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Abstract

Different dopamine (DA) subtypes have opposing dynamics at postsynaptic receptors, with the ratio of D1 to D2 receptors determin-
ing the relative sensitivity to gains and losses, respectively, during value-based learning. This effective sensitivity to different reward 
feedback interacts with phasic DA levels to determine the effectiveness of learning, particularly in dynamic feedback situations where 
the frequency and magnitude of rewards need to be integrated over time to make optimal decisions. We modeled this effect in simu-
lations of the underlying basal ganglia pathways and then tested the predictions in individuals with a variant of the human dopamine 
receptor D2 (DRD2; −141C Ins/Del and Del/Del) gene that associates with lower levels of D2 receptor expression (N = 119) and compared 
their performance in the Iowa Gambling Task to noncarrier controls (N = 319). Ventral striatal (VS) reactivity to rewards was measured 
in the Cards task with fMRI. DRD2 variant carriers made less effective decisions than noncarriers, but this effect was not moderated 
by VS reward reactivity as is hypothesized by our model. These results suggest that the interaction between DA receptor subtypes and 
reactivity to rewards during learning may be more complex than originally thought.

Keywords: dopamine; basal ganglia; DRD2; reinforcement learning; decision making

Introduction
Consider the problem of choosing where to get your lunch: do you 
go with the food truck that always serves consistent mediocre 
food or the truck that sometimes serves amazing food, but at 
other times is simply unpalatable? Formally this represents a 
reinforcement learning problem (Sutton and Barto 1998) with 
dynamic, or nonstationary, feedback schedules (Daw et al. 2006), 
which requires updating the estimated value of each action based 
on the gains (e.g. deliciousness) or losses (e.g. unpalatable) experi-
enced in the past. From an algorithmic perspective, learning from 
these gains and losses happens in the form of temporal-difference 
(TD) learning (Sutton and Barto 1998) that updates the expected 
value of any given action for any given state of the world. Over 
time this TD learning can lead to the locally optimal solution 

for determining action value, known as the Bellman solution 

(Bellman 1956).
In the brain, TD learning is implemented by phasic dopamine 

(DA) signals in cortico-basal ganglia-thalamic (CBGT) pathways 

(Fig. 1a, see Fig. 1b for model equation). The CBGT pathways 

are organized as a set of computational loops, where each loop 

can be conceptually thought of as an independent decision (or 

action) channel (Fig. 1b, Mink 1996, Bogacz 2007, Bogacz and 

Gurney 2007, Klaus et al. 2017). The goal of the CBGT loops is 
to integrate information from competing cortical sources to bias 

downstream selection systems toward one decision or another 
and then use feedback signals to promote learning that modifies 
this bias for future decisions (Mink 1996). The canonical model 
of CBGT pathways relies on three dissociable control pathways: 
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Figure 1. (a) Diagram of the two main pathways in the basal ganglia: direct facilitator pathway with D1 receptor neurons, and the indirect suppression 
pathway with D2 receptor neurons. (b) The Q-Learning Agent uses an error-driven learning algorithm coupled with the softmax exploration strategy to 
complete the IGT. The learning paraments of the agent are abbreviated as: r = reward, RPE = r—Q(a), 𝛼𝐺𝑎𝑖𝑛 = Learning Rate when RPE > 0, 𝛼𝐿𝑜𝑠𝑠
= Learning Rate when RPE ≤ 0, 𝛽= Inverse Temperature (degree of randomness), 𝛾 = Reward strength (representative of DA reactivity).

the direct (facilitation), indirect (suppression), and hyperdirect 
(braking) pathways. At any given moment, the instantaneous 
competition between the direct and indirect pathways reflects 
the strength of bias for a given decision (Collins and Frank 2014, 
Dunovan and Verstynen 2016, Mikhael et al. 2016, Bariselli et al. 
2019). Reward feedback influences this biasing signal via pha-
sic DA signaling (Schultz 1998), which modifies the sensitivity 
of cortical signals on striatal spiny projection neurons. Specifi-
cally, the phasic DA signal is thought to reflect something akin 
to a reward prediction error (RPE; Schultz et al. 1992, 1997). Pos-
itive RPEs (𝛼𝐺𝑎𝑖𝑛), i.e. greater than expected gains, sensitize the 
D1-expressing cells of the direct pathway and depress the D2-
expressing cells of the indirect pathway. Negative RPEs (𝛼𝐿𝑜𝑠𝑠) do 
the opposite, enhancing the sensitivity of the indirect pathway 
while depressing those of the direct pathway (Gurney et al. 2015). 
This opposing plasticity between the two pathways means that 
gains reinforce the appropriately selected action over less reward-
ing alternatives, while losses reduce the saliency of the selected 
action and allow for more competition between the action chan-
nels, pushing the network into a more exploratory state (Cools 
et al. 2009, Collins and Frank 2014, Stauffer et al. 2014, Vich et al. 
2020).

