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Value-based decision-making relies on effective communication across disparate brain networks. 
Given the scale of the networks involved in adaptive decision-making, variability in how they 
communicate should impact behavior; however, precisely how the topological pattern of structural 
connectivity of individual brain networks influences individual differences in value-based 
decision-making remains unclear. Using diffusion magnetic resonance imaging, we measured 
structural connectivity networks in a sample of community dwelling adults (N = 124). We used 
standard graph theoretic measures to characterize the topology of the networks in each individual 
and correlated individual differences in these topology measures with differences in the Iowa 
Gambling Task. A principal components regression approach revealed that individual differences 
in brain network topology associate with differences in both optimal decision-making, as well as 
in each participant’s sensitivity to high frequency rewards. These findings show that aspects of 
structural brain network organization, specifically small-world style topologies, can determine the 
efficiency with which information is used in value-based decision-making.  
 
Abbreviations: MRI - Magnetic Resonance Imaging; IGT – Iowa Gambling Task; DWI – 
Diffusion Weighted Imaging; QSDR – Q-Space Diffeomorphic Reconstruction; PCA – Principal 
Components Analysis; GLM – Generalized Linear Models 
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Introduction 
 

The human brain consists of 86 billion 
interconnected neurons that form a series of 
interconnected & hierarchically organized 
networks (Herculano-Houzel, 2009). There are 
input-output computations made across all 
regions of the brain, connected by bundles of 
axon fibers that communicate across long 
distances (Hopfield, 1982; Mountcastle, 1997). 
Fast and efficient communication throughout the 
brain is necessary for nearly all cognitive 

processes. This highly complex series of 
networks is organized through cell bodies, 
dendrites, and axon terminals of these neurons 
that, together, make up the “grey matter,” 
whereas the axons connecting the cell bodies to 
the axon terminals make up the “white matter.” 
From a graph theoretical perspective, grey matter 
reflects the nodes that process information, and 
white matter forms the edges that determine 
which information is sent between nodes. The 
exact nature of the wiring architecture of the 
human brain, much like a circuit in a computer, 
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impacts brain function and leads to subsequent 
cognition (McCulloch, 1944; Johansen-Berg, 
2010; Hermundstad et al., 2014). The static 
organization of the structural architecture of the 
brain is both modular and hierarchical, 
supporting the execution of local operations and 
global integration of segregated functions (Park 
& Friston, 2013). Being able to measure the 
individual differences in structural connectivity 
of brain networks and their behavior would 
further explain the neural constraints on complex 
cognition (Verstynen, 2015).  

The structural connectivity of brain 
networks is measured through a technique known 
as diffusion-weighted imaging (DWI). DWI takes 
advantage of the diffusion properties of water 
molecules within the axons of the myelinated 
white matter fascicles. Diffusion tensor imaging 
is one of the most popular DWI sampling 
schemes. It samples a few dozen orthogonal 
diffusion directions that are used to calculate a 
tensor of average diffusion direction within each 
volumetric pixel (i.e., “voxel”, the fundamental 
unit of the 3-dimensional brain images) (for 
review, see Vettel et al., 2017). DWI has been 
used in conjunction with graph theoretic 
structural topology measures in order to 
understand the functional organization 
underlying structural networks (for review see 
Bullmore & Sporns, 2009).  

There is a growing body of evidence that 
brain networks have small-worldness properties. 
These properties can be characterized as a dense 
local clustering between neighboring nodes 
forming modules, or distinct functional areas, 
paired with short path length between any pairs 
between modules (Watts & Strogatz, 1998). 
Small-worldness can be thought of as the 
measure of how interconnected neighboring 
nodes are without inefficiently being connected 
to more distant nodes, forming hubs or “small 
worlds.” This small-worldness supports the 
distributed nature of distinct brain areas while 
also demonstrating how these modules are 

integrated into global brain networks (Bassett & 
Bullmore 2006). However, we still have a limited 
understanding of how the topological 
organization of structural connections in the brain 
predicts individual differences in complex 
cognitive abilities.  

