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Cognitive chimera states in human brain networks
Kanika Bansal1,2,3*, Javier O. Garcia1,4, Steven H. Tompson1,4, Timothy Verstynen5,
Jean M. Vettel1,4,6, Sarah F. Muldoon3,7*

The human brain is a complex dynamical system, and how cognition emerges from spatiotemporal patterns of
regional brain activity remains an open question. As different regions dynamically interact to perform cognitive
tasks, variable patterns of partial synchrony can be observed, forming chimera states. We propose that the
spatial patterning of these states plays a fundamental role in the cognitive organization of the brain and present
a cognitively informed, chimera-based framework to explore how large-scale brain architecture affects brain dy-
namics and function. Using personalized brain network models, we systematically study how regional brain stim-
ulation produces different patterns of synchronization across predefined cognitive systems. We analyze these
emergent patterns within our framework to understand the impact of subject-specific and region-specific struc-
tural variability on brain dynamics. Our results suggest a classification of cognitive systems into four groups with
differing levels of subject and regional variability that reflect their different functional roles.
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INTRODUCTION
Rhythmic behavior is ubiquitous in complex systems, and a diverse
set of research has examined how interacting system elements come
together to form synchronized, coherent behavior across domains that
span biological, social, and engineered settings (1). However, the
emergence of complete system-wide synchronization might not always
provide the best description of system dynamics. In many systems,
states of partial synchrony have been observed, where a system orga-
nizes in separate domains of synchronized elements (2, 3). This is par-
ticularly true in the human brain, where patterns of neurophysiological
activity evolve rapidly, showing transient domains of synchronization
across subsets of brain regions (2). In the past decade, the rise of network
neuroscience approaches (4) have demonstrated a foundational role for
partial synchrony among separate cognitive subnetworks, where the
underlying architecture of the brain ensures efficient integration of
sensory input with stored knowledge while also segregating task-
irrelevant information to support cognition (5). However, the fun-
damental principles and constraints that subserve the intricate timing
and specificity of these time-evolving patterns of synchrony are not well
understood (6).

The dynamical systems framework of chimera states offers a pow-
erful tool to study the evolution of coherent and incoherent dynamics
in oscillating systems such as the brain. A chimera state emerges when
a system of oscillators evolves into two subsets of mutually coherent
and incoherent populations (7). Although chimera states represent a
natural link between coherent and incoherent dynamics (8), initially,
they were found and explored only analytically in the networks of ho-
mogeneous phase oscillators (9, 10), and their relationship to real
physical systems was unknown. It was not until almost a decade after
their theoretical discovery that chimera states were demonstrated ex-
perimentally (11, 12), lastly establishing their connection with real-
world systems. Subsequently, chimera states were studied in a variety
of model systems under different coupling schemes, including global
(13) and purely local (14) connections, and their presence in oscillat-
ing systems was found to be more abundant than previously thought
(15) [for an overview of studies on chimera states, see the recent re-
view by Panaggio and Abrams (7)]. Chimera states have also been
found to emerge under the presence of noise (16) and in heterogeneous
networks (17). Given these findings, in the past few years, new classifi-
cations of chimera states, such as multichimera (18), traveling chimera
(19), and chimera death (20), have been defined on the basis of the spe-
cific spatiotemporal dynamics involved.

Because of its natural ability to describe patterns of partial synchro-
nization, the chimera framework has an intuitive utility for augment-
ing our understanding of the brain. Patterns of synchronization
between cognitive systems are thought to form the basis of cognition,
and the interplay of synchrony among subsets of brain regions has
been shown to be important both in normal brain function, for exam-
ple, in the variability in task performance (5), and in the continuum
between healthy and disease states (21). Recent work has speculated
that similarities exist between chimera states and brain dynamics dur-
ing unihemispheric sleep (7) and the transition to a seizure state in
epilepsy (22). Fundamentally, these dynamics are the result of
complex interactions between neuronal populations and are often
modeled using networks of coupled oscillators. As a result, despite
the intuitive similarities between chimera states and brain dynamics,
much of the work relating chimera dynamics to neuroscience, thus far,
has focused on understanding chimera states at the level of neuronal
networks, using mathematical modeling of networks of individual
neurons with fewer elements and/or simplified connection topologies
(18, 23). Only recently have neuronalmodels been used to examine the
possibility of the emergence of chimera-like states within large-scale
brain networks derived from two well-characterized animal brains—
Caenorhabditis elegans (24) and the cat cortex (25). However, even in
these instances, the network connectivities were modified for simpli-
city. Thus, there remains a gap between studies of chimera states and
applications to large-scale functional patterns of brain activity thought
to underlie cognition. This largely reflects the computational
complexity of modeling whole-brain dynamics and identifying an in-
formative, yet simplified, model of cognitive processing.

Here, we bridge this gap by presenting a cognitively informed,
chimera-based framework combined with in silico experiments (26),
where we leverage the existence of a core set of predefined cognitive
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systems that constitute the functional organization of the brain (27, 28).
Consequently, our framework keeps the computational complexity of
the analysis to aminimumwhile providing the unique ability to connect
chimera states as an underlying basis for cognition. Using personalized
brain network models (BNMs), we study cognitive system–level
patterns of synchrony that emerge across 76 brain regions within nine
cognitive systems as the result of regional brain stimulation. Our anal-
ysis focuses on how brain architecture relates to the frequency and types
of dynamical patterns produced after stimulation. More specifically, we
aim to answer two questions: (i) Do patterns of synchronization ob-
served for each cognitive system depend on what region was stimulated
(region-specific effects) and (ii) does structural variability between par-
ticipants decrease the consistency of patterns observed for each cogni-
tive system (subject-specific effects)?

From our in silico experiments, we observe different patterns of
synchronization that can be classified into three dynamical states:
(i) a coherent state of global synchrony, (ii) a chimera state with co-
existing domains of synchrony and desynchrony, and (iii) a meta-
stable state with an absence of any large-scale stable synchrony. Our
results demonstrate rich diversity in the states produced across all nine
cognitive systems, including variability in patterns based on both
region-specific and subject-specific structural variability. Critically,
all nine cognitive systems give rise to chimera states, and this likely
reflects the foundational role that partial synchrony serves in large-
scale brain function. Neuronal dynamics must concurrently segregate
specialized processing while integrating localized functions for
coordinated, cohesive cognitive performance. Our chimera-based
framework provides an avenue to study how dynamical states give
rise to variability in cognitive performance, providing the first ap-
proach that can uncover the link between chimera states and cognitive
system functions that subserve human behavior.
 on S
eptem