There is another factor that influences how gains and losses 
impact learning: initial sensitivity to D1 versus D2 in the first 
place. Particular DRD2 gene polymorphism variants have been 
found to associate with functional modulation of DA receptor 
expression throughout the brain, including the striatum (Zhang 
et al. 2007). These variants have been shown to have a detectable 
influence on behavior, particularly learning. For example, indi-
viduals with these variants show blunted probabilistic learn-
ing in simple bandit-like tasks with strict probabilistic feedback 
(Frank et al. 2007, Klein et al. 2007, Foll et al. 2009, Frank and 
Hutchison 2009, Jocham et al. 2009, Gorwood et al. 2012, Klaus 
et al. 2019). This research indicates that lower striatal D2 recep-
tor density is linked with decreased learning rates, particularly 
in response to negative reward prediction errors. This suggests 
a potential mechanistic pathway through which variations in 
DRD2 expression contribute to differences in learning behavior. 
By further elucidating the associations between DRD2 variants, 

striatal D2 receptor density, evoked reward response, and learn-
ing parameters to gains and losses, we can gain deeper insights 
into the underlying neural mechanisms that shape individual 
differences in feedback-based learning processes.

Previous studies have not demonstrated the possible interac-
tion between striatal D2 receptor density and variations of phasic 
DA signaling response (approximating 𝛾) to rewards in feedback-
based learning. Here we investigate how asymmetries in feedback 
sensitivity, driven by inherited differences in D2 receptor expres-
sion, might interact with phasic DA signals when learning to make 
value-based decisions in an environment, where reward feedback 
is dynamic and, in some cases, deceptive. We hypothesize that the 
presence of the DRD2 polymorphism variant that associates with 
lower striatal D2 receptor density interacts with the magnitude 
of the evoked reward response measured using functional MRI to 
impact sensitivity to losses during learning in the Iowa Gambling 
Task (IGT). Due to the lack of individual trial data, we will use a 
simulation-based evaluation to test our predictions on the effect 
of the interaction between D2 receptor expression variation and 
VS reward reactivity variations on effective learning from losses.

Materials and methods
Participants
We used an already collected sample of neurologically healthy 
adults from southwestern Pennsylvania taken from the Univer-
sity of Pittsburgh’s Adult Health and Behavior project, Phase II. 
The sample consisted of 438 participants (228 females, 210 males, 
81.7% White, non-Hispanic) between the ages of 30 and 54 years 
(M = 42.67, SD = 7.36). Every participant had their blood drawn 
and genotyped for the presence of DRD2 −141C Ins/Ins, Ins/Del, or 
Del/Del variants [see Lerman et al. (2005) for a detailed descrip-
tion of this method]. Carriers were defined as having at least one 
deletion allele (i.e. DRD2 −141C Ins/Del, or Del/Del variants). The 
sample consisted of 119 carriers (55 males, 97 Ins/Del, 22 Del/Del), 
and 319 noncarriers (155 males). These participants were part of a 
larger project that included the completion of many other tasks, 
some of which were completed within the magnetic resonance 
imaging (MRI) scanner. This research project was approved by the 
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institutional review boards at both the University of Pittsburgh 
and Carnegie Mellon University.

Ventral striatal reactivity task
The Cards task was used to assess the reactivity of the ventral 
striatum (VS) to negative and positive feedback cues associated 
with monetary gain (Hariri et al. 2006, Gianaros et al. 2011). The 
task consisted of 45 trials, divided into 9 separate blocks with 5 
trials each. Within each trial, the participant was shown a “?” in 
the center of the card for 3 s, which indicated that the partici-
pant needed to now guess whether the following card would be 
less than or greater than 5. Their choice was indicated by a but-
ton press. An index finger press signaled less than 5, and a middle 
finger press signaled greater than 5. After the guess was made, the 
number in question was presented for 500 ms, followed by feed-
back based on the congruence of their response for 500 ms. The 
number presented was selected by the task based on the block’s 
predetermined positive feedback rate. The feedback was either a 
green up arrow for positive feedback for a correct response or a 
red down arrow for negative feedback for an incorrect response. 
The end of the trial was then signaled with a crosshair presented 
for 1.5 s. The total length of a trial was 5.5 s.