To gain insights into how the brain may 
be organized to carry out executive processes, we 
looked into how the structural network 
organization may explain differences in 
executive abilities that are necessary to complete 
complex cognitive tasks. Specifically we thought 
that executive processes would be sensitive to 
network organization because they require 
efficient communication across disparate brain 
regions, from sensory processing to abstract task 
representations. Using DWI methods, we 
measured whether individual differences in white 
matter topology, as seen through graph theoretic 
measures, associate with value-based decision-
making (payoff or sensitivity to frequency of 
reward). Value-based decision-making is a 
complex task that, at a minimum, uses visual 
perception, attention, working memory, 
reinforcement learning, executive control, and 
other lower order functions in order to synthesize 
our decisions, and therefore relies on the efficient 
communication across global brain networks 
(Bechara et al., 1994). Positing that small-
worldness is a property of efficient network 
communication, then we hypothesize that 
individuals with more small world structural 
networks would be better at feedback driven, 
value-based decision-making. 
 
 

Materials and Methods 
 

Participant Characteristics 
We used an already collected sample of 

community dwelling adults in Pittsburgh taken 
from the Weight-loss Intervention for brain 
Networks (WIN) project and collected at the 
University of Pittsburgh and Carnegie Mellon 
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University. The sample consisted of 124 
participants (97 females, 27 males) between the 
ages of 22 and 55 (M= 44.38 years, SD=8.49). 
The participants had between 9 and 25 years of 
education (M= 16 years, SD=2.67). These 
participants were part of a larger project that 
included the completion of many other tasks, 
some of which were completed within the 
magnetic resonance imaging (MRI) scanner. This 
research project was approved by the institutional 
review boards at both the University of Pittsburgh 
and Carnegie Mellon University.  
 

Iowa Gambling Task 
While in the MRI scanner, participants 

completed a computerized version of the Iowa 
Gambling Task (IGT). The IGT is a popular task 
for assessing decision-making and executive 
function in healthy and clinical populations 
(Buelow & Suhr, 2009). While popular, we do 
acknowledge that the test retest reliability of the 
IGT has come under scrutiny, and critical issues 
have arisen regarding construct validity. 
Nonetheless experimental evidence continues to 
provide support of the IGT in detecting decision-
making deficits in both healthy and clinical 
populations (Buelow & Suhr, 2009).  

In the IGT, participants are asked to 
select a card from any of the four decks presented 
with a varying amount of reward or punishment 
(Figure 1; Bechara et al., 1994). The participants 
specifically select one card at a time from any of 
the 4 decks for a total of 100 card selections. The 
participants are given a loan of $2000 and were 
instructed that the goal of the task is to maximize 
profit. They are also allowed to switch between 
any of the decks at any time and as often as they 
wished. The participants were not aware of any of 
the deck specifications and were only informed 
that each deck was different (Table 1). With each 
selection from Decks A or B (the 
“disadvantageous decks”), participants have a net 
loss of money. With each selection from Decks C 
or D (the “advantageous decks”), participants 

have a net gain of money. The amount of reward 
or punishment varied between decks and the 
position within a deck. Deck A and Deck B both 
had the same amount of overall net loss. 
However, in Deck A the reward was less frequent 
and higher in magnitude, while in Deck B the 
reward was more frequent and higher in 
magnitude. Similarly, Deck C and Deck D had 
the same overall net gain. In Deck C the reward 
was less frequent and lower in magnitude, while 
in Deck D the reward was more frequent and 
higher in magnitude. From the selections made by 
the participants, their overall payoff (P = (C + D) 
- (A + B)) and their overall sensitivity to 
frequency of reward (Q = (B + D) - (A + C)) was 
calculated.  
 

 
 
Table 1: Iowa Gambling Task Deck Specifications. The 
decks have a different combination of two separate features 
including reward amount, frequency of reward, and result in 
either a net yield of overall loss or gain. 
 

