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Abstract—Large bundles of myelinated axons, called white
matter, anatomically connect disparate brain regions together
and compose the structural core of the human connectome. We
recently proposed a method of measuring the local integrity
along the length of each white matter fascicle, termed the local
connectome [1]. If communication efficiency is fundamentally
constrained by the integrity along the entire length of a white
matter bundle [2], then variability in the functional dynamics
of brain networks should be associated with variability in the
local connectome. We test this prediction using two statistical ap-
proaches that are capable of handling the high dimensionality of
data. First, by performing statistical inference on distance-based
correlations, we show that similarity in the local connectome
between individuals is significantly correlated with similarity in
their patterns of functional connectivity. Second, by employing
variable selection using sparse canonical correlation analysis and
cross-validation, we show that segments of the local connectome
are predictive of certain patterns of functional brain dynamics.
These results are consistent with the hypothesis that structural
variability along axon bundles constrains communication be-
tween disparate brain regions.

Index Terms—local connectome, structure-function relation-
ship, high-dimensional statistics, canonical correlation analysis

I. INTRODUCTION

The function of macroscopic neural networks is constrained

by the integrity of structural connections between disparate

regions. This form of long-distance (i.e., centimeters) commu-

nication relies on dense bundles of axons that are known as

white matter [3]. To prevent degradation of action potentials

across long distances, these fiber bundles are supported by

the myelin sheath, non-neuronal glial cells that insulate axons

and facilitate communication along the fascicle. As a result,
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the integrity of the myelin sheath is critical for synchroniz-

ing information transmission between distal brain areas [2],

fostering the ability of these networks to adapt over time

[4]. Thus, variability in the myelin sheath, as well as other

cellular support mechanisms, would contribute to variability

in functional coherence across the circuit.

To study the integrity of structural connectivity, we recently

introduced the concept of the local connectome. This is

defined as the pattern of fiber systems (i.e., number of fibers,

orientation, and size) within a voxel, as well as immediate

connectivity between adjacent voxels, that can be quantified

using diffusion MRI (dMRI) by measuring the fiber-wise

density of microscopic water diffusion within a voxel [1]. The

collection of these multi-fiber diffusion density measurements

within all white matter voxels is termed the local connectome

fingerprint (LCF). The LCF is a high-dimensional feature

vector that describes the unique configuration of the structural

connectome along the segments of white matter pathways [5].

Thus, the LCF provides a diffusion-informed measure along

the fascicles that supports inter-regional communication, rather

than determining the start and end positions of a particular

fiber bundle.

Since the LCF measures the local integrity along white

matter bundles that connect regions across the entire brain,

it reflects the overall communication capacity of the brain [2].

Hence, we expect to see that variations in the LCF should also

correlate with those in the dynamics of brain networks, mea-

sured by connectivity patterns in the resting-state functional

MRI (fMRI). To formally validate this intuition, we employ

statistical approaches to examine the following hypotheses:

Hypothesis 1 Similarity in the LCF, between individuals,

is associated with similarity in their functional connectivity

patterns measured with resting-state fMRI.

Hypothesis 2 Variability in specific segments of the LCF is

associated with patterns of functional connectivity in specific

circuits.
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TABLE I: Summary of Abbreviations and Notation

Notation Definition

LCF Local connectome fingerprint
FCG Functional correlation graph
HCP The Human Connectome Project (dataset)
n Number of subjects (793)
p Dimension of LCF vectors (433,386)
q Dimension of FCG vectors (195,625)
xi p-dimensional LCF vector of subject i
yi q-dimensional FCG vector of subject i
dX The scaled Euclidean distance between LCFs (1)
dY The Pearson correlation distance between FCGs (2)

DX Scaled Euclidean distance matrix between n LCFs

DY Pearson correlation distance matrix between n FCGs
X n× p matrix containing the n LCFs as rows
Y n× q matrix containing the n FCGs as rows

‖·‖1, ‖·‖2 The �1- and �2-norm of a real-valued vector
Sn The permutation group on {1, . . . , n}

II. MATERIALS AND METHODS

We summarize our abbreviations and notation in Table I.