Participants were instructed that their performance would 
determine the monetary reward at the end of the task. However, 
performance was predetermined based on the conditions of the 
block they were on. Each of the blocks was one of three different 
conditions: win, loss, or control. In the win condition, there was 
an 80% positive feedback rate (4 out of 5 correct responses) and 
a 20% negative feedback rate (1 out of 5 incorrect responses). The 
opposite was true for the loss condition. In the control condition, 
instead of receiving feedback or being asked to guess, they were 
presented with an “x” for 3 s and then instructed to press with 
either their index or middle finger in response. After pressing, they 
were then presented with an “*” for 500 ms and then a yellow circle 
for 500 ms. The block type varied by presenting “Guess Number” 
for 3 s at the start of each block for the win and loss conditions or 
“Press Button” for the control condition. The length of the task in 
total was 350 s.

Participants were scanned on a 3 T Trio TIM whole-body scan-
ner (Siemens, Erlangen, Germany) using a 12-channel phased-
array head coil (FOV) = 200 × 200 mm, matrix = 64 × 64, repeti-
tion time (TR) = 2000 ms, echo time (TE) = 29 ms and flip angle 
(FA) = 90∘ (for more information see Verstynen et al. 2020). While 
in the MRI scanner, participants completed a computerized 
reward task paradigm (for preprocessing information see Ver-
stynen et al. 2020). After preprocessing, linear contrast images, 
reflecting relative BOLD signal changes (i.e. win blocks versus loss 
blocks), were estimated for each participant using general linear 
modelestimation. The mean BOLD contrast parameter estimates 
were extracted from a predefined VS region of interest (ROI) (Gia-
naros et al. 2011, Verstynen et al. 2020). For more information 
on the estimation process and creating the a priori ROI mask see 
Verstynen et al. (2020) and Gianaros et al. (2011), respectively.

Iowa Gambling Task
To measure decision-making in a dynamic and deceptive feedback 
environment, participants completed a computerized version of 
the Iowa Gambling Task (IGT). The IGT is a common task for 
assessing executive function in healthy and clinical populations 
(Buelow and Suhr, 2009). The participants receive a loan of $2000 
and are instructed that the goal of the task is to maximize profits. 
Although participants were instructed to maximize their overall 
monetary net gain, they were not provided extra money based on 

their performance (Verstynen et al. 2020). In the IGT, participants 
are asked to select a card from any of the four decks presented 
with a varying amount of reward or punishment (Bechara et al. 
1994). The participants specifically select one card at a time from 
any of the 4 decks for a total of 100 card selections. The exact 
value and order of each of the cards within the four decks have 
been predetermined by the experimenters without the partici-
pant’s knowledge. They are allowed to switch between any of 
the decks at any time and as often as they wished. The partici-
pants are not aware of any of the deck specifications and are only 
informed that each deck was different. With each selection from 
Decks A or B (the “disadvantageous decks”), participants have a 
net loss of money. With each selection from Decks C or D (the 
“advantageous decks”), participants have a net gain of money or a 
net zero, respectively. The amount of reward or punishment varies 
between decks and the position within a deck. Deck A and Deck B 
both have the same amount of overall net loss. However, in Deck 
A the reward is less frequent and higher in magnitude, while in 
Deck B the reward is more frequent and higher in magnitude. Sim-
ilarly, Decks C and D have the same overall net gain. In Deck C the 
reward is less frequent and lower in magnitude, while in Deck D 
the reward is more frequent and higher in magnitude. Further-
more, Decks A and C result in higher frequency losses and Decks 
B and D result in lower frequency losses. Overall, choosing from 
Decks A and B results in short-term gains with long-term losses, 
and choosing from Decks C and D results in short-term losses 
with long-term gains. From the selections made by the partici-
pants, their overall Payoff score (i.e. 𝑃𝑎𝑦𝑜𝑓𝑓 = (𝐶 + 𝐷) − (𝐴 + 𝐵)), 
and the Sensitivity score (i.e. sensitivity to frequency of rewards, 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = (𝐵 + 𝐷) − (𝐴 + 𝐶)was calculated.