 
 
Figure 1: Computerized version of the Iowa Gambling 
Task. The computerized version of the IGT that participants 
were asked to complete is shown above. They were asked to 
select a card from any of the four decks presented with a 
varying amount of reward or punishment. The amount of 
cash earned and lost is shown in the green and red values, 
respectively. 

 
 
Diffusion Weighted Imaging 

All diffusion weighted images were 
acquired using a single-shell, diffusion tensor 
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imaging protocol (voxel size = 2.4×2.4×2.4 mm, 
TR = 11100 ms, TE = 96 ms, 56 different 
directions, b-value = 2000 s/mm2) on a 3-Tesla 
Verio Prisma MRI system. DWI data was 
reconstructed using a q-space diffeomorphic 
reconstruction (QSDR) method. This creates 
models of water diffusion patterns for every 
voxel in the brain in an averaged space that allows 
for comparison across participants (Yeh & Tseng, 
2011). A deterministic fiber tractography 
approach (Yeh et al., 2013) was then used to 
estimate the structural connections between brain 

areas for each participant (left in Figure 2), using 
standard tractography parameters (anisotropy 
threshold = 0.70, random seed orientation, 
tracked streamline count = 250,000, step size = 
1mm, max turning angle = 75 degrees, smoothing 
= 0.50, minimum length = 20mm, maximum 
length = 160mm). The fiber tractography output 
was integrated with a gray matter brain atlas, 
using a well-established parcellation of distinct 
regions known as nodes (middle in Figure 2) to 
produce a connectivity matrix (right in Figure 2). 

 

 
Figure 2: Brain Network Connectome. The fiber tractography DWI structural connections are used as the edges. They are then 
added to gray matter that is parcellated into distinct regions with a brain atlas to form the brain topologies. Together they form a 
brain graph representation of a brain network, and can be plotted as a connectome. 

 
 

Brain Network Connectivity Mapping 
Brain networks can be defined through 

connectivity matrices made of rows and columns 
for each node in the network, while the values 
represent the connections between each pair of 
nodes. The weight of edges in the matrix were 
defined by the number of streamlines connecting 
each pair of nodes (Tang et al., 2017). The 
analyses were also replicated using a different 
definition for edge weights in which they were 

equal to the number of individual white matter 
tracts connecting each pair of nodes divided by 
the total volume of the node pair. The network 
system was represented by a graph consisting of 
(n, e), where n referred to the node (grey matter 
regions of interest), and e referred to the set of all 
edges on the graph. Each node was assigned a real 
value. The node states present under one gray 
matter region were used to define the map. The 
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structural topology measures (Figure 3) on each 
subject’s connectivity matrix include:  

● Density: the fraction of present connections 
to all possible connections without taking 
into account any connection weights in the 
calculation (Rubinov & Sporns 2010) 

● Clustering Coefficient: the fraction of 
triangles (3 nodes and 3 edges that connected 
together form a triangle) around a node 
(Rubinov & Sporns 2010) 

● Transitivity: the ratio of triangles to triplets 
(3 nodes and 2 edges that are connected in 
series) in the network, which can be used as 
an alternative measure to the clustering 
coefficient (Rubinov & Sporns 2010), 
although these are not identical metrics 

● Characteristic Path Length: the average 
shortest path length in the network (Rubinov 
& Sporns)  

● Small-worldness: dense local clustering or 
cliquishness of connections between 
neighboring nodes yet a short path length 
between any (distant) pair of nodes due to the 
existence of relatively few long-range 
connections (Bassett & Bullmore 2006) 

● Global Efficiency: the average inverse 
shortest path length in the network (Rubinov 
& Sporns 2010) 

● Local Efficiency: the global efficiency 
computed on node neighborhoods, and is 
related to the clustering coefficient (Rubinov 
& Sporns 2010)  

● Assortativity Coefficient: a correlation 
coefficient between the degrees of all nodes 
on two opposite ends of a link, where a 
positive value would indicate that nodes tend 
to link to other nodes with the same or a 
similar degree (Rubinov & Sporns 2010). 

