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The efficient execution of serially ordered actions is crucial for

many everyday tasks. Rather than emerge from a singular

learning process, a growing body of evidence in both cognitive

science and neuroscience suggests that the acquisition of

habitual motor sequences relies on a multitude of learning

systems that fall under two general classes of computation: fast

prediction of transition probabilities between events and slower

binding of serial actions into unified sets. Here we review the

emerging empirical support for this multi-system model of

sequential skill acquisition and show how these systems

coordinate together to foster the crystallization of complex

skills across time.
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Introduction
Many everyday behaviors are predicated on our ability to

effortlessly produce complex, serially ordered actions. For

example, typing the word ‘brain’ on a keyboard requires

serially pressing the ‘b’, ‘r’, ‘a’, ‘i’, and ‘n’ keys as quickly

and accurately as possible. Novices execute each key

press slowly, planning each successive movement inde-

pendently. By contrast, experts can perform the same

series of keystrokes in rapid succession, executed as a

fluid, unified action. This ability to execute a unified set

of serially ordered actions represents one example of a

more general form of skill learning known as sensorimotor

sequence learning.
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Sensorimotor sequence learning has fascinated cognitive

science for over sixty years [1] and is thought to play a

central role in a wide range of intelligent behaviors,

including language learning (see [2] for review). While

initial research sought to characterize this form of learning

as a singular process [3] or as a single learning system

operating at different representational levels [4], over-

whelming evidence now supports the hypothesis that the

consolidation of sequential motor skills relies on multiple

interacting systems that learn different parts of the serial

ordering problem at different timescales. Here we show

how these systems can be segregated into two general

categories of learning processes, based on the computa-

tional goals they serve: fast prediction of serial ordered

events and slow binding of responses into sets of unified

actions (Figure 1). These two interacting computational

mechanisms operate along a learning continuum,

between sensory and motor levels, working together to

sculpt behaviors over time so as to maximize the com-

plexity of produced actions while minimizing the compu-

tational costs of planning and executing them.

Predicting serial orders of events
Early in learning, a novice typer will show faster and more

accurate responses to frequently paired serial actions than

to infrequently paired actions. For example, repeatedly

typing the word ‘brain’ leads to faster ‘r’ key presses when

they follow a ‘b’ key press, but pressing the ‘r’ key would

be slower if the preceding letter was something unusual,

such as ‘q’. In this way, the brain associatively learns the

transition probabilities between sequential stimulus-

response events over the course of only a few minutes

of practice [3,5]. When studied in the context of language

development, this same process is known as statistical

learning [6]. Classically, statistical learning refers to the

phenomenon whereby neural and behavioral responses

become more efficient to serially repeated sensory events

than to unexpected events. This learning happens very

quickly and can be detected within the course of a single

training session (for a review of statistical learning, see

[7]). In this way, over the course of several minutes of

repeated exposure, the brain learns to estimate the con-

ditional probability of an upcoming sensorimotor plan, Xt

+1, given the immediately preceding plans, P(Xt+1jXt�1, .

. . ,X
t�n
,), to make faster and more accurate responses.

This predictive process is evident in very early sensory

processing [8,9]. For example, neurons in the inferotem-

poral cortex (IT), a visual processing area, learn to modu-

late their responses to serially presented visual stimuli
www.sciencedirect.com
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Figure 1

Continuum of sensorimotor sequence learning. Schematic of the temporal and representational spaces occupied by processes that learn to

predict transition probabilities between serially ordered events (magenta) and processes that learn to bind actions together into unified sets (blue).

Insets indicate summary features of each learning process that are described in detail in text. Abbreviations: MTL, medial temporal lobe; BG,

basal ganglia.
depending on the transition probability between cues

[10]. Yet IT neurons do not simply track the co-occur-

rence of stimuli, but also appear to track the conditional

probabilities of events, as their activity is attenuated

when the conditional probabilities are modified [11�].
Of course, learning transition probabilities may not be

restricted to predicting sensory cues. For example, in a

classic study, Mushiake and colleagues showed that cells

in the macaque dorsal premotor cortex (PMd) were tuned

to the transition probability between sequentially cued

movements [12], suggesting that motor systems also track

the transitions between serial actions. Although given the

extensive training required to get the animals to learn the

task, this may reflect a probabilistic variant of chunking,

rather than true statistical learning (see next section).