Statistical analysis
Group differences in VS reactivity and Payoff score as well as 
Sensitivity score were first evaluated using t-tests. Follow-up 
regression models measured how VS reactivity, carrier status, 
and their interaction associated with the Payoff score as well as 
with the Sensitivity score. Of particular interest are any potential 
race effects on gene—behavior associations. However, the non-
white portion of the sample in the dataset was small (18.26%), yet 
made up a significant portion of the carriers (43.70%), making any 
independent racial group analysis severely underpowered in this 
dataset. Nonetheless, we used model comparison procedures to 
determine whether age, self-reported gender, and racial identity 
needed to be included in the final regression model. The model 
with the control factors (Akaike information criterion, AIC = 4191, 
Bayesian information criterion, BIC = 4220) was found to explain a 
negligible amount of additional information compared to the sim-
pler model (AIC = 4211, BIC = 4228, Bayes factor = 18.370). Thus, 
for our final regression model, we opted to not include age, gender, 
and racial identity as control factors.

Reinforcement learning agent
In order to simulate how different reward reactivities and learning 
rates impacted decision-making, we simulated IGT performance 
using a standard Q-learning agent with a softmax decision pol-
icy (Sutton and Barto, 1998). Q-learning is a specific form of TD 
learning, where updates influence the subjective value of individ-
ual actions, as opposed to individual environmental states. The 
model equations are shown in Fig. 1b. The logic of this model fol-
lows a similar structure as the opponent actor learning (OpAL) 
model, where learning on gains and rewards is independent, but 
we do not model separate opposing pathways leading to the deci-
sion as in the OpAL framework (Collins and Frank 2014). Briefly, on 
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Figure 2. The parameters the agent was given are listed at the bottom of the figure. The agent completed 100 trials or card selections over Decks A–D 
in which the deck choices were tracked in a raster plot. (a) The predicted deck values were tracked in a line plot, (b) the probability of selecting each 
deck was tracked in a line plot (c), and the percent optimal Deck C chosen is shown in the area plot (d).

any given trial, the model selects one of four decks using a soft-
max decision policy (𝑃). The inverse temperature parameter (𝛽), 
which determines the greediness or randomness of the decision 
policy, was set to 0.006 for the final model, producing a moder-
ately exploratory agent. After selection, a reward (𝑟) is generated 
according to the feedback schedule of the IGT. Reactivity to reward 
is approximated by the scaling term 𝛾, which is directly applied 
to 𝑟. The difference between the experienced reward, 𝛾𝑟, and the 
expected reward, 𝑄(𝑎), produces the RPE that is used to update 
𝑄(𝑎) on the next trial. The learning rate (𝛼), determines how much 
the RPE influences the update of 𝑄(𝑎). To approximate asymme-
tries in learning, we put a contingency on 𝛼. If the RPE is greater 
than 0, then 𝛼 = 𝛼𝐺𝑎𝑖𝑛. Otherwise, for negative RPEs, 𝛼 = 𝛼𝐿𝑜𝑠𝑠.

For each simulation run, an agent was generated with a spe-
cific set of values for 𝛽,𝛾, 𝛼𝐺𝑎𝑖𝑛, and 𝛼𝐿𝑜𝑠𝑠. The agent completed 
100 trials of the IGT with a predetermined deck, where the opti-
mal deck is C. The trial-wise selection of decks across trials was 
used to calculate Payoff and Sensitivity scores in the same way as 
estimated for human participants.

Results
Model simulations
In order to understand how asymmetries in learning from gains 
versus losses can impact the efficiency of decision-making in the 
IGT, we used a standard Q-learning agent (see “Materials and 
Methods” section), where we varied the parameters specified in 

the decision and learning processes. The parameters of this model 
approximate the differences in decision-making between indi-
viduals in the IGT, specifically more exploratory or exploitative 
decision policies that impact long-term payoffs or losses. These 
parameters include learning rate from positive RPEs (𝛼𝐺𝑎𝑖𝑛), learn-
ing rate from negative RPEs (𝛼𝐿𝑜𝑠𝑠), “greediness” of the decision 
policy (𝛽), and overall reactivity to reward (𝛾; see “Materials and 
Methods” section and Fig. 1b). The difference between learning 
on gains versus losses can be reflected as asymmetrical, such 
as when learning is stronger for cases where the reward value is 
greater than the expected value (RPE > 0; gains) and weaker when 
the reward value is less than the expected value (RPE ≤ 0; loss).

