptions.

3http://people.stern.nyu.edu/xchen3/Code/groupCCA.zip
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Figure 2: Pairwise distances between pairs of subjects’ LCFs (left) and FCGs (right).

Table 2: Summary of Statistical Inference Results (n = 793)

Method Correlation Result Type Result
Permutation (6) 0.120 p-value < 0.001***

dCor t-test [16] 0.252 p-value < 0.001***

Subsampling 0.120 95% conf. int. (0.098, 0.141)+

Further, because the 95% confidence interval does not include zero, we conclude that the
correlation between LCF distances and FCG distances is statistically significant.

Each of these results indicate that the similarity in the local connectome between indi-
viduals is significantly correlated to the similarity in their functional connectivity patterns.
Specifically, our results show that if two individuals have similar local white matter architec-
tures, they are also more likely to have similar functional brain dynamics.

Note that the correlation value for permutation test and subsampling are indeed identical,
because they both compute exactly (5). The value in dCor t-test [16] differs, however, not only
because the distance metric is changed to the Euclidean distances but because the test uses
an unbiased estimate of the (Euclidean distance-based) statistic. While conceptually similar,
the two computed values are estimates of different statistics and thus cannot be compared
directly.

Fig. 3 visualizes the result from our permutation tests. On the left, we plot the structural
and functional pairwise distances in a scatterplot to explore the overall trend. The scatterplot
suggests that there is a positive trend between the pairwise distances in the structural and
functional features. On the right, the permutation test shows that the correlation on real
data is on the far-right tail of the correlation on simulated null data, suggesting that there is
a statistically significant positive correlation between the structural and functional pairwise
distances.

Nonparametric estimates of the correlation give analogous results (Spearman’s ρ: 0.112,
Kendall’s τ : 0.075). This is not surprising, given that the 2D scatterplot in Fig. 3 does not
display an obvious nonlinear trend.

Fig. 4 justifies our use of subsampling instead of bootstrapping for our confidence inter-
vals. As we described earlier, because each bootstrap sample contains multiple copies of the
same subject, the resulting structural and functional distance matrices always contain many
zeros, leading to a spuriously high correlation compared to the truth. The plots show that
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Figure 3: (Left) Scatterplot of all pairwise distances between the LCFs (x-axis) and between
the FCGs (y-axis). (Right) Simulated null distribution using 10,000 random permutations of
subjects (6). Red vertical line indicates the correlation on the actual dataset (5). The p-value
is the proportion of random correlations that fall on the right side of the red vertical line.

Figure 4: Histogram of linear correlations for 10,000 bootstrap samples (left) and 10,000
subsamples (right) of the HCP (n = 793) dataset. Red vertical line indicates the correlation
on the actual dataset (0.120).

the bootstrap distribution fails to capture the actual correlation and is significantly biased
upwards, while subsampling does not have this issue because it samples from the data without
replacement.

3.3 Sparse CCA

For sparse CCA, we select a pair of sparsity (`1) parameters from a 2D grid, one for LCFs
and another for FCGs, that yields the maximum canonical correlation on the validation set.
Our cross-validation plot in the left panel of Fig. 5 shows that there is a contiguous region of
sparsity levels in both structural and functional features where the canonical correlation on
the validation set is maximized. Using the optimal regularization parameters, we find that
sparse CCA selects 50,607 (11.7%) LCF features and 2,890 (1.48%) FCG features to give a
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Figure 5: Cross-validated sparse CCA projections on the HCP dataset. (Left) 5-fold cross-
validation plot on a validation set. (Right) 2D Projections of the training and test set using
the best parameter found. Canonical correlations: 0.689 (train), 0.515 (test).

canonical correlation of 0.689 (train) and 0.515 (test).4

The cross-validated sparse CCA projections of the training data as well as the test data
are plotted in Fig. 5. Since the objective of CCA is to maximize the correlation between these
projected points, we expect to see a linearly increasing pattern in the projected space. The
right panel of Fig. 5 demonstrates this expectation: the projections of the training data and
the test data exhibit similar linearly increasing patterns with a similar degree of variation.
This implies that the alignment vectors we found can generalize well to unseen data in terms
of correlation in the linearly projected space.