 

 
 

Figure 3: Graphed Structural Topology Measures. For each subject we looked at 8 measures of structural network topology, 
related to the “small worldness” of the brain networks (Rubinov & Sporns 2010; Bassett & Bullmore 2006). The measures included 
Density, Clustering Coefficient, Transitivity, Characteristic Path Length, Small Worldness, Global Efficiency, Local Efficiency, 
and Assortativity Coefficient. 
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Table 2: Distribution of Measures. The distribution measures of the structural topology measures and IGT scores calculated are 
minimum, quartile 1, median, quartile 3, maximum, skew, and the number of Grubbs test outliers. 

 

 
 

Results 
 

Characteristics and Distribution of 
Measures 

The distribution of structural network 
topology measures and the IGT scores are 
reported as minimum, quartile 1, median, quartile 
3, maximum, skew, and number of Grubbs test 
outliers (Table 2). The Grubbs test outliers were 
calculated with an alpha level of 0.05. 
Transitivity, Characteristic Path Length, and Q-
Scores have the greatest magnitude of skewness 
calculated with 1.074, 1.238, and -0.780, 
respectively. With the Grubbs test for calculating 
outliers, all of the variables had a single outlier. 

When looking across the network 
topology measures, there was a high degree of 
correlation across individuals, measured using 
Pearson's correlation coefficient (Figure 4). The 
greatest positive correlations observed were 
between Small Worldness and Local Efficiency 
with 0.88, Clustering Coefficient and Small 
Worldness with 0.90, and Clustering Coefficient 
and Local Efficiency with 0.97. Such strong 
correlations among the structural topology 
measures suggest that they share the common 

variance. High correlations among variables 
provide evidence of a low dimensional structure 
in the topology measures.  

 
 

Figure 4: Correlation matrix of the structural topology 
measures. Strong negative correlations are depicted as blue, 
zero correlations are depicted as white, and strong positive 
correlations are depicted as red. Characteristic Path Length 
and Global Efficiency were found to have a strong negative 
correlation. Strong positive correlations were found between 
Small Worldness and Local Efficiency, Clustering 
Coefficient and Small Worldness, and Clustering 
Coefficient and Local Efficiency. 

 

Since strong correlations were observed 
among the network topology measures in the 
data, Principal Component Analysis (PCA) was 
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used to identify the lower dimensional 
components that explain most of the variance in 

these measures. PCA orthogonally transforms the 
highly correlated data into linearly uncorrelated  

 
 
Figure 5: Principal Components for 95% Variance Explained. The cumulative proportion variance for each of the 8 PCA 
components are plotted in the blue bars. The red dotted line demonstrates the mark for 95% of cumulative proportion of variance. 
The barplot shows that components 1 through 5 account for over 95% of the cumulative proportion variance. Components 1-5 have 
a cumulative proportion variance that is about equal to 99.10%. 
 
 

 
 

Table 4: Table of PCA Component Loadings for Variables. Component 2 has 7 variables with significant loadings, and it has a 
strong positive loading with Global Efficiency, and strong negative loadings on Characteristic Path Length, Clustering Coefficient, 
and Local Efficiency. Component 5 has 6 variables with significant loadings, and it has a strong positive loading on Density, and 
strong negative loadings on Transitivity and Assortativity. 
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principal components. PCA has the ability to 
reduce the dimensionality of data while 
maintaining useful information. 