ber 23, 2019
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RESULTS
We first build subject-specific BNMs using anatomical connectivity
derived from diffusion spectrum imaging (DSI) data of 30 healthy
individuals. We have previously shown that these data-driven BNMs,
combined with in silico experiments, can successfully explain individ-
ual variability in performance across certain language-based cognitive
tasks (26). In the present work, we leverage these computational
BNMs to understand the structural constraints to the macroscopic
cognitive organization of the brain. The steps to construct a BNM
are illustrated in Fig. 1A. We first parcellate the brain into 76 regions
(network nodes) and define weighted network edges based on struc-
tural connectivity between brain regions. The dynamics of each brain
region are modeled using Wilson-Cowan oscillators (WCOs), a bio-
logically inspired, nonlinear mean-field model of a small population of
neurons (29). The coupling between regions is derived on the basis of
the unique structural connectivity of each individual (fig. S1). When
multiple WCOs are coupled, the resulting patterns of synchronization
are highly dependent on the topology of the coupling, ensuring that
these BNMs are highly sensitive to individual variability in the
underlying anatomical connectivity (27, 30). As illustrated in Fig. 1B
and fig. S1, we then perform in silico experiments by systematically
applying computational regional (nodal) stimulation to the BNM. Pre-
vious work using in silico brain stimulation has studied the impact of
local perturbations on large-scale brain dynamics (31) and shown that
stimulation of certain regions can produce activity patterns that are
similar to resting-state activity of the brain (32). Here, we focus on
Bansal et al., Sci. Adv. 2019;5 : eaau8535 3 April 2019
assessing the resulting patterns of synchronization that emerge on
the basis of subject-specific and region-specific variation in structural
connectivity as a result of computational regional stimulation.

Classification of brain states using cognitive systems
Traditionally, one would measure system-wide synchronization by
calculating a measure such as the Kuramoto order parameter within
the entire network of oscillators (33). However, we are interested in ex-
ploring how the stimulation of different brain regions drives brain
function and how brain function is constrained by variability in struc-
tural connectivity. Therefore, we instead focus on the relationship be-
tween patterns of synchronization among experimentally motivated
cognitive systems, where the regions assigned to each system have been
shown to support similar cognitive processes. Thus, on the basis of pre-
vious research (27, 28), we assigned each of the 76 brain regions into one
of nine cognitive systems (fig. S2). Each cognitive system is defined by
regions that coactivate in support of a generalized class of cognitive
functions. This delineation includes several sensory motor–related
systems, including auditory (Aud), visual (V), and motor and somato-
sensory (MS) systems, as well as the ventral temporal association system
(VT) that encapsulates regions involved in knowledge representation.
Several of the systems are involved in functional roles that are generic
across cognitive performance, including the attention system (Att), the
medial default mode system (mDm), and two systems associated with
cognitive control, the cingulo-opercular (CP) and frontoparietal (FP)
systems. Last, we include the subcortical system that consists of the re-
gions responsible for autonomic and primal functions.
A

B

Fig. 1. Design of the in silico experiments. (A) We construct personalized BNMs
by estimating white matter anatomical connectivity of the brain using DSI. This con-
nectivity is combinedwith a brain parcellation schemewith 76 cortical and subcortical
regions to obtain a large-scale connectivity map of the regional brain volume. These
regions constitute the nodes of the structural brain network whose dynamics
are simulated by nonlinear WCOs, coupled through the structural connectivity
map of a given subject (see Materials and Methods). (B) In the resulting data-
driven models of the spatiotemporal dynamics of the brain, each brain region is
systematically stimulated across a cohort of 30 subjects. The spread of the stimula-
tion is measured through synchronization within the brain network.
2 of 14
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In each in silico experiment, we stimulate a brain region in each
subject-specific BNM and then compute the cognitive system–level
synchronization. Specifically, we calculate a cognitive system–based
Kuramoto order parameter rsi,sj that measures the amount of syn-
chrony among all oscillators (regions) within two cognitive systems
si and sj and obtain a cognitive system–based synchronization matrix,
as shown in Fig. 2A. In this synchronization matrix, we define two
cognitive systems, si and sj, to be synchronized if rsi,sj exceeds a thresh-
old value rTh. In Fig. 2A, we chose rTh = 0.8 to define three dynamical
states observed in this study: (i) a coherent state, where all cognitive
systems are synchronized; (ii) a cognitive chimera state, where some
cognitive systems form a synchronized cluster (yellow) while the other
systems remain incoherent (blue); and (iii) a metastable state, where
no stable synchrony between cognitive systems is observed. In a meta-
stable state, we observed oscillator populations to exhibit transient
states of synchrony and desynchrony [metastability (34)] and the ab-
sence of a long-range stable synchronization. This state is character-
ized by a high metastability index (Materials and Methods) and is
distinct from coherent and chimera states (fig. S3).

Next, we compare our cognitive system–based analysis with two
traditional measures of synchronization: (i) the classical Kuramoto
order parameter (33) calculated across all 76 oscillators (regions) that
captures the level of global synchrony in the network and (ii) the chi-
mera index (24, 34) that describes the closeness of the state with an
ideal chimera state (see Materials and Methods). In Fig. 2B, we show
how the three dynamical states (coherent, chimera, and metastable)
observed after stimulation of different brain regions in different subjects
are distributed in the global synchrony and chimera-index parameter
space. Each dot in this figure denotes a single brain region that was
stimulated, its position denotes the amount of global synchrony and
chimera index it produced in the network, and its color represents the
classification of the emergent state within our cognitive framework. In
the parameter space of the global synchrony and chimera index, we
observe a separation in the area occupied by these states. As expected,
global synchrony decreases from the coherent to chimera to metastable
state. Thus, a cognitively informed, system-based classification of dy-
namical states is comparable to the traditional measures of estimating
synchrony within a network.

We also examine how these two traditional metrics of synchroni-
zation relate to the connectivity properties of the node (region) itself.
As seen in Fig. 2C, the level of global synchrony is positively correlated
with the degree of the region being stimulated (r = 0.81; P < 10−308).
Stimulation of a network hub (highly connected brain region) is there-
fore more likely to produce a coherent state, while stimulation of a
nonhub is more likely to result in either a chimera or metastable state.
Figure 2D reveals that the chimera index shows a relativelyweaker and
negative correlation with the degree of the region stimulated (r = −0.61;
P = 6.4 × 10−229). This relationship indicates the ability of moderately
connected brain regions to produce a variety of spatially distinct syn-
chronization patterns as a result of stimulation. These results not only
demonstrate that chimera states emerge among large-scale cognitive
systems, but also reveal that the variable structural connectivity of re-
gions within cognitive systems can drive the whole brain into diverse
synchronization patterns. It has been previously shown that the effec-
tiveness of a brain region as a stimulation site is related to its position
within the cortical hierarchy (31), and we therefore also examined
whether the emergence of a cognitive state can be predicted by the
connectivity between the stimulated region and the highly connected
core, or rich club, of the brain (35). We obtained a set of core regions
Bansal et al., Sci. Adv. 2019;5 : eaau8535 3 April 2019
within each subject and then calculated the average shortest path length
of each brain region to this core (see Materials and Methods). This
quantity signifies the ease with which one can reach at a core region
from a given region within the network. In Fig. 2E, we observe that
the average shortest path length to the core correlates negatively with
the global synchrony (r = −0.74; P < 10−308). This indicates that, apart
from the core itself, the regions that are easily connected to the core are
also likely to produce a state with high synchrony. Here, colors identify
the cognitive classification of the emergent states into coherent (red),
chimera (yellow), and metastable (blue) states. Although we do not ob-
serve a direct separation of states based on the average shortest path
length to the core, one can conclude that regions closest to the core
are more likely to produce a coherent state, while regions farthest from
the core are likely to produce a metastable state.