A. Data Acquisition

1) Participants: We used publicly available dMRI and

fMRI data from the S900 (2015) release of the Human

Connectome Project (HCP) [6], acquired by Washington Uni-

versity in St. Louis and the University of Minnesota. Out

of the 900 participants released, 841 genetically unrelated

participants (370 male, ages 22-37, mean age 28.76) had

viable dMRI datasets. Among them, n = 793 participants

had at least one viable resting-state fMRI measurement. Our

analysis was restricted to this subsample. All data collection

procedures were approved by the institutional review boards

at Washington University in St. Louis and the University

of Minnesota. The post hoc data analysis was approved as

exempt by the institutional review board at Carnegie Mellon

University, in accordance with 45 CFR 46.101(b)(4) (IRB

Protocol Number: HS14-139).

2) Diffusion MRI Acquisition: The dMRI data were ac-

quired on a Siemens 3T Skyra scanner using a 2D spin-echo

single-shot multiband EPI sequence with a multi-band factor

of 3 and monopolar gradient pulse. The spatial resolution was

1.25 mm isotropic (TR = 5500 ms, TE = 89.50 ms). The b-

values were 1000, 2000, and 3000 s/mm2 . The total number

of diffusion sampling directions was 90 for each of the three

shells in addition to 6 b0 images. The total scanning time was

approximately 55 minutes.

3) LCF Reconstruction: An outline of the pipeline for

generating LCFs is shown in Fig. 1. The dMRI data for

each subject was reconstructed in a common stereotaxic space

using q-space diffeomorphic reconstruction (QSDR) [7], a

nonlinear registration approach that directly reconstructs water

diffusion density patterns into a common stereotaxic space

at 1 mm resolution. The LCF reconstruction was conducted

using DSI Studio (http://dsi-studio.labsolver.org), an open-

source diffusion MRI analysis tool for connectome analysis.

To compute the LCF, the axonal direction in each voxel was

derived from the HCP dataset, and all of the data and source

Fig. 1: Pipeline for generating LCFs. See [5] for details.

code for this analysis are publicly available on the same

website.

A spin distribution function (SDF) sampling framework

was used to provide a consistent set of directions to sample

the magnitude of SDFs along axonal directions in the cerebral

white matter. Since each voxel may have more than one axonal

direction, multiple measurements were extracted from the

SDF for voxels that contained crossing fibers, while a single

measurement was extracted for voxels with fibers in a single

direction. The appropriate number of density measurements

from each voxel was sampled by the left-posterior-superior

voxel order and compiled into a sequence of scalar values.

Gray matter was excluded using the ICBM-152 white matter

mask (MacConnell Brain Imaging Centre, McGill University,

Canada). The cerebellum was also excluded due to different

slice coverage in cerebellum across participants. Since

the density measurement has arbitrary units, the LCF was

scaled to make the variance equal to 1 [5]. For each subject

i = 1, . . . , n, we denote this high-dimensional LCF of the ith
subject, across p = 433, 386 sampled directions, as xi ∈ R

p.

The collection of all n LCFs are compactly represented as a

data matrix X = [x1, . . . ,xn]
T ∈ R

n×p with each LCF as a

row vector.

4) Functional MRI Acquisition & Processing: We analyzed

the minimally processed resting-state fMRI data acquired as

part of the Human Connectome Project (HCP) [8], [6] which

used a multi-band gradient echo-planar imaging protocol (see

[9] for details on aquisition parameters). The dataset con-

tains volumetric NIFTI data for resting-state fMRI scans (14

minutes each), motion parameters, and physiological data.