Table 4 shows the recovered 8 
components and their mapping to the variables 
measured. Loadings were considered to be 
significant when they had a magnitude greater 
than 0.1, and strong when they had a magnitude 
greater than 0.3. In the first PCA component, all 
of the 8 variables measured are significantly 
loaded. There are strong positive loadings with 
Density, Clustering Coefficient, Small 
Worldness, and Local Efficiency, and there is a 
strong negative loading on Characteristic Path 
Length. Component 2 has significant loadings 
from 7 components. There is a strong positive 
loading on Global Efficiency, and there are strong 
negative loadings on Clustering Coefficient, 
Characteristic Path Length, and Local Efficiency. 
Component 3 has 5 variables with significant 
loadings. There is strong positive loadings on 
Density, Transitivity, and Assortativity, and there 
are no strong negative loadings. Component 4 has 
5 variables with significant loadings. There is a 
strong positive loading on Assortativity, and 
there is a strong negative loading on Transitivity. 
Component 5 has 6 variables with significant 
loadings. There is a strong positive loading on 
Density, and there are strong negative loadings on 
Transitivity and Assortativity. Component 6 has 
5 variables with significant loadings. There are no 
strong positive loadings, and there are strong 
negative loadings on Characteristic Path Length, 
Global Efficiency, and Local Efficiency. 
Component 7 has 5 variables with significant 
loadings. The strong positive loadings are on 
Clustering Coefficient, Characteristic Path 
Length, Small Worldness, and Global Efficiency, 
and the strong negative loading is on Local 
Efficiency. Component 8 has 4 variables with 
significant loadings. There is a strong positive 
loading on Clustering Coefficient, and there is a 
strong negative loading on Small Worldness.  

When looking at the percent variance 
accounted for (Figure 5), we found that only the 
first 5 components explained 95% of the data. 
Therefore our subsequent analysis only focuses 
on these components. 

 

Associations with IGT Performance  
A generalized linear model (GLM) was 

used to identify which of the 5 principal 
components that explained the most variance 
were associated with the P and Q-Scores of the 
participants. A significant association between 
Component 2 and the P-Score was found, which 
reflects the ability to effectively use feedback to 
maximize returns, with a significance level of less 
than 0.1 (Table 5). The GLM with the P-Scores 
and the first 5 principal components predicts P-
Scores with a correlation of 0.232. The rest of the 
components do not appear to be able to predict P-
Scores accurately with a significance level of less 
than 0.1. Component 2 was found to have mean 
bootstrap coefficient estimate of 3.05 and a lower 
and upper bound of 2.735 and 3.365 (Table 9).  

Components 1, 2, 3, and 5 were found to 
have positive coefficient estimates with standard 
errors ranging from 1.37 to 3.42 (Table 5). 
Component 4 was found to have a negative 
coefficient estimate with a standard error of 1.77 
(Table 5). Component 2, with a coefficient 
estimate of 3.07 and a standard error of 1.77, was 
the only component found to predict P-Scores 
with a significance level of p = 0.088 (Table 5). 
The intercept was found to have a coefficient 
estimate of 21.83 and a standard error of 2.51 
with a significance of p < 0.001 (Table 5). This is 
lower than the Bonferroni corrected threshold of 
0.005 (corrected for 10 comparisons). The cross 
validation errors calculated from the GLM are 
1.06 and 1.06, which are significantly low values. 
The rest of the components do not appear to be 
able to predict P-Scores as they had significance 
levels of p > 0.1 (Table 5). 
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Table 5: GLM Analysis on Principal Components to 
Predict P-Score. The generalized linear model to predict P-
Scores with the PCA components shows that the second 
component was able to reliably predict P-Scores with a 
significance of p < 0.1. 

 

A significant association between the 
Component 5 and the Q-Score was found, which 
reflects a sensitivity to high frequency rewards 
(Table 6) with a significance of p < 0.05. The 
GLM with the Q-Scores and the first 5 principal 
components predicts Q-Scores with a correlation 
of 0.318. The rest of the components do not 
appear to be able to predict Q-Scores with a 
significance level of less than 0.1. Component 5 
was found to have a mean bootstrap coefficient 
estimate of 7.579 and a lower and upper bound of 
6.7 and 8.065 (Table 9).  