Variable brain states emerge from stimulation of different
brain regions
Given that the type of brain state that emerges as result of stimu-
lation is related to the network connectivity of the region, we next
asked whether there is also a relationship between the location of
the stimulated region and the type of dynamical state produced. In
Fig. 3, brain regions are depicted as an orb, and their sizes denote
the normalized occurrence of a given state that they produce upon
stimulation, calculated across individuals. Regions that produce co-
herent states (network hubs) are distributed more closely to the
midline of the brain (Fig. 3A, large nodes), while regions that pro-
duce the opposite extreme, metastable states, are distributed further
from the midline, along the edges of the hemispheres (Fig. 3C, large
nodes). Regions that produce chimera states are relatively uniformly
distributed within the brain space (Fig. 3B). In fig. S4, we further
quantify the relationship between the spatial location of a region,
the degree of the region, and the dominant cognitive state produced
when the region is stimulated. We did not observe a one-to-one map-
ping between these features but did observe qualitative trends, indicat-
ing that regions closer to the midline have higher degrees and are
more likely to produce a coherent state than regions further from
the midline with lower degrees that are more likely to produce a meta-
stable state. These trends highlight differences in the structural orga-
nization of the brain that potentially aid in the fulfillment of different
cognitive goals. Regions along the midline of the brain that produce a
coherent state (e.g., subcortical regions such as the hippocampus and
thalamus) can play a global cognitive role and facilitate communica-
tion between spatially separated brain regions. Conversely, regions lo-
cated further from the midline produce metastable states, consistent
with the notion that local and/or specialized computations take place
in the cortex.

Because of the diversity in the distribution of dynamical states
across spatially distributed regions, in Fig. 4, we investigate the re-
lative contribution of the nine cognitive systems in producing each
dynamical state after regional stimulation. Different systems con-
tribute differently to observed dynamical states (coherent, chimera,
and metastable), which provides a link between the observed states
and their cognitive relevance. As shown in Fig. 4A, coherent states
are produced predominantly by regional stimulation within sub-
cortical and medial default mode systems, reflecting that many of their
constituent regions are network hubs.

There is also system specificity for metastable states, which are
preferentially produced by four systems (Fig. 4C). Two of those
systems, the cingulo-opercular and frontoparietal, are associated
3 of 14
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with cognitive control and proposed to be complementary systems
that may often need to process task-relevant information concur-
rently. Their dominance in producing metastable states likely re-
flects the fact that these systems can work in seclusion without
coactivating a large part of the brain (facilitating parallel processing)
and that they are flexible and not constrained by their structural
connectivity. Both the auditory and ventral temporal association
systems also contribute substantially to metastable states. These two
systems are both predominantly located in the temporal lobe, an area
of the brain associated with knowledge representation, so their func-
tional roles may also frequently require working in seclusion in
support of higher-order perception.

Although coherent andmetastable states are dominantly produced
by specific cognitive systems, all nine systems give rise to chimera
states (Fig. 4B). Chimera states are more likely to occur than either
coherent or metastable states (Figs. 2B and 3B), since they encompass
a variety of different spatial patterns of coexisting coherent and in-
coherent behavior. This likely reflects the foundational role of partial
synchrony in large-scale brain function. Cognitive tasks constantly re-
Bansal et al., Sci. Adv. 2019;5 : eaau8535 3 April 2019
quire the intricate balance between segregated and integrated neural
processing (5). The robust occurrence of chimera states following
stimulation to each of the nine cognitive systems reflects the complexity
and flexibility of the brain’s underlying architecture to support diverse
processing requirements. Although the distributions of states discussed
above are obtained using a single threshold value (rTh = 0.8), a qualita-
tively similar description can be obtained for a range of threshold values,
as shown in figs. S5 and S6, indicating that our analysis is robust for
cognitive interpretations.

Structural variability influences spatial patterning of
observed emergent states
A major advantage of our approach is the ability to obtain the spatial
patterns that comprise individual chimera states, which can then be
interpreted within the cognitively informed framework to understand
how structural constraints influence the large-scale functional organi-
zation of the brain. We next characterize this spatial patterning of
emergent states to understand which cognitive systems are synchro-
nized and desynchronized following stimulation to each region. The
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region in a subject, and its position indicates the global synchrony and chimera index (traditional measures) produced in the BNM upon stimulation of this region. The
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brain region. (C) The global synchrony is positively correlated with the weighted degree of brain regions (r = 0.81; P < 10−308), indicating that the network hubs are more
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results are organized by stimulation of brain regionswithin a cognitive
system in Fig. 5 (A to I), where each row is a pattern of synchroniza-
tion within the nine cognitive systems. The rows are organized by the
frequency with which the pattern was observed (listed to the right of
the row) after stimulation to all regions within that system and across
all individuals in the study. For each pattern, systems that are part of
the synchronized population after stimulation are shown in orange,
and systems that are part of the desynchronized population are shown
in white. Consequently, coherent, metastable, and chimera states are
demarcated by a fully orange row, a fully white row, and a mixed pat-
tern of coloring, respectively. For each cognitive system (Fig. 5, A to I),
we present the prevalent patterns observed (those that occur with a
frequency of≥3%), and these results illustrate what systems are likely
to synchronize after stimulation.

Aligned with their complementary roles in cognitive control, the
cingulo-opercular and frontoparietal systems continue to show sim-
ilarity in their patterns of synchronization. The dominant pattern after
stimulation to regions in either system is a metastable state, occurring
37% of the time for the cingulo-opercular system (Fig. 5C) and 42% of
the time for the frontoparietal system (Fig. 5D). Similarly, the auditory
system also produces a metastable state 50% of the time (Fig. 5B). For
all three of these systems, the second most frequent state is the oppo-
site extreme, a coherent state (20% for auditory and 10% for cingulo-
opercular) or a nearly coherent state (9% for frontoparietal). Thus,
these three systems show diversity in the types of dynamical states that
they are capable of producing: Stimulation of some nodes within the
system produces a metastable (segregated) state, while stimulation of
others drives the brain to a coherent (integrated) state.
Bansal et al., Sci. Adv. 2019;5 : eaau8535 3 April 2019
The ventral temporal association system also produces a meta-
stable state as its most prevalent pattern (Fig. 5H), but unlike in the
three previously discussed systems, this state is produced less fre-
quently (11%), and the system also produces a much larger variety
of prevalent patterns of synchronization (10 unique patterns). The only
other system to show this high level of diversity in its produced patterns
is the motor and somatosensory system (11 patterns; Fig. 5F). In both
systems, we observe multiple patterns of chimera states. This likely re-
flects the ubiquitous need for neural processing related to both action
coordination (motor and somatosensory) and higher-order perception
(ventral temporal association) to be integrated with the processing
occurring in other systems within the brain (36).