Only data for the first resting-state scan collected at the A-

P phase encoding direction were used for analyses. Using

these measurements, we computed the average BOLD (blood-

oxygen-level dependent) signals at each of the 626 regions

of interest (ROIs) [10] and regressed out the linear effects

of the noise terms via ordinary least-squares (OLS). The 16

noise terms include the global signal, 12 motion parameters (6

estimates from a rigid-body transformation to the SBRef image

acquired at the start of each scan; 6 temporal derivatives of

these estimates), and the top-3 principal component projections

of the voxel-level white matter signals (measured at each of

2,258 voxels and 840 seconds). The resulting residual terms

were then filtered by a first-order Butterworth bandpass filter
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[11] between frequencies 0.08Hz and 0.15Hz.

5) Functional Correlation Graph Construction: For each

subject, given a pre-processed time series (840s; 1Hz) at each

ROI, we computed the functional correlation graph (FCG),

alternatively called the functional connectome fingerprint in

[12], by computing the Pearson correlation between time series

at every pair of ROIs. For each subject i = 1, . . . , n, we use

yi ∈ R
q to denote the vector of these q =

(
626
2

)
= 195, 625

Pearson correlations, which we collectively refer to as the ith
FCG. The collection of all n FCGs are compactly represented

as a data matrix Y = [y1, . . . ,yn]
T ∈ R

n×q with each FCG

as a row vector.

B. Statistical Inference of Distance-based Correlations

Our first goal is to test whether there is a statistically signifi-

cant relationship between LCFs and FCGs. However, because

both the structural and functional feature vectors are high-

dimensional, fully multivariate statistical tests of dependence

are intractable and uninterpretable. This means that we need

to find a way to effectively reduce the dimensionality of each

feature vector.

For each pair of subjects, we first compute the pairwise

distance between their feature vectors. This gives us one

distance matrix between their structural features (LCFs) and

another between their functional features (FCGs). Then, we

measure the correlation between the resulting pair of structural

and functional distance matrices.

Our hypothesis states that if two subjects have similar LCFs,

then they are more likely to also have similar FCGs. This

hypothesis derives from previous research that found (a) sim-

ilar LCFs imply genetic similarity [5] and (b) identical FCGs

imply that the two graphs most likely come from the same

individual [12]. By formally defining a notion of similarity,

it is possible to derive distribution-free statistical inference

methods that can test whether the two high-dimensional fea-

ture vectors are correlated or not. This approach overcomes the

high dimensionality while being statistically and theoretically

rigorous.

1) Choice of Distance Metrics: In [5], Yeh et al. establish

that LCFs are highly specific to each individual. More pre-

cisely, they show that the Euclidean distance between any pair

of LCFs effectively captures the genetic (and temporal) differ-

ence between the two measurements, achieving 100% accuracy

across 17,398 leave-one-out identification tasks. Therefore, to

quantify individual variability in structural features, we use the

Euclidean distance, scaled by the number of features as in [5]:

dX (x,x′) =
1

p
‖x− x′‖2 =

1

p

√√√√ p∑
k=1

(xk − x′
k)

2 (1)

To estimate distance between functional features, we follow

the approach that Finn et al. [12] used on FCGs of the

Q2-released version of the HCP dataset. They successfully

predicted identity with 92.9-94.4% test set accuracy using the

Pearson correlation, and the accuracy increased to 98-99%

when comparing specific sub-networks (the medial frontal

network and the frontoparietal network). Since our goal is to

capture individual variability, not maximize prediction accu-

racy, we use the Pearson correlation distance on the entire

FCG:

dY(y,y′) = 1− ρ(y,y′)

= 1−
∑q

l=1(yl − y)(y′l − y′)√∑q
l=1(yl − y)2

√∑q
l=1(y

′
l − y′)2

(2)

where ρ denotes the Pearson correlation and y = 1
q

∑l
l=1 yl

denotes the mean of all entries in the vector y. We note that

dY is not a proper distance metric in the mathematical sense,

because it does not satisfy positive definiteness or triangle

inequality. It is nevertheless nonnegative, symmetric, and is

exactly zero when the two inputs are identical (it is also zero

when two inputs are scalar multiples of each other).