Components 2, 4, and 5 were found to 
have positive coefficient estimates with standard 
errors ranging from 1.41 to 3.52 (Table 6). 
Components 1 and 3 were found to have negative 
coefficient estimates with standard errors of 1.41 
and 2.46, respectively (Table 6). Component 5, 
with a coefficient estimate of 7.46 and a standard 
error of 3.52, was the only component found to 
predict Q-Scores with a significance level of p = 
0.034 (Table 6). The intercept was found to have 
a coefficient estimate of 31.44 and a standard 
error of 2.59 with a significance of p < 0.001 
(Table 6). This is lower than the Bonferroni 
corrected threshold of 0.005 (corrected for 10 
comparisons). The cross validation errors 
calculated from the GLM are 1.06 and 1.06, 
which are significantly low values. The rest of the 
components do not appear to be able to predict Q-

Scores as they had significance levels of p > 0.1 
(Table 5). 

 

 
 

Table 6: GLM Analysis on Principal Components to 
Predict Q-Score. Component 5 with a coefficient estimate 
of 7.46 and standard error of 3.52 was the only Component 
found to can predict Q-Scores with a significance of 0.01. 
The rest of the components do not appear to be able to 
predict Q-Scores with a significance level of less than 0.01. 

 

Using only the Component 2 model 
coefficients as weights for each component in 
predicting P-Scores the value of the weights from 
the components can be transformed into data 
space with the topology measures. Their data 
space transformation demonstrates that Global 
Efficiency leads to an increase in P-Score, 
whereas Characteristic Path Length, Clustering 
Coefficient, Global Efficiency, Local Efficiency, 
and Assortativity lead to a decrease in P-Score. 
Global Efficiency has the greatest positive effect 
on P-Scores, and Characteristic Path Length has 
the greatest negative effect (Table 7). 

Using only the Component 5 model 
coefficients as weights for each component in 
predicting Q-Scores, the value of the weights 
from the components can be transformed into 
data space with the topology measures. Their data 
space transformation demonstrates that Density 
and Characteristic Path Length lead to an increase 
in Q-Score, whereas Clustering Coefficient, 
Transitivity, Small Worldness, Global 
Efficiency, Local Efficiency, and Assortativity 
lead to a decrease in Q-Score (Table 8). Density 
has the greatest positive effect on Q-Scores and 
transitivity has the greatest negative effect. 
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Table 7: Structural Topology Weights of Component 2 in Topology Space. In topology space, Component 2 was made up of 
primarily Characteristic Path Length, Global Efficiency, Local Efficiency, Transitivity, Clustering Coefficient, and Assortativity. 

 
 

 
 

Table 8: Structural Topology Weights of Component 5 in Topology Space. In topology space, Component 5 was made up of 
primarily Density, Transitivity, Global Efficiency, & Assortativity. 

 
 

 
 

Table 9: Bootstrapping Analysis on Principal Components with P and Q-Scores. Component 2 with P Score was found to 
have a mean bootstrap coefficient estimate of 3.05, whereas Component 5 with Q-Score was found to have a mean bootstrap 
coefficient estimate of 7.579. 

 
 

Discussion 
 

In this experiment we found evidence 
that supports the hypothesis that individuals with 
more small-world structural brain networks 

would be better at feedback driven value-based 
decision-making. First, the graph topology 
measures of white matter networks had a low 
dimensional structure that could be mostly 
explained by five principal components. A 
regression analysis examining how these 
components correlated with the ability to use 
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feedback to maximize long-term payoffs (P-
Score) and the sensitivity to high frequency 
rewards (Q-Score) found associations with both. 
Only Component 2, that had strong positive 
loadings on Global Efficiency, and strong 
negative weights on Characteristic Path Length 
and Local Efficiency, reliably associated with the 
ability to use feedback to maximize rewards 
(Table 7). The positive loadings associate with 
greater ability, and the negative loadings 
associate with lesser ability (Table 7). Another 
component, Component 5, which had strong 
positive loadings on Density and Characteristic 
Path Length, and strong negative loadings on 
Transitivity, Global Efficiency, and 
Assortativity, reliably associated with the 
sensitivity to rewards. The positive loadings 
associate with greater sensitivity, and negative 
weights associate with a lesser sensitivity (Table 
8). 