A coherent state occurs most frequently for the attention (41%;
Fig. 5A), default mode (31%; Fig. 5E), and subcortical systems (44%;
Fig. 5G). The visual system is also similar, although the coherent state
is the secondmost prevalent (21%), with a nearly coherent state (all but
auditory) as its dominant pattern (23%). Overall, these four systems
seem relatively less dynamically diverse since their stimulation largely
results in chimera states with high synchrony. All of these systems
serve fundamental functional roles to rapidly respond to the external
environment, and their dynamical patterns reflect this need to effi-
ciently integrate this information with other cognitive systems.

For all systems, the most common state following regional stimu-
lation is a chimera state with high synchrony, emphasizing the impor-
tance of partial synchrony for all of the diverse functional roles
provided by large-scale cognitive systems. Visual inspection of the
patterns suggests that the systems most likely to belong to the desyn-
chronized population of a chimera state are the three systems that
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predominantly produce ametastable state (auditory, cingulo-opercular,
and frontoparietal systems). We quantify this effect in the synchroniza-
tion probability plot (Fig. 5J). Systems with a high probability of syn-
chronization have dark colors, while systems that are unlikely to be
synchronized as a result of stimulation to a specific cognitive system
are shown in light colors. While the auditory, cingulo-opercular, and
frontoparietal systems are all unlikely to synchronize with other systems,
the attention system, in contrast, is highly likely to be part of the synchro-
nized population following stimulation to any system. We also observe
that the stimulation of a region within a particular system does not nec-
essarily induce synchronization within that system, which is particularly
the casewith the auditory, cingulo-opercular, and frontoparietal systems.

Thus far, following the cognitively informed architecture of the
system-level brain partitioning, we have argued that the different
patterning of states within a system reflects a link between cognitive
processing and the structural constraints of each system. Computa-
tionally, however, any coarse partitioning of the brain network could
result in the emergence of a variety of states, including chimeras, upon
regional stimulation. Note that the general emergence of chimera
states is not unique to the brain partitioning we have used. However,
what is unique are the characteristically distinct patternings of the in-
dividual chimera states that emerge, and it is the specific combination
of cognitive systems that synchronize in a given chimera state that
provides a unique neuroscientific relevance to our framework. Our de-
cision to partition the brain based on cognitive system assignments
therefore provides a necessary and specific interpretation framework.

To support this argument, we compared our results to those ob-
tained using a random partitioning of the brain into nine groups
(equivalent to systems). In randomized partitioning, we used the same
number of regions within a group as in our original analysis, but brain
regions were randomly assigned to these groups (see Materials and
Methods for details of the randomization). We next performed two
different randomization experiments. In the first experiment, we cre-
ated a single randomized partition of the brain and applied our anal-
ysis across all 30 subjects (fig. S7A). In the second experiment, we
Bansal et al., Sci. Adv. 2019;5 : eaau8535 3 April 2019
created 10 different random partitions of the brain and performed
our analysis for each of the 10 partitions across all 30 subjects and
extracted the prevalent patterns (those that occur with a frequency
of ≥3%) produced from this larger ensemble (fig. S7B). The first
experiment using a single random partition across subjects reveals
that the general emergence of chimera states is not unique to the
cognitively informed partitioning of the brain, as applying a random
partition can also produce chimera states. However, the second ex-
periment shows that the patterning of chimera states produced by
applying a random partition of the brain is dependent on the specific
configuration of the partition; the coherent and metastable states
dominate the prevalent patterns. This represents the fact that each
random partition of the brain produces a different set of chimera
patterns such that there is little chance that any given pattern will
appear as a prevalent pattern.

Note that, in both randomization experiments, the top two prevalent
states are the coherent and metastable states. This is different from the
results shown in Fig. 5, where system assignments are based on a re-
gion’s cognitive system assignment and spatially distinct patterns of
partial synchrony (chimera states) appeared in the top two prevalent
patterns in certain systems. This finding highlights the importance of
uniting a cognitive systems framework with a chimera-based analysis
to understand and interpret the emergent patterns of synchronization
in the brain. Within a cognitive framework, a similarity in chimera
states across subjects may reveal the link between structural constraints
and functional patterns that support human cognition.

Collectively, these results reveal the power of our approach to char-
acterize and understand structural constraints to the large-scale system
interactions after regional stimulation. In fig. S8, we further describe
how different regions in a system contribute to observed patterns by
spatially mapping the probability of a given pattern onto the brain.
Together, these results highlight that stimulation within each system
gives rise tomultiple patterns, similar patterns can emerge from spatially
different regions, and within a system, there can be a special distribu-
tion of states across brain regions. This likely arises from individual
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Fig. 4. Contribution of cognitive systems to dynamical states. (A) Coherent states are likely to result when nodes within the medial default mode and subcortical
systems are stimulated. (B) Chimera states emerge upon the stimulation of nodes that are equally distributed across all the cognitive systems. (C) Metastable states
frequently occur after stimulation of nodes within auditory, cingulo-opercular, frontoparietal, and ventral temporal association systems. This distribution indicates the
dominance of a particular type of cognitive role within the nodes of different cognitive systems.
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differences in the structural connectivity between the participants in
the study or differences in the structural connectivity of the regions
themselves within each system (or a combination of the two). Conse-
quently, we introduce a newmetric to assess the contribution of subject-
specific and region-specific variability on the observed patterns.

Dissociation of subject-specific and
region-specific variability
In our final analysis, we compute a measure called robustness, which
we defined to quantify the level of similarity between a set of observed
patterns (see Materials and Methods) to assess how structural varia-
bility, either between subjects or between regions, influenced the
patterns observed in Fig. 5. To differentiate these two potential sources
Bansal et al., Sci. Adv. 2019;5 : eaau8535 3 April 2019
of variability, we separately compute a subject robustness and a region
robustness score (see Materials and Methods). When robustness is
calculated across individuals (subject robustness), it measures the sim-
ilarity of different patterns produced across individuals by stimulating
the same brain region. A cognitive system’s subject robustness is then
the average subject robustness across regionswithin the system.When
robustness is calculated across brain regions (region robustness), it
measures the similarity of different patterns produced by stimulation
of different brain regions within a given cognitive system in a single
subject. This value is then averaged over all subjects. Consequently, a
high value of robustness indicates a high similarity between synchro-
nization patterns produced by stimulation across individuals (subject
robustness) or brain regions (region robustness).
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Fig. 5. Patterns of synchronization and cognitive chimera states. (A to I) Prevalent patterns of synchrony that emerge as regions within different cognitive systems
are stimulated across all subjects. When brain regions were stimulated both within a given cognitive system and across all subjects, different patterns of synchroni-
zation emerged. Some of the patterns were found to be repeated for different regions and/or subjects, while some occurred occasionally. If the same pattern occurred
when each brain region within a cognitive system was stimulated and if this was true across all 30 subjects, then the pattern would have a frequency of 100%. Here, we
show patterns that occurred at least 3% of the time for stimulation of brain regions within a cognitive system across all subjects. Each panel represents stimulation of
regions within a particular cognitive system. Each row represents one pattern of synchronization, and each column represents the state of a cognitive system. Cognitive
systems that belong to the synchronized population are colored orange, and cognitive systems that remain desynchronized are colored white. Thus, a fully orange or
white row represents a coherent or metastable state, respectively. Chimera states show different patterns of coloring depending on the cognitive systems that are
recruited to the synchronized group. Different rows of patterns are stacked on the basis of their relative occurrences (mentioned on the right side). To summarize the
observed patterns, (J) The probability with which different cognitive systems can be synchronized when the regions within a given system are stimulated across
subjects (shown along the vertical axis).
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In Fig. 6, we plot each cognitive system based on its score for sub-
ject robustness and region robustness. In addition, we group cognitive
systems by applying a clustering algorithm (see Materials and
Methods), and the color and shape of a system’s icon reflects its group
assignment. We identify four distinct groups of systems that are char-
acteristically different from each other in terms of their location in the
robustness space and also in their cognitive roles. To better delineate
the four groups, we partition the robustness space based on the level of
subject andnode robustness.Wedefine two levels of subject robustness—
variable and stable—while the node robustness is partitioned into
three levels—diverse, flexible, and consistent.