Given these choices of metrics, we can represent all such

distances on our data compactly in two n×n distance matrices,

DX ∈ R
n×n and DY ∈ R

n×n, such that DX
ij = dX (xi,xj)

and DY
ij = dY(yi,yj).

2) Setting Up a Valid Hypothesis Test: In general, it is

highly nontrivial to set up a proper statistical test comparing

distance matrices, because the entries of each distance matrix

are not independent from each other. Intuitively, for any pair

of subjects i and j, the distance between the ith and jth feature

vectors is correlated with the distance between the ith feature

vector and any other feature vector. Thus, standard statistical

approaches that rely on the i.i.d. assumption will not give valid

results if they are naı̈vely applied to distance matrices.

We instead use the distance matrices to construct null

and alternative hypotheses and derive proper statistical infer-

ence strategies. Given independent copies of random vectors

(x,y) ∼ PXY , where PXY is the joint distribution of x and

y, we test

H0 : R(x,y) = 0 and H1 : R(x,y) > 0 (3)

where

R(x,y) = ρ(dX (x,x′), dY(y,y′))

=
Cov (dX (x,x′), dY(y,y′))√

Var (dX (x,x′))
√
Var (dY(y,y′))

(4)

In short, R is the Pearson correlation between the two random

distances, each of which is a function of two independent

and identically distributed random variables. In our approach,

the null hypothesis states that the Euclidean distance between

the LCFs of two subjects is uncorrelated with the correlation

distance between their FCGs. The alternative hypothesis states

that the two distances are in fact positively correlated. Note

that it is natural to consider a one-sided hypothesis here

because we know that both distances are likely to increase

as two subjects become more genetically distant [5], [12].

While there are no known parametric statistical tests cor-

responding to (3), we can extend the permutation test of

Pearson correlation in standard linear regression to our case.

Given the structural and functional distance matrices DX ∈
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R
n×n and DY ∈ R

n×n, let DX = 1

(n2)

∑
i<j D

X
ij and

DY = 1

(n2)

∑
i<j D

Y
ij , where Σi<j denotes the double sum∑n

i=1

∑n
j=i+1. Then, the sample test statistic for (3) is given

by

R̂n(X,Y) =

∑
i<j

(
DX

ij −DX
)(

DY
ij −DY

)
√∑

i<j

(
DX

ij −DX
)2

√∑
i<j

(
DY

ij −DY
)2

(5)

Given (5), a permutation test can be devised by randomly

shuffling one of the feature vectors (say x, without loss of gen-

erality) among the n subjects. This corresponds to permuting

the rows of the data matrix X ∈ R
n×p. Mathematically, for

a random permutation σ ∈ Sn of n elements, the empirical

distribution of permuted correlations

R̂n,σ(X,Y) =

∑
i<j

(
DX

σ(i),σ(j) −DX
)(

DY
ij −DY

)
√∑

i<j

(
DX

ij −DX
)2

√∑
i<j

(
DY

ij −DY
)2

(6)

estimates the null distribution of R(x,y). If the sample

correlation (5) deviates from this null distribution significantly,

then we can reject the null hypothesis of the test in (3).

This test can be viewed as a variant of the Mantel test

[13], which jointly permutes both features among the n
subjects to test the same statistic. Yet, because our version

does not permute the feature dimension, it does not introduce

unintended bias coming from spatial correlations [14].

Note that a nonzero correlation will imply statistical depen-

dence, but not the other way around. When we take dY to

be the Euclidean distance instead of the correlation distance,

however, we obtain distance correlation (dCor) [15], where a

zero value implies statistical independence. We will consider

the statistical test (3) both when dY is the correlation distance

and when dY is the Euclidean distance. In the latter case, we

use the unbiased version of the statistic that leads to a t-test

[16].1

3) Constructing a Valid Confidence Interval with Subsam-
pling: The permutation test is nonparametric, but it does not

readily yield confidence intervals unless a stronger assumption

(and tedious computation) is made [17], [18]. Subsampling

[19] is an alternative approach to statistical inference that

makes less assumptions and gives a confidence interval as

its outcome. It estimates the true distribution of R(x,y) by

computing the empirical version of the statistic many times

on different random subsamples of the full data.