Note that the projections still have relatively high variance across the linear trend. This
variability is likely due to both the variance coming from the optimization problem, which
is ill-conditioned and thus contains many local optima, and the variance coming from the
lack of statistical consistency in the high-dimensional setting. Indeed, the optimal number
of variables chosen by cross-validation (50,607 and 2,890) is still greater than the number of
subjects (793).

In Fig. 6, we visualize the LCF and FCG features selected by sparse CCA using the
optimal sparsity parameters. In both modalities, sparse CCA focuses on connectivity patterns
in specific regions of the brain. In particular, within the high-dimensional LCF space, the
algorithm points to contiguous local pathways of the white matter structure. Our results
show that this specific set of local white matter pathways are highly predictive of the lateral
dynamics of functional connectivity between the left and right hemispheres. The structure-
function association is observed between the core white matter pathways that regulate both
intracortical and cortical-subcortical communication, including the corpus callosum, thalamic
radiations, corticospinal, and corona radiata pathways, and the resting state functional activity
in a diversity of cortical and subcortical nodes. This suggests that the structure-function
relationship is strongest in the large major communication fascicles that are critical for global
brain network communication.

4As described in Section 2.3.3, the final training canonical correlation is computed on all 5 folds (size d5/6en)
of the training set. The test canonical correlation is computed on the held-out test set (size b1/6cn), which is
unused during cross-validation.
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Figure 6: Visualization of cross-validated CCA projections for LCFs in MRIcron (top) and
FCGs in BrainNet (bottom). We select the features that gave the best testing canonical
correlation in cross-validation (best parameter, best fold).

3.4 Canonically Correlated Subcluster Pairs

In order to see if there is substructure in the structure-function relationships identified by
sparse CCA, we decompose the canonical correlations into smaller subclusters of both the
LCF and FCG entries. In Fig. 7, we show the three most canonically correlated pairs of LCF
and FCG subclusters, which are computed by a simple agglomerative clustering (complete-
linkage, same distances dX and dY respectively) of the selected LCF and FCG features into
5 subclusters each. We compute the canonical correlation between each pair of subclusters
without additional regularization terms, as in (7).

Here we see even further specificity in the structure-function relationship. For example,
variability in the centrum semiovale (Fig. 7, left), should predict functional dynamics of
intrahemispheric and interhemispheric cortical networks. This pattern largely holds in the
corresponding functional networks. In contrast, a small cluster along the inferior longitudinal
fasiculus (Fig. 7, middle), a major means of communication along the ventral visual stream,
correlates with primarily ventral visual pathway functional dynamics, as well as communication
between dorsal and ventral visual streams. Finally, variability in the internal capsule (Fig. 7,
right), a major means of communication between cortex and subcortical areas, correlates with
primarily functional dynamics between cortical and subcortical nodes. Thus, the specificity of
the structure-function relationships identified in this subclustering analysis is consistent with
a priori predictions derived from the neuroanatomical literature.

4 Discussion

In this paper, we show how variability in local white matter architecture is associated with
global patterns of functional brain dynamics. Using distance-based correlations, we found
a small, but significant effect whereby individuals with more similar local white matter ar-
chitecture tended to also be more similar in their functional connectome. Using sparse CCA
approaches, we were able to show that individual variability in white matter architecture along
major brain fascicles correlated with individual differences in functional dynamics within the
specific class of brain networks that would be predicted by existing neuroanatomical knowl-
edge. Thus, in conjunction with the constraints of global end-to-end structural connectivity
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Figure 7: Canonically correlated subcluster pairs between the selected LCF and FCG features.

[10], our results highlight how variability in the local white matter systems also impacts global
brain communication.
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