Across the subject robustness dimension, we observe four individ-
ually variable systems that demonstrate the largest variability in
patterns. These systems include the frontoparietal and cingulo-opercular,
the cognitive control systems that have previously been shown to have
large individual variability (37), and ventral temporal association and
motor and somatosensory systems that show learning-dependent
changes (36, 38). The remaining five systems are classified as individually
stable with high subject robustness scores. The defaultmode, subcortical,
and attention systems have previously been found to be preserved across
individuals and across species (39), whereas the auditory and visual
systems support fundamental perceptual processing (40).

Across the region robustness dimension, we observe three levels
of robustness. Cognitively consistent groups include the attention and
subcortical systems, indicating that stimulation to regions within these
systems give rise to similar patterns of synchrony and desynchrony.
The auditory system emerges as the sole cognitively diverse system.
This reflects the starkly different patterns that arise after stimulation
of the regions within this system. For example, stimulation to the su-
perior temporal region results in high-synchrony states (both coherent
and chimera), while stimulation to the transverse temporal region
leads to a metastable state (see fig. S8). Thus, the different local
Bansal et al., Sci. Adv. 2019;5 : eaau8535 3 April 2019
connectivity patterns of regions within this system produce immense
diversity in the resulting synchrony patterns upon their stimulation.
The remaining six cognitive systems are classified as cognitively flex-
ible, indicating that stimulation of regions within these systems
produced variable patterns of synchrony.

Overall, the robustness scores both confirm and extend our
knowledge of brain structure-function relationships. The variability
in subject robustness among the systems reflects known differences in
system stability between individuals and confirms that variability in
chimera patterns captures these coarse differences among the systems.
On the other hand, the spread of region robustness scores captures the
diversity in the functional roles that the regions within a system serve
across diverse cognitive tasks. Cognitively consistent systems can largely
be involved in core sensory processing and associative learning, whereas
the variability of patterns within cognitively flexible systems may
enable them to serve diverse cognitive roles, relying on stimulation
of each constituent as a means to synchronize and integrate with dif-
ferent cognitive systems to support particular cognitive demand or
task-relevant processing.
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DISCUSSION
Using a novel, chimera-based framework, we explored the dynamical
states that emerge across large-scale cognitive systems following the
spread of a targeted regional stimulation. We identified three distinct
dynamical states—coherent, chimera, and metastable—that arise as a
function of the structural connectivity of the stimulated regions. A
core result across all analyses is the variety in frequency and distribution
of the observed dynamical states. Chimera states are the most pervasive
state to emerge following regional stimulation. This likely reflects the
foundational role that partial synchrony serves in large-scale brain
function to enable the intricate balance between segregated and
integrated neural processing. Furthermore, the diversity in these
patterns captured both subject- and region-specific variability in struc-
tural connectivity.On the basis of its sensitivity to these different sources
of variability, our novel chimera-based framework shows immense
promise to better understand individual differences, relate patterns to
performance, and understand system constraints that underlie how to
drive the brain to different task-relevant states.

Prevalence of chimera states across cognitive systems
enables segregation and integration in brain dynamics
The brain is a complex dynamical system that must integrate in-
formation across spatially distributed, segregated regions that serve
specialized functional roles (41). Neuroscience research therefore at-
tempts to understand how the brain creates selective synchrony across
subsets of task-relevant regions to enable rapid and adaptive cognitive
processing. Recently, network neuroscience approaches have identified
sets of brain regions that form cognitive systems during rest and task
states (42). By studying the interactions of these cognitive systems,
functional analyses have identified the importance of (i) integrated
states where the connections are stronger between cognitive systems
(5) and (ii) segregated states where connections are weaker between
cognitive systems and are likely to be stronger within. The relative lev-
el of functional integration versus segregation of cognitive systems has
important consequences for cognitive performance. Highly segregated
systems enable efficient computations in local, functionally specialized
brain regions, while strongly integrated systems provide rapid
consolidation of information across systems necessary for coordinated,
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Fig. 6. Classification of cognitive systems based on pattern robustness. To
estimate the consistency of emergent patterns of synchronization within cogni-
tive systems, we constructed a measure called robustness that estimates the sim-
ilarity between a set of patterns. Within a cognitive system, we calculate robustness
across two dimensions: patterns that are produced after stimulating each region
across subjects (subject robustness) and patterns that are produced after stimulating
different regions of the system within each subject (region robustness). In the
parameter space constructed along these dimensions, we can cluster cognitive
systems into four groups that suggest a 2 by 3 partitioning of the robustness space.
This partitioning allows us to dissociate subject-specific and region-specific variability
in observed patterns.
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cohesive performance of complex tasks (5). These crucial brain states
are captured in the present framework as metastable (segregated) and
coherent (integrated) states and, perhaps the most critical for brain
function, as the chimera state that describes partial synchrony across
subsets of cognitive systems.

All nine systems give rise to a chimera state following stimulation,
suggesting that all cognitive systems can drive the brain to partial syn-
chrony in support of their functional roles in cognition. Our results
augment a burgeoning literature on how brain dynamics support ra-
pid shifts betweenmore segregated or integrated brain states. Previous
work has found that functionally segregated states tend to involve
shorter, local connections (43), while integration largely relies on
the global influence of subcortical regions and cortical hubs that have
many diverse connections to other brain regions (44). Collectively, our
results demonstrate that our novel chimera framework can investigate
critical cognitive states where a balance between integration and seg-
regation is required for adaptive cognition.

Chimera framework reveals subject-specific and
region-specific variability in brain connectivity through the
analyses of emergent dynamical states
We found that a coherent state is likely to be produced by the stimu-
lation of regions in the medial default mode and subcortical systems.
This reflects the propensity of these systems to contain regional hubs,
and the prevalent emergence of a coherent state reflects their function-
al roles to bridge spatially disperse regions and facilitate global brain
communication. These systems also have high subject robustness, in-
dicating robust occurrence of patterns across the 30 individuals. This
could reflect that the subcortical and medial default mode systems
provide a fundamental, constant pillar of brain organization, which
when disrupted, could lead to impairments in global brain function.
Previous research has shown that network hubs are often found
to be affected in neurological disorders such as schizophrenia and
Alzheimer’s disease (45). These disorders are associated with network-
wide deficits in brain function (21), which is consistent with our finding
that cognitive systems that produce coherent states also contain
network hubs.