Subsampling notably differs from the more standard boot-

strapping because it samples without replacement and only

samples a fraction of the n data points. The first difference

is crucial in our scenario, because any duplicate sample from

1We implement the unbiased dCor t-test [16] by (substantially) modifying
the MATLAB implementation found in http://mathworks.com/matlabcentral/
fileexchange/39905-distance-correlation.

bootstrapping will zero out entries of DX and DY and thus

lead to a biased (higher) estimate of R(x,y).

C. High-Dimensional Canonical Correlation Analysis with
Cross-Validation

While statistical inference of the distance-based correlation

will provide some insights to the structure-function relation-

ship, this measure of correlation aggregated over so many

features may not be as intuitive or informative. In search of

more detailed and interpretable relationships between the two

sets of features, we attempt to find small subsets of the LCF

that are predictive of small subsets of the FCG on a held-out
set.

1) Canonical Correlation Analysis: For a pair of random

vectors, canonical correlation analysis (CCA) [20] finds a

pair of linear transformations (“alignments”) onto the same

Euclidean space such that the projections are the most cor-

related. Assuming centered data X = [x1, . . . ,xn]
T ∈ R

n×p

and Y = [y1, . . . ,yn]
T ∈ R

n×q , CCA solves the following

biconvex constrained optimization problem:

maximize
u∈Rp,v∈Rq

〈Xu,Yv〉 (7)

subject to ‖Xu‖22 ≤ 1

‖Yv‖22 ≤ 1

The objective is often written alternatively as uT Σ̂xyv, up to

a 1
n constant, where Σ̂xy = 1

nX
TY is the empirical cross-

covariance matrix. When the columns of X and Y are further

standardized, the solution to this biconvex problem is given

by the left and right singular vectors of the empirical cross-

covariance matrix Σ̂xy that correspond to its largest singular

value.

Intuitively, CCA captures the directions in X and Y that

explain the largest cross-correlation. If we assume that X and

Y indeed have some correlation structures, then CCA will find

the linear transformations that recover such structures.
2) Sparse CCA: In high dimensions, i.e. when the data

dimensions p and q are large compared to the sample size

n, the estimate Σ̂xy of the true cross-covariance is no longer

consistent unless more structural assumptions are made [21],

[22]. It is also considered a more difficult problem than sparse

PCA [23], [24], which itself is considered challenging due

to the poor behavior of the sample covariance matrix as

an estimate [25]. To obtain a reliable estimate of the high-

dimensional cross-correlation structure, we assume that there

are interesting low-dimensional correlation structures between

subsets of the structural and functional features. This allows

us to focus on a sparse subset of each set of features that are

the most correlated to one another.

A popular approach to finding sparse subsets of features is

to use �1-regularization. In our case, we add an �1-penalty to

the alignment vectors in (7):

‖u‖1 ≤ c1 and ‖v‖1 ≤ c2 (8)

where c1, c2 > 0 are sparsity parameters. The �1-penalty, most

commonly used in the Lasso [26], performs variable selection
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by forcing some of the entries to be precisely zero when the

sparsity parameters are sufficiently small. A penalized version

of CCA that combines (7) and (8) has been called sparse

CCA in the literature, and an alternating convex optimization

algorithm can be used to find a sparse solution [27], [28].