Figure 2 shows an example run of one of the agents. We see 
that over time the deck selections for this agent become more 
strategic, with a preference for Decks C and D, and with optimal 
Deck C chosen the majority of the time (Fig. 2a). This preference 
is reflected as an increase in state-action value (Q) for Deck C in 
later trials (Fig. 2b), which increases the probability that this deck 
will be selected over the others (Fig. 2c). As a result, the optimal 
choices made by the agent increase over time as it effectively uses 
and learns from feedback, as seen by the percentage of choosing 
optimal Deck C being above chance consistently after about 40 
trials (Fig. 2d).

In order to illustrate how the relative ratio of 𝛼𝐺𝑎𝑖𝑛 and 
𝛼𝐿𝑜𝑠𝑠impacts decision effectiveness (i.e. Payoff score), we ran a 
series of agents with different learning rate asymmetries and sen-
sitivities to reward (Fig. 3a–c). As expected, the heat maps in 
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Figure 3. Payoff (a–c) and sensitivity (d–f) scores were plotted in the heatmap for agents with 𝛼 gain and 𝛼 loss from 0 to 2, 𝛽 of 0.006, and 𝛾 of 0.5, 1, 
and 2 (left to right). Payoff (g–i) and Sensitivity (j–l) scores in the IGT were plotted against alpha ratio (𝛼 loss/𝛼 gain) for 𝛽 of 0.006, and 𝛾 of 0.5, 1, and 2 
(left to right).

Fig. 3a–c show that below a relatively low ratio of 𝛼𝐿𝑜𝑠𝑠 to 𝛼𝐺𝑎𝑖𝑛, 
the average Payoff score is negative. Payoff scores were greatest 
when 𝛼𝐿𝑜𝑠𝑠 reached a level that allowed for the agents to learn 
from their mistakes, when 𝛼𝐿𝑜𝑠𝑠 was greater than 1.5 and the 

ratio of 𝛼𝐿𝑜𝑠𝑠 to 𝛼𝐺𝑎𝑖𝑛 approximates 1, depending on the over-
all reactivity to rewards. This relationship between the ratio of 
𝛼𝐿𝑜𝑠𝑠 to 𝛼𝐺𝑎𝑖𝑛 and performance in the task was amplified with an 
increase in reactivity to rewards, 𝛾 (Fig. 3g–i), whereas reactivity 
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Figure 4. The distributions of measures for IGT (a) Payoff and (b) Sensitivity scores, and (c) VS reactivity for each DRD2 group for noncarriers and 
carriers were plotted for comparison. The vertical line between mean Payoff scores between noncarriers and carriers demonstrates a significant 
difference in means.

to frequency of rewards diminished with a greater 𝛼𝐿𝑜𝑠𝑠 to 𝛼𝐺𝑎𝑖𝑛
ratio (Fig. 3j–l). In contrast, the heat maps for the Sensitivity 
score (Fig. 3d–f) of these agents show an inverted pattern with 
a slightly positive sensitivity to frequency of rewards below the 
same threshold of relatively low ratio of 𝛼𝐿𝑜𝑠𝑠 to 𝛼𝐺𝑎𝑖𝑛. Although 
the magnitude of this effect of 𝛼𝐿𝑜𝑠𝑠 to 𝛼𝐺𝑎𝑖𝑛 ratio is weaker for 
Sensitivity scores than for Payoff scores.

These simulations predict that in individuals with reduced 
learning from losses (i.e. reduced learning from negative RPEs 
compared to positive RPEs), the overall Payoff scores in the IGT 
should be lower. The effect should be opposite for Sensitivity 
scores in the IGT, albeit weaker. Thus, we expect a strong main 
effect of DA carrier group on Payoff scores, with a possible weaker 
main effect for Sensitivity scores. If the groups also vary in rate of 
learning from different reward feedback, this should also result in 
an interaction between the group and independent measures of 
reward reactivity.