Conversely, metastable states are preferentially produced by four
systems with more sparse structural connectivity: two systems asso-
ciated with cognitive control (cingulo-opercular and frontoparietal
systems) and two systems associated with intricate sensory, object,
and language representations (auditory and ventral temporal associa-
tion systems). These systems all have functional roles that frequently
require working in seclusion from other specialized processing in the
brain. The three systems that are the most unlikely be synchronized
upon stimulation are also the ones that are most likely to produce a
metastable state: the auditory, cingulo-opercular, and frontoparietal
systems. The cingulo-opercular and frontoparietal systems are asso-
ciated with cognitive control, and they are proposed as complementary
systems that are specialized for guiding successful task performance at
different timescales: the cingulo-opercular system for maintaining task-
related goals across trials and the frontoparietal systems for trial-by-trial
control (46). These functional roles may often need to occur concur-
rently, and their production of metastable states could indicate that
these systems can work in seclusion without coactivating a large part
of the brain, an attribute that facilitates parallel processing.

While our chimera framework revealed stable features of brain
architecture, it also captured cognitive systems where between-subject
variability leads to variety in frequency and type of synchronization
Bansal et al., Sci. Adv. 2019;5 : eaau8535 3 April 2019
patterns: cingulo-opercular, frontoparietal, ventral temporal associ-
ation, and motor systems. These four systems with low subject ro-
bustness are associated with higher cognitive functions where an
individual’s experience and knowledge are likely captured by vari-
ability in their structural connectivity (47). Our results demonstrated
that the frontoparietal and cingulo-opercular systems exhibit a very
strong individual variability, and this mirrors recent results that
showed that cognitive control systems have weaker within-subject var-
iability and greater between-subject variability relative to sensory pro-
cessing systems (37). Our results also demonstrated that the ventral
temporal association and motor and somatosensory systems show an
especially high number of prevalent patterns with no single dominant
pattern, and this may reflect their roles in learning and development-
related changes (38).

Beyond the present framework and future directions
Our model is only sensitive to functional relationships that are in-
duced through structural connections, so the observed dynamical
states and patterns are only constrained by the anatomical structure
of the network. Here, the emergence of a coherent pattern would im-
ply that a region can, in principle, communicatewith all of the spatially
distributed regionswithin the brain; however, the actual regions that it
communicates withmay vary between different tasks according to the
specific cognitive demands of the task. Nevertheless, we have recently
shown that, by quantifying differences in the structurally constrained
patterns of in silico brain activity resulting from regional stimulation,
one can explain individual variability in performance of tasks that dif-
fer in cognitive complexity (26).

In reality, neuronal activity patterns that are observed in the brain
using different functionalmeasurement techniques, such as functional
magnetic resonance imaging (MRI), electroencephalography, magne-
toencephalography, and positron emission tomography, are a result of a
complex neurophysiological activity that develops on top of the struc-
tural connectivity infrastructure. Thus, the actual patterns of brain ac-
tivity that are observed across functional modalities may come from the
simultaneous activation of different brain regions via multiple input
sources and therefore might differ from the patterns observed in our
in silico experiments. However, our computational approach can still
aid in the conception of cognitive hypotheses and experimental design.
The framework allows us to evaluate the patterns of activity resulting
from the activation of a specific cognitive system to understand the va-
riety of cognitive roles it could play, and thus, its use extends beyond
making overall comparisons between the characteristic patterns of syn-
chrony across cognitive systems. For example, the dominance of high-
synchrony patterns upon stimulation of brain regions within the default
mode system (Fig. 5E) could indicate its important role in resting-state
dynamics and ability to switch communication between brain regions
when the brain changes state from rest to task performance. In contrast,
the emergence of low-synchrony states (Fig. 5E) could indicate the in-
volvement of the defaultmode system in specific cognitive control roles.
Recent findings have suggested task-related changes in the topography
of the default mode system (48, 49).

Last, the emergence of a metastable state may not reflect the absence
of synchrony in the entire population. A stable synchronization could
potentially exist within a population substantially smaller than our spa-
tial resolution, and future research can investigate effect of scale using
models at a finer spatial resolution. Despite these limitations, our ap-
proach is sensitive to variability in region-specific and subject-specific
brain connectivity, and it can be used to answer fundamental questions
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concerning the cognitive organization of the human brain. Future re-
search can extend our in silico experiments to examine chimera states
using experimental data, providing opportunities to enhance perform-
ance in healthy participants or individualize medicine in clinical popu-
lations. More generally, this approach provides an opportunity to
establish a connection between the structure of an individual’s brain
network and cognitive performance (26).

CONCLUSION
Using the cognitive system framework (28), our novel chimera-based
approach reveals specific features (spatial structure and prevalence) of
interaction patterns among large-scale cognitive systems in the human
brain. These features provide insight into how structural constraints
within cognitive systems are linked to patterns of brain activity that re-
flect the systems’ ability to perform a variety of cognitive tasks. The spa-
tial patterns of partial synchrony within chimera states observed in this
study have a natural link to the well-documented role of functional seg-
regation and integration of cognitive systems thought to support cog-
nition (6), and the approach is capable of extracting robust system
differences for those that are largely stable across people and those that
capture individual training and expertise. Thus, our approach provides
a rich opportunity to study how dynamical states give rise to variability
in cognitive performance, providing the first conceptual framework to
understand how chimera states may subserve human behavior.
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MATERIALS AND METHODS
Experimental design
Diffusion MRI analysis was performed on the 30 individual partici-
pant scans previously reported elsewhere (50). Twentymale and 10 female
participants were recruited from Pittsburgh and the Army Research
Laboratory inAberdeen,Maryland. All participants were neurologically
healthy, with no history of either head trauma or neurological or psy-
chiatric illness. Participant ages ranged from21 to 45 years at the time of
scanning (mean age of 31 years), and four were left-handed (two males
and two females). All participants signed an informed consent approved
by CarnegieMellon University and conforming with the Declaration of
Helsinki and were financially remunerated for their participation.

Macroscopic white matter pathways were imaged using a DSI
acquisition sequence on a Siemens Verio 3T MRI system located at
the Scientific Imaging and Brain Research Center at Carnegie Mellon
University using a 32-channel head coil. A total of 257 directions was
sampled using a twice-refocused spin-echo sequence (51 slices; repeti-
tion time (TR), 9.916 s; echo time (TE), 157 ms; 2.4 mm by 2.4 mm by
2.4 mm voxels; 231 mm by 231 mm field of view (FoV); maximum
b-value 5000 s/mm2). Diffusion datawere reconstructed using q-space
diffeomorphic reconstruction (51) with a diffusion sampling length
ratio of 1.25 and an output resolution of 2 mm.