Mechanistically, recent evidence suggests that this fast

detection of serial ordering may rely, at least in part, on

the medial temporal lobe, particularly the hippocampus

[13–19]. A sub-population of hippocampal cells shows

tuning for the temporal associations between sequences

of events [20–22], suggesting that the hippocampus may

track serial probabilities and bias cortical sensory and

motor processing via top-down signals. This hypothesis

is bolstered by several other lines of evidence. For exam-

ple, the consolidation of complex response sequences is

improved following a normal sleep cycle [16,23–25], a
www.sciencedirect.com 
classic signature of hippocampal-dependent learning. Co-

activation of hippocampal and striatal networks is

observed during sequence learning [26,27], particularly

when learning the temporal structure of sequential events

[28]. Finally, patients with damage to the hippocampus

show impairments in single-session sensorimotor

sequence learning [29,30], particularly during the initial

acquisition phases of learning when declarative mecha-

nisms are crucial for picking up transition probabilities

between stimuli [31].

Taken together, the emerging evidence suggests that fast

associative mechanisms learn first-order transition proba-

bilities between both sensory cues and actions early in

learning (see also [32�]). This ability to reliably predict

upcoming events speeds up the ability to resolve a

stimulus-response mapping and thus results in faster

responses, likely through adjusting the threshold for

evidence needed to initiate a response (for review see

[33]).

Binding sets of actions
Relying solely on learning first order transition probabili-

ties limits the capacity of producing complex sequential

actions. This is because the number of events, n, that can

be included in the estimate of the conditional probability,

P(Xt+1jXt, . . . ,Xt�n,), is constrained by working memory
Current Opinion in Behavioral Sciences 2018, 20:98–103
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Figure 2

Dual algorithm model of sequence learning. (a) Learning transitional probabilities. Typing the word ‘brain’ on a keyboard is a temporally organized

series of responses. Each letter key (e.g., ‘b’) is a stimulus, U, that corresponds to a particular internal sensorimotor plan represented as a latent

state (X), that initiates a response, Y, at time t. With training, learning transition probabilities between events increases the efficiency of

sensorimotor processing for subsequent events, leading to increased speed and more accurate selections when the expected event occurs. (b)

Building action sets. Over time, once the transition probabilities between serially ordered items (e.g., ‘b’, ‘r’, ‘a’, ‘i’, ‘n’ in ‘brain’) becomes

deterministic, it is computationally efficient to group sensorimotor decisions into unified sets, for example, a ‘chunk’, where the entire set is

represented as a single, generative sensorimotor decision, W, and sequences of bound sets of actions can then be the target of learning, that is,

P(W2jW1).
capacity [34]. One way to overcome this memory limita-

tion is to learn the hierarchical organization of movements

and bind sequences of actions into sets or ‘chunks’ [35].

Returning to the typing example, after extensive practice

the plan to execute the set of key presses ‘b’, ‘r’, ‘a’, ‘i’,

and ‘n’, can be represented internally as a single action
Current Opinion in Behavioral Sciences 2018, 20:98–103 
decision ‘b-r-a-i-n’, where actions are coarticulated

together in a unified manner (Figure 2b). While each

action within the bound set carries its own execution

noise, the action initiation decision shifts from waiting for

individual sensory cues to automatically triggering one

item after another without reliance on sensory cues. Using
www.sciencedirect.com
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an optimal control theory framework, Ramkumar

et al. demonstrated that as animals become more experi-

enced at a sequential skill, efficiency increases as the

number of chunks decreases, reflecting more bound ele-

ments in each chunk, while simultaneously minimizing

the overall computational cost during learning [36�].
Therefore, binding actions into sets or chunks may rep-

resent a critical step in finding the optimal solution to the

problem of complex sequential movements, where action

sets can themselves be formed at multiple levels of

movement hierarchy (e.g., goals, plans, execution).

The orgnanization of serially ordered behaviors into

unified sets is often controlled experimentally by making

the transition probabilities between cued actions

completely deterministic. This can be done by explicitly

presenting the sequential order before production [37] or

through extensive practice on short action sequences [38].

Behaviorally both approaches lead to slower responses to

the first item in the set than to subsequent items in the

series [38–43]. This slowing could be due to the fact that

the first item in the set has no preceding event with

which to estimate the transition probability or the result

of the increased time associated with loading the

motor buffer [38]. While this first item slowing has

classically been used as a behavioral signature for senso-

rimotor ‘chunking’, it is not sensitive to detecting

whether the responses within the set are bound together

under a shared motor decision, nor does it easily allow for

looking at the natural evolution of sensorimotor sets

during learning.

More recent research has focused on the concept of

binding by looking at correlations between temporally

adjacent movements within a common set. Several stud-

ies in both human and non-human primates show that it

takes days of practice or longer to detect the emergence of

binding between serial actions under a shared motor

command [36,44,45]. For example, Verstynen and collea-

gues found a dissociation between simple decreases in

response time during sequence production, observed

during a single session of training, versus correlations

in response times between serially ordered actions, that

did not emerge until after several days of training [45].