Empirical data
Our model simulations show that reduced learning from neg-
ative feedback signals (𝛼𝐿𝑜𝑠𝑠) should reduce Payoff scores and 
increase Sensitivity scores, and this effect should be scaled by 
how sensitive, or reactive, an individual is to rewards overall. 
To empirically test this we first looked at overall group differ-
ences in both Payoff and Sensitivity scores and VS reactivity in 
our sample of human participants. Consistent with our model, 
Payoff, the measure of effective use of feedback to make deci-
sions, was significantly lower in the DRD2 carrier group than 
in noncarrier controls (Fig. 4a; t[436] = −3.230, P = .001). Overall 
the noncarrier group had a mean Payoff score of 19.16, with a 
slightly bimodal distribution, whereas the carrier group had a 
more unimodal distribution, with a mean of 8.89. In contrast, 
the difference between both the noncarrier and carrier groups 
in the Sensitivity scores and VS reactivity were not statistically

significant, centered just above 31 (Fig. 4b; t[436] = 0.539, P = .590) 
and 0 (Fig. 4c; t[436] = −1.771, P = .077), respectively. Thus, indi-
viduals with expected lower D2 receptor density perform worse 
in the IGT than controls but do not show reliable differences in 
VS reactivity to rewards or sensitivity to frequency of rewards.

The model predicted that the impact of carrier status (approx-
imating 𝛼𝐿𝑜𝑠𝑠) on Payoff scores should be stronger in individuals 
with stronger VS reactivity (approximating 𝛾). Given the lack of 
group differences in VS reactivity, we did not expect a reliable 
group-by-VS reactivity interaction on Payoff scores, even though 
one could still be possible. Figure 5a shows that both carriers 
and noncarriers have positive-trending slopes for the association 
between VS reactivity and Payoff score, consistent with our model 
(see above), with carriers having a slightly shallower trendline 
compared to the noncarriers.

In regard to sensitivity to high frequency of rewards, Fig. 5d 
shows a relatively flat slope for both carriers and noncarriers 
for the association between VS reactivity and Sensitivity score. 
Indeed, this lack of an interaction effect is born out in a linear 
regression analysis shown in Tables 1 and 2, respectively. We see 
that carrier status has a statistically significant, negative effect on 
Payoff score, replicating the t-test results. In contrast, an individ-
ual’s VS reactivity score correlated with an overall higher average 
Payoff score. However, the interaction term between the group 
and VS reactivity was not statistically significant. Thus, we do not 
see that higher VS reactivity amplifies the effect of group status 
on Payoff scores. 

One assumption in our model simulations is that the effect of 
reactivity to rewards on the expression of asymmetric learning is 
monotonic and linear. It is possible that this is not a valid assump-
tion. Therefore, we took a closer look at the interaction between VS 
reactivity and DRD2 carrier status by binning participants accord-
ing to VS reactivity quartiles, measuring the main effect of the 
group in each quartile separately. The four binned groups showed 
a negative effect of group status on Payoff scores, consistent with 
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Figure 5. A linear regression model was used for the visualization of the relationships between both Payoff (a) and Sensitivity (d) scores with VS 
reactivity for both carriers (II, ID) and noncarriers (DD). Bootstrapped regression model coefficients for carrier status on Payoff (b) and Sensitivity (e) 
scores, binned by VS reactivity quartiles. Regression model coefficients for Payoff (c) and Sensitivity (f) scores versus DRD2 carrier status −141C Ins/Ins 
(II), Ins/Del (ID), Del/Del (DD), and VS reactivity (VS). Error bars reflect the standard error of the mean.

Table 1. The linear regression model for Payoff was composed of only the main effect variables, the DRD2 group assignment, VS reactivity, 
and their interaction.

Coef. Std. Err. t P > |t| [0.025 0.975] Summary statistics

Intercept 16.704 2.020 8.269 0.000 12.733 20.674 Adj. R2 0.028
DRD2 −8.791 3.634 −2.419 0.016 −15.932 −1.649 AIC 4211
VS 21.140 10.020 2.110 0.035 1.447 40.833 BIC 4228
DRD2:VS −9.573 18.830 −0.508 0.611 −46.582 27.436 Log-

Likelihood
−2101.700

F-statistic 5.162

The summary results for the linear regression model were also included such as the AIC and BIC scores.

our overall effects. However, this did not increase as VS reactivity 
increased (Fig. 5b). There was no clear trend between Sensitivity 
scores in the IGT and VS reactivity (Fig. 5e). This enticing finding 
suggests that how reactivity to reward interacts with asymme-
tries in learning may be more complicated than assumed in our 
simple reinforcement learning model. However, we cannot make 
any strong conclusions about this relationship due to the high 
variability across quantiles.