Construction of individual structural brain networks
Whole-brain structural connectivity matrices were constructed for
each individual (subject) using a bootstrapping approach. To minimize
the impact of bias in the tractography parameter scheme on streamline
generation, whole-brain fiber tractography (52) was performed 100 times
for each participant, generating 250,000 streamlines per iteration. Across
the 100 iterations, values were randomly sampled for quantitative an-
isotropy based fiber termination thresholds (0.01 to 0.10), turning angle
thresholds (40 to 80), and smoothing (50 to 80%), while constant values
were used for step size (1 mm) and minimum/maximum fiber length
Bansal et al., Sci. Adv. 2019;5 : eaau8535 3 April 2019
thresholds (10 mm/400 mm). On each iteration, a binary connectivity
matrix was generated, where an edge between two regions of interest
was considered present if 5% or more of streamlines generated were
found to connect them. The probability of observing a connection
was estimated by calculating the frequency of detecting an edge across
all 100 iterations. The regions of interest were determined using cortical
components of the Desikan-Killiany atlas and subcortical components
of the Harvard-Oxford subcortical atlas. In the resulting weighted
matrices, connection strengths were normalized by the sum of the re-
gional brain volumes, and these normalized matrices were used as
the structural representations of individual brains. All analyses were
performed using DSI Studio (http://dsi-studio.labsolver.org/) and
MATLAB (MathWorks Inc., Natick, MA, USA).

Data-driven network model of brain dynamics
In our data-driven network model, regional brain dynamics were given
by WCOs (26, 27, 29). In this biologically motivated neural mass
model, the fraction of excitatory and inhibitory neurons active at time
t in the ith brain region are denoted by Ei(t) and Ii(t), respectively, and
their temporal dynamics are given by

t
dEi
dt

¼ �EiðtÞ þ ðSEm � EiðtÞÞ �

SE c1EiðtÞ � c2IiðtÞ þ c5∑
j
AijEjðt � tijdÞ þ PiðtÞ

� �
þ swiðtÞ ð1Þ

t
dIi
dt

¼ �IiðtÞ þ ðSIm � IiðtÞÞ �

SI c3EiðtÞ � c4IiðtÞ þ c6∑
j
AijIjðt � tijdÞ

� �
þ sviðtÞ ð2Þ

where

SE;IðxÞ ¼ 1

1þ e�aE;Iðx�qE;IÞ �
1

1þ eaE;IqE;I
ð3Þ

Aij is an element of the subject-specific coupling matrix A whose
value is the connection strength between brain regions i and j as
determined from DSI, as described above. The global strength of cou-
pling between brain regions was tuned by excitatory and inhibitory
coupling parameters c5 and c6, respectively. In this case, c6 = c5/4.
Pi(t) represents the external stimulation to excitatory-state activity
and was used to perform computational stimulation experiments.
The parameter tijd represents the communication delay between re-
gions i and j. If the spatial distance between regions i and j is dij, then
tijd = dij/td, where td = 10 m/s is the signal transmission velocity. We
added noise as an input to the system through the parameters wi(t)
and vi(t), which were derived from a normal distribution with s =
0.00005. Other constants in the model were biologically derived: c1 =
16, c2 = 12, c3 = 15, c4 = 3, aE = 1.3, aI = 2, qE = 4, qI = 3.7, and t = 8,
as described in (26, 27, 29). To numerically simulate the dynamics of
the system, we used a stochastic Euler-Maruyama method with step
size of 0.01 ms with initial conditions [Ei(0), Ii(0) = 0.1, 0.1].

Targeted stimulation
The model was optimized for each individual to allow a regime of
maximum dynamical sensitivity. This was performed by choosing a
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global coupling parameter, c5, such that the system was just below the
critical transition point to the excited state (see fig. S1). Regional stim-
ulationwas achieved by applying a constant external input Pi = 1.15 to
a single region and perturbing its dynamics (fig. S1). As the dynamics
evolve, the stimulation spreads within the brain through the network
connectivity of the stimulated node.

Cognitive systems
We assigned each brain region to one of nine cognitive systems: atten-
tion, auditory, cingulo-opercular, frontoparietal, medial default mode,
motor and somatosensory, subcortical, ventral temporal association,
and visual. This node assignment is described in table S1 and is similar
to the one used by Muldoon et al. (27). The distribution of brain re-
gions within cognitive systems is shown in fig. S2.

Calculation of synchronization within cognitively
informed framework
Weused the standardorderparameterr to estimate the extent of synchro-
nization after a targeted regional stimulation within the brain networks.
Thismeasurewas proposed byKuramoto for the estimationof coherence
in a population of Kuramoto phase oscillators (33). In this case, the in-
stantaneous order parameter at a given time t was defined as

rNðtÞeiFðtÞ ¼
1
N
∑
N

j¼1
eifjðtÞ ð4Þ

where fj is the phase of the jth oscillator at time t and is given by

fjðtÞ ¼ tan�1 IjðtÞ
EjðtÞ ð5Þ

Here, N = 76 is the number of oscillators in the system. To estimate
the global synchronization in the system, one needs to average the instan-
taneous order parameter for a sufficiently long period of time (T).

rN ¼< rNðtÞ>T ð6Þ

We used 1 s of simulated activity to estimate the average order
parameter.Within our cognitively informed framework, wemeasured
the synchronization between all pairs of cognitive systems following
a regional stimulation. This was performed by calculating an order
parameter for the combined oscillator population of a pair of cogni-
tive systems. For cognitive systems si and sj, this order parameter is
given by

rsi;sj ¼< rsi;sjðtÞ>T ð7Þ

where

rsi;sjðtÞeiQðtÞ ¼
1

Nsi þ Nsj
∑

k∈ðsi∪sjÞ
eifkðtÞ ð8Þ

Here,Nsi andNsj represent the number of oscillators (brain regions
or nodes) within cognitive systems si and sj, respectively. This anal-
ysis resulted in synchronization matrices, as shown in Fig. 2A, whose
entries represent the extent of synchronization between cognitive
Bansal et al., Sci. Adv. 2019;5 : eaau8535 3 April 2019
systems. These matrices were used to identify the dynamical cogni-
tive state that emerged as a result of regional stimulation.

Chimera index and metastability index
We calculated the chimera index, C, and metastability index, l, as
described in (24, 34). C is a measure of the normalized average vari-
ation in the order parameter within cognitive systems averaged over
time. For si ∈ [s1, s2, …, sM] (M = 9 is the total number of systems)

C ¼ < schðtÞ>T

CMax
ð9Þ

where

schðtÞ ¼ 1
M � 1

∑
M

i¼1
ðrsiðtÞ � < rsðtÞ>MÞ2 ð10Þ

In this case, CMax = 5/36 is a normalization factor and represents
the maximum value of variability in the order parameter in an ideal
chimera state where the network organizes such that the half of its
population is completely synchronized and half is completely desyn-
chronized (34). The instantaneous quantity <rs(t)>M measures the
synchronization of cognitive systems, averaged over all systems at a
given time t.