This correlation between temporally adjacent actions is

consistent with the binding hypothesis in that it is what

would be expected if multiple movements were initiated

under a common generative motor command.

The ability to detect binding in sequential responses, as

opposed to demarcation of chunk boundaries with the

first item slowing, opens the door for asking questions

about where in the sensorimotor hierarchy this binding

occurs over the course of learning. Recently, Lynch and

colleagues adopted a novel remapping paradigm that

dissociates learning ordered sets of visual cues, across

days of training, from learning ordered sets of finger
www.sciencedirect.com 
movements [46�]. Relying on the same correlation mea-

sure as Verstynen et al. (2012), we found that action

binding was stronger when sequences were learned in

the sensory domain than when they were learned motori-

cally. Importantly, the level of explicit awareness of the

sequence, and thus reliance on declarative processes, was

not affected by whether a visual or motor sequence was

learned. Of course this does not necessarily exclude the

possibility that binding occurs in motor representations

[47]. Multivariate pattern analysis approaches have

recently opened the door to exploring the nature of action

representations with neuroimaging tools like fMRI. Using

this approach, Weistler and Diedrichsen showed that

cued sequence sets, akin to explicitly cued chunks, can

be reliably decoded from population-level activity in

higher order motor cortical areas, such as the supplemen-

tary motor area (SMA) [48]. Later work by the same group

showed that, while the patterns of activity for individual

fingers are organized in the primary motor cortex (M1)

according to the natural statistics of everyday hand use

[49�], the population level activity of M1 itself does not

appear to distinguish well-learned sets of actions [50].

Instead, the patterns of task-related activity in upstream

premotor regions, such as the dorsal premotor cortex,

more reliably distinguished between learned sets of

actions [50] (see also [51]).

Mechanistically the implementation of this binding pro-

cess appears to rely, in part, on basal ganglia (BG) path-

ways (but see [52]). For example, patients with Parkin-

son’s Disease (PD) have deficits in chunking ability when

they are in low dopamine states [53]. At the neural level,

cells in the striatum, the main input nucleus to the BG,

become tuned to bracketing segments of sequential

actions over time, particularly as action sequences

become habitual [54,55]. Based on the variety of action

sequence-linked cell types in the striatum, Jin and col-

leagues [56�] proposed that during learning, the striatum

facilitates concatenating, or binding actions together. As

this binding process unfolds and action sets become

established, a subset of cells in the striatum, likely in

more executive regions, become sensitive to the initiation

of the bound set of actions [56�,57–59]. Since the BG are

thought to gate motor responses, this onset sensitivity of

striatal cells is consistent with the notion that the entire

sequence set becomes a unique action decision that gets

triggered by BG pathways.

Conclusion
The emerging behavioral and neuroscientific evidence

points to a continuum of interacting algorithms that

contribute to the long-term consolidation of sequential

skills. Fast associative processes estimate the transition

probabilities between serially ordered events so as to

improve the speed and efficiency of stimulus-response

gating. These associative mechanisms appear to primarily

target the processing of sensory signals, but may also
Current Opinion in Behavioral Sciences 2018, 20:98–103
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impact downstream motor processes. As the transition

probabilities between actions become deterministic,

computational complexity is reduced by having reinforce-

ment learning processes unify sets of actions and initiate

the bound set as a single decision. Thus the initiation of

subsequent actions no longer depends on sensory cues,

but on the state of the preceding actions in the set.

Signatures of this binding mechanism are associated with

motor planning, but can be moderated by upstream

sensory processing as well (e.g., [46�]). Rather than reflect

serial stages of processing, these associative and binding

mechanisms appear to interact during the consolidation

process to support balancing goals of making fast and

accurate responses while also reducing computational

complexity through the establishment of hierarchical

structure in motor representations.

The distributed and interacting nature of the associative

and binding algorithms makes distinguishing them exper-

imentally challenging; however, the current evidence

does provide some clues. For example, binding should

only occur when transition probabilities between stimu-

lus-response events are deterministic. Prolonged training

on sequences where some of the transitions between

items are probabilistic [60], while others are determin-

istic, should result in no correlations in response times for

the non-deterministic transitions. In addition, while bind-

ing processes are disrupted in patients with Parkinson’s

disease [53], we would expect these patients to still have

an intact ability to learn transition probabilities. By con-

trast, patients with damage to the hippocampus should

show a combined disruption in both predicting transition

probabilities and response binding. These predictions

present a roadmap for future research.
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