In addition to the binary classification of carriers and noncar-
riers, we also tested the linear regression model that included 

all three different DRD2 polymorphism variants, −141C Ins/Ins, 
Ins/Del, and Del/Del. To look at this, we plotted the regression 
coefficients of the Payoff model and the Sensitivity model for the 
different groups, as well as VS reactivity, in Fig. 5c and f, respec-
tively. Breaking down the main effect model into these three 
subgroups we see a tiering effect, where an increase in Del alle-
les is associated with a decrease in Payoff scores (Fig. 5c) and an 
increase in Sensitivity scores (Fig. 5f). It is important to note that 
the sample sizes of each respective DRD2 polymorphism group 
(Ins/Del N = 97, Del/Del N = 22) leave us with low statistical power 
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Table 2. The linear regression model for Sensitivity was composed of only the main effect variables, the DRD2 group assignment, VS 
reactivity, and their interaction.

Coef. Std. Err. t P > |t| [0.025 0.975] Summary statistics

Intercept 30.661 1.746 17.563 0.000 27.230 34.092 Adj. R2 −0.005
DRD2 1.735 3.140 0.553 0.581 −4.437 7.906 AIC 4083
VS 4.783 8.658 0.552 0.581 −12.234 21.801 BIC 4100
DRD2:VS −1.308 16.272 −0.080 0.936 −33.289 30.673 Log-

Likelihood
−2037.700

F-statistic 0.219

The summary results for the linear regression model were also included such as the AIC and BIC scores.

to look at more complex models. However, the pattern of main 
effects across the different carrier subtypes clearly discerns a reli-
able effect that compliments the main effects seen in the original 
regression models.

Discussion
Here we investigated how differences in striatal D2 receptor 
expression could interact with reactivity to rewards to impact 
feedback-based learning in situations where reward feedback is 
dynamic and deceptive. Using a simple reinforcement learning 
model with a simulation-based evaluation, we first showed how 
asymmetries in learning from gains versus losses should impact 
performance in the IGT, and how this can be moderated by reward 
reactivity. Our experimental data in human participants support 
part of our computationally driven hypothesis, in that individu-
als with a genetic predisposition for lower D2 receptor expression 
performed worse on the IGT than controls in terms of overall 
payoff. However, this effect was not scaled by individual differ-
ences in reward reactivity as predicted by our model. Nonetheless, 
our results further bolster the observation from both the compu-
tational modeling and behavioral literature that sensitivities to 
losses are a critical component in effective long-term learning, 
particularly in dynamic and deceptive feedback environments.

Our findings align, in part, with the prior literature demon-
strating that genetic variants influencing D2 receptor expression 
also impact goal-directed behavior. For example, Zhang et al. 
(2007) looked at two single nucleotide polymorphisms (SNPs) 
that regulate the D2 receptor and found that carriers of the 
SNPs, which downregulate D2 receptor expression as in our 
study, showed altered striatal responses during an N-Back work-
ing memory task (Zhang et al. 2007). In contrast, we did not see 
that striatal responses in the functional imaging task differed 
between carrier groups. This may simply be due to the differ-
ence in the cognitive process being measured in the scanner (e.g. 
working memory versus reward reactivity). Although the BOLD 
responses during the Cards task, used as a measure of VS reward 
reactivity, do not directly measure DA neurotransmission, the rel-
ative pattern has been found to be consistent with in vivo human 
striatal DA synthesis as measured positron emission tomography 
(Siessmeier et al. 2006). Whether this evoked response represents 
a good proxy for the true phasic DA response requires further 
testing.

Along these same lines, Klein et al. (2007) showed that individ-
uals with the TaqA1 polymorphism variant, which is also believed 
to reduce D2 receptor expression, showed reduced reactivity to 
errors in a probabilistic avoidance task (Klein et al. 2007). This 
effect has been replicated multiple times (Frank et al. 2007, 
Frank and Hutchison 2009). Our work extends this by showing 
how this reduced reactivity to negative feedback, as a result of 

genetic predispositions for D2 receptor expression, impacts the 
efficiency of using feedback in more complex reinforcement sce-
narios, where frequency and magnitude of gains or losses need 
to be integrated over time in order to make an optimal decision. 
Later, Jocham et al. (2009) showed that TaqA1 polymorphism vari-
ant carriers had deficits in reversal learning that consisted of a 
decreased ability to sustain the newly rewarded response after 
a reversal and a decreased tendency to stick to the rewarding 
response in general (Jocham et al. 2009). Taken together with our 
current work, these findings provide clear evidence that a reduc-
tion in D2 efficiency or expression can lead to deficiencies in the 
integration of feedback from positive and negative signals.