Similarly, l measures the normalized temporal variation of the
order parameter averaged across all cognitive systems

l ¼ < smetðsÞ>M

lMax
ð11Þ

where

smetðsÞ ¼ 1
T � 1

∑t≤TðrsiðtÞ � < rsi>TÞ2 ð12Þ

Here, lMax = 1/12 is a normalization factor (34), representing
the scenario where the system spends equal time in all stages of
synchronization.

Extraction of the patterns of synchronization
To identify emergent cognitive patterns, we first obtained a binarized
synchronization matrix (m) such thatmij = 1 if systems i and j are iden-
tified as synchronized and mij = 0 otherwise. We defined two cognitive
systems si and sj to be synchronized if rsi,sj ≥ rTh, where rTh represents
a synchronization threshold. For the results discussed throughout the
main text, we used rTh = 0.8 (33) (as indicated in Fig. 2A).

In principle, one can directly use these binarized synchronization
matrices to classify the emergent states and patterns. However, we per-
formed community detection on these binarizedmatrices. This method
clusters the group of synchronized systems into a single community,
whereas desynchronized systems remain as separate communities. In
case of a coherent state, we observed only one community, and in case
of a metastable state, we observed nine separate communities, each re-
presenting a cognitive system. For chimera states, communities with
different distributions of cognitive systems emerged. Thus, applying
the community detection algorithm not only allowed us to robustly
11 of 14
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classify the emergent dynamical states but also let us separate various
spatially distributed patterns of chimera states. Community detection
was performed using modularity maximization through the
generalized Louvain algorithm (53). For community detection, the
value of the resolution parameter was varied between 0.8 and 0.95,
and a consensus was run to determine the community structure (54).

Network connectivity features
Weighted degree and ranking
The weighted degree (Wi) of a brain region or node i is defined as
∑j Aij, and the distribution of weighted degrees typically varies across
subjects. Therefore, to be able to compare weighted degrees across
subjects, we ranked each node within a subject such that the higher
value of the node rank signifies the higher value of its weighted de-
gree. Similar rankings were obtained for each node for the amount of
global synchrony and chimera index it produced upon stimulation.
Rich club analysis
A set of core nodes was defined such that the brain network can be
partitioned into two separate groupswith one group consisting of highly
connected hubs (core) and the other group composed of peripheral
nodeswith low intragroup connectivity.We used the BrainConnectivity
Toolbox (55) to obtain a set of core nodes for each subject (brain
network). To define a set of core regions, we used a range of thresholds
(0.5 to 1.5; a lower value of this threshold allows a higher number of
nodes to be classified as the core). We then identified the regions that
were assigned to the core across the entire range of thresholds, and
these nodes where chosen to form the core of given subject. Then,
we obtained the average shortest path length to the core for each brain
region i, within each subject using the following steps: (i) calculating
the average of the shortest path lengths between node i and the group
of core nodes (Dsub

i ¼< Dsub
ij >j; j ∈ Core) and (ii) normalizingDsub

i by
maximum of Dsub

i in a subject. The shortest path length between two
nodes was calculated with the Brain Connectivity Toolbox (55), and it
represents the smallest path through network edges that connects
those nodes.

Randomizing brain network partitioning
To assess the importance of a cognitively informed framework, we
obtained the patterns of synchronization when the brain was ran-
domly partitioned into nine different groups (systems). To obtain a
random partition of the brain, we fixed the number of regions in each
group to match their sizes with the original cognitively informed
partitioning (systems 1 to 9 were 4, 4, 12, 10, 8, 6, 14, 10, and 8 regions
per system, respectively) and then randomly assigned brain regions
to each of these groups. We then used the previously simulated brain
activity for each subject to calculate the system-level Kuramoto pa-
rameter, system-level synchronization matrices, and the patterns of
synchrony (as described above) based on the new random parti-
tioning of the brain. In the first randomization experiment, a single
random partition was created and applied across all 30 subjects to
extract the prevalent patterns (those that occur with a frequency of
≥3%) for each group. In the second randomization experiment, 10 dif-
ferent random partitions were created, and each partition was applied
across all 30 subjects to extract the prevalent patterns from this larger
ensemble.

Pattern robustness
A pattern in our analysis describes whether the given cognitive system
falls into the synchronized population or remains desynchronized
Bansal et al., Sci. Adv. 2019;5 : eaau8535 3 April 2019
(Fig. 5). To calculate similarity between patterns, we defined the ro-
bustness of a set of observed patterns as follows

R ¼ 1
pðp� 1Þ∑

p
i;j¼1

1
M
∑M

s¼1d
s
i;j

� �
ð13Þ

where p is the number of patterns in the set. dsi;j ¼ 1 if the cognitive
system, s, falls into the same state of either synchrony or desynchrony
in patterns i and j, and dsi;j ¼ 0 otherwise.

We calculated the robustness of cognitive systems in two dimensions:
across individuals for a given brain region within the system (subject
robustness) and across regions of the system in a given subject (region
robustness). For subject robustness of a given cognitive system, p con-
stitutes the patterns that are produced by a given node for all the
subjects and equals the number of subjects, i.e., 30. For region robust-
ness of a given cognitive system, p constitutes the patterns that all the
nodes for a given cognitive system produce for a given subject, and the
value of p varies between systems. Thus, for each cognitive system, we
obtained two distributions of robustness, one for each subject and
region.

Clustering of cognitive systems using robustness features
In the subject-region robustness parameter space, we grouped cogni-
tive systems into clusters using the k-means algorithm and silhouette
analysis. We used k = 3, 4, 5, and 6 and identified the stable clustering
that maximizes similarity within clusters and dissimilarity across clus-
ters. One can obtain different clusterings of data based on the k value
(number of clusters), and the silhouette value assesses the quality of
the clustering. A value close to 1 signifies optimal clustering, meaning
that the data points are more distant (defined by the Euclidean dis-
tance) from other clusters as compared to their own cluster, while a
negative value signifies the opposite. Thus, if ai denotes the average
distance of a data point i from the data points in its own cluster and
bi denotes the average distance from the data points in other clusters,
then the silhouette value is given by Si = (bi − ai)/max(ai, bi). For k = 4,
we observed an optimized clustering. The corresponding silhouette plot
is shown in fig. S9.

Rendering of brain images
BrainNet Viewer was used to perform spatial mapping onto brain
images (56).

Statistical analysis
All correlations in the manuscript were computed using the stan-
dard Pearson’s correlation and deemed significant if P < 0.05.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/5/4/eaau8535/DC1
Fig. S1. Optimizing personalized BNMs and applying targeted regional stimulation.
Fig. S2. Distribution of brain volume within cognitive systems.
Fig. S3. Metastable state and metastability index.
Fig. S4. Relation between connectivity, position, and emergent cognitive state.
Fig. S5. Effect of changing synchronization threshold on the distribution of states.
Fig. S6. Likelihood of the emergence of dynamical states across cognitive systems.
Fig. S7. Patterns of synchrony for randomly partitioned brain networks.
Fig. S8. Normalized contribution of brain regions to the prevalent patterns of synchronization.
Fig. S9. Clustering of cognitive systems using pattern robustness.
Table S1. Assignment of brain regions to cognitive systems.
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