These results contribute to the mounting 
evidence that efficient network topologies, such 
as small-worldness, associate with efficient 
cognitive properties, further supporting the 
distributed nature of distinct brain areas while 
demonstrating the importance of integrated and 
efficient communication between these areas 
within global brain network (Bassett & Bullmore, 
2006; Douw et al., 2011; Vlooswijk et al., 2011; 
Pandit et al., 2013). The efficient communication 
between global brain networks is especially 
important in higher order cognitive tasks such as 
value-based decision-making which uses, at a 
minimum, visual perception, attention, working 
memory, reinforcement learning, executive 
control, and other lower order functions in order 
to synthesize our decisions. The IGT is one such 
cognitively demanding task, requiring 
participants to select which deck they believe is 
of highest value and refine this value estimate of 
their actions using feedback from previous 
outcomes, in order to converge to an optimal 
decision. In this way, the IGT represents a 
complex multi-armed bandit task, as typically 

used in reinforcement learning (Sutton & Barto, 
1998), but with dynamic reward structures.  

The analysis reported here was strictly 
cross-sectional in nature. However, since the 
strength of connections in white matter networks 
is highly plastic (Yeh et al., 2016), a more optimal 
design may have been a longitudinal study in 
which individuals were tracked over time. 
Furthermore, node-wise topology measures were 
not looked at and primarily focused on using the 
topology measures of global networks. It could be 
that small differences in specific pathways, such 
as the cortico-basal ganglia thalamic loops 
(Alexander, DeLong, & Strick, 1986), are highly 
predictive of aspects of value-based decision-
making, but by looking at global networks this 
effect is washed out.  

Despite this limitation, the results 
reported here have provided further evidence for 
an underlying brain network architecture that 
constrains behavioral differences between 
individuals in value-based decision-making. A 
complete and thorough understanding of the 
structural topological pattern of human brain 
connectivity would allow one to understand 
optimal and suboptimal structural architectures in 
brain networks with regards to behavior. 
Furthermore, that could provide insights to 
behavioral pathologies, and could potentially lead 
to a new pathway for diagnosis of psychiatric and 
neurological pathologies with abnormal 
signatures of structural topological organization. 

Future directions could include focusing 
on regions of interest or subnetworks of interest 
in order to identify individual network 
associations rather than global network 
associations. In addition, the functional dynamics 
of the global networks could be more sensitive to 
individual differences in decision-making. By 
looking at functional connectivity or task-linked 
responses instead of structural connectivity, may 
give rise to a complete understanding of the 
nature of the communication across these 
networks.  
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Future applications of this work include 
using the topological organization of the 
structural connectivity of brain networks as 
neuroimaging markers for different decision-
types or other cognitive states. For example, a 
similar analysis on other complex decision tasks 
(e.g., the Stroop task) could be performed. In 
addition, future studies could be more strategic in 
the brain networks of interest. For example, 
future work could have a more detailed focus on 
regions of interest such as the basal ganglia 
pathways that play a critical role in reinforcement 
learning and decision-making. They could also 
integrate both structural and functional 
connectivity measures to provide a holistic 
understanding of the network form and function.  

In summary, this study demonstrates how 
the architecture of white matter networks have a 
low dimensional structure in their topological 
organization, and how a subset of these low 
dimensional components reliably associated with 
individual differences in the ability to use 
feedback to modify future decisions. Specifically 
individuals with structural connections that 
allowed for more efficient long-range 
communication between brain areas were better 
at using feedback to maximize future long-term 
rewards.  
 
 

Endnotes 
 
The data and analysis steps can be accessed at: 
github.com/cbanuelos/Structural_Topology_Brai
n_Networks. 
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