Understanding how our findings relate to the broader behav-
ioral genetics literature on the influence of D2 pathways in cog-
nition should be tempered by the heterogeneity of genetic poly-
morphisms on the underlying DA pathways. The TaqA1 (SNP ID: 
rs1800497), C957T (SNP ID: rs6277), and the −141C Ins/Del (SNP 
ID: rs1799732) polymorphism variants are some of the most well 
understood genetic factors impacting the D2 pathway, although 
there are many others being discovered and studied (Foll et al. 
2009, Gorwood et al. 2012). Both the −141C Ins/Del and TaqA1 poly-
morphism variants are believed to primarily impact dopamin-
ergic signaling by lowering the D2 receptor density in the stria-
tum (Pohjalainen et al. 1998, Jönsson et al. 1999), whereas the 
C957T polymorphism is believed to be impacting DA D2 recep-
tor availability by affecting the receptor affinity to DA (Hirvonen 
et al. 2009a, 2009b, Smith et al. 2017). Furthermore, the −141C 
Ins/Del and C957T polymorphisms are believed to be directly 
on the DRD2 gene (Arinami et al. 1997, Hirvonen et al. 2004), 
whereas the TaqA1 polymorphism is located downstream of the 
DRD2 gene in the ankyrin repeat and kinase domain containing 
1 (ANKK1) gene (Neville et al. 2004). Trying to integrate findings 
across these disparate genetic markers in order to come to a 
mechanistic understanding of how DA, particularly D2, pathways 
influence behavior requires a careful accounting of the differ-
ent influences these mutations have on the underlying neural
circuitry.

It is also worth noting that while our results and prior work 
suggest that mutations impacting D2 pathways impact high-level 
decisions, not all evidence points in this direction. A recent meta-
analysis by Klaus et al. was not able to establish significant associ-
ations between the TaqA1 and C957T polymorphism variants and 
any of the executive function domains tested, which included a 
variety of batteries measuring working memory, response inhi-
bition, and cognitive flexibility (Klaus et al. 2019). The results of 
this systematic review suggest that the presence of TaqA1 and 
C957T polymorphism variants and their impact on DA D2 recep-
tor signaling may have a limited effect on high-level executive 
function. Although, it is also possible that the neuropsychologi-
cal batteries covered in the review by Klaus and colleagues may 
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not be sensitive to subtle variations in cognitive ability that may 
be driven by differences in DA receptor expression.

So where do the present results, and the broader literature, 
leave us in terms of understanding the role of different DA sys-
tems during learning, particularly in contexts where feedback is 
dynamic and deceptive? Of primary importance for future work 
determining the mechanism by which reactivity to feedback sig-
nals interacts might reward reactivity. Our reinforcement learning 
model, as well as general intuition, shows clearly that these two 
factors should interact, yet we failed to find this in our data [but 
see Verstynen et al. (2020)]. One possibility could be the need to 
find a better or more specific, marker of phasic DA responses. This 
would likely require moving to more invasive methods, likely in 
nonhuman model populations. Another possibility is that feed-
back signal reactivity may have a nonlinear interaction with VS 
reactivity, and a nonlinear interaction model would need to be 
tested with a much larger sample size capable of discerning this 
interaction. Another open question is the role of D1 pathways 
in this learning process. Our model assumes that learning on 
gains and losses are equally important for effective long-term 
value learning, but our work, as well as prior work, only looks 
at the role of D2 pathways and learning from losses. Integrat-
ing findings across genetic markers for the different DA pathways 
would help to fully elucidate the nature of this process. Of course, 
these concerns can be tested both experimentally and theoreti-
cally using biologically realistic models of corticostriatal plasticity 
during learning (Gurney et al. 2015, Vich et al. 2020). Working out 
these precise mechanisms of both learning on gains and losses as 
well as their possible interaction with reward reactivity is left to 
future work.
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