Yet, the �1-penalty alone is not sufficient for effective

variable selection in our setting. One reason is that both the

LCF and the FCG naturally contain interesting correlation

structures within their entries, while �1-regularization tends

to select only one entry from a correlated group [29]. Another

reason is that �1-penalized CCA from (7) and (8) is not strictly

biconvex in high dimensions, so that the optimization problem

can be unstable. Both of these issues can be alleviated by

further including an �2-penalty:

‖u‖2 ≤ d1 and ‖v‖2 ≤ d2 (9)

with constants d1, d2 > 0.2 The resulting optimization problem

can be viewed as the elastic net [29] applied to CCA. It is

now a strictly biconvex problem, and we can find a feasible

solution efficiently by alternately applying existing convex

optimization solvers. We note that, in general, there is no

known algorithm for this biconvex problem that guarantees

a globally optimal solution [27]. For our analysis, we use the

MATLAB implementation from [30] that is freely available

online.3

3) k-Fold Cross-Validation: For sparse CCA, we use k-fold

cross-validation to find the set of sparsity parameters that give

the highest canonical correlations between subsets of the LCFs

and the FCGs.

Specifically, using k = 5, we first split the n subjects

into training and test sets with the ratio of 5 to 1. Then, we

randomly partition the training set (size �5/6	n) into 5 equally

sized subsamples, fit sparse CCA with each candidate set of

sparsity parameters to 4 of the subsamples, and use the fitted

alignment vectors u and v to align the feature vectors from

the unused subsample (i.e. the validation set). The resulting

canonical correlation on the validation set can be viewed as

an estimate of canonical correlation on unseen data. By leaving

out each of the 5 subsamples in the previous step, we obtain

5 such estimates of the canonical correlation, and the average

of these 5 estimates can be used to validate the performance

of the candidate set of sparsity parameters. After these steps,

we choose the set of sparsity parameters that give the largest

average canonical correlation on the validation set.

The resulting alignment vectors can transform unseen fea-

ture vectors coming from the same distribution as our dataset,

so that the LCFs are the most correlated to the FCGs in the

transformed space. The final performance of these alignment

vectors is measured by the correlation between the alignments

of the test set, which was unused throughout the cross-

validation steps.

2For simplicity, we fix these constants to be 1 in our analysis.
3http://people.stern.nyu.edu/xchen3/Code/groupCCA.zip

Fig. 2: Pairwise distances between pairs of subjects’ LCFs

(left) and FCGs (right).

TABLE II: Summary of Statistical Inference Results (n = 793)

Method Correlation Result Type Result
Permutation (6) 0.120 p-value < 0.001***

dCor t-test [16] 0.252 p-value < 0.001***

Subsampling 0.120 95% conf. int. (0.098, 0.141)+

III. RESULTS

A. Exploratory Analysis

We first present exploratory analysis results for the inter-

subject distances in LCFs and FCGs. Fig. 2 shows that the

feature distances between different subjects appear substan-

tially distant from zero. This in part reproduces the results

from [5] and [12], in which it is shown that the distances

between different individuals are significantly greater than

those between the same subjects. This justifies our choice of

distances (1) and (2) for the permutation test as well as the

subsampling-based confidence interval.

B. Statistical Inference

In Table II, we summarize our results from the permutation

test, the dCor t-test, and the subsampling-based confidence

interval. Significance levels are marked with * (p < .05), **

(p < .01), and *** (p < .001). Significant confidence intervals

are marked with +. We used 100, 000 random permutations

for the hypothesis tests as well as 100, 000 subsamples for

the confidence interval construction. Subsampling ratio was

chosen as 0.135, following the procedure in [31].

Using a significance level of α = 0.05, we find from the

permutation test that there is indeed a statistically significant

correlation between the Euclidean distances in LCFs and the

correlation distances in FCGs. The dCor t-test of independence

confirms that the two sets of features are statistically depen-

dent, despite the fact that the test makes strong assumptions.

Further, because the 95% confidence interval does not include

zero, we conclude that the correlation between LCF distances

and FCG distances is statistically significant.

Each of these results indicate that the similarity in the local

connectome between individuals is significantly correlated to

the similarity in their functional connectivity patterns. Specif-

ically, our results show that if two individuals have similar
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Fig. 3: (Left) Scatterplot of all pairwise distances between

the LCFs (x-axis) and between the FCGs (y-axis). (Right)

Simulated null distribution using 10,000 random permutations

of subjects (6). Red vertical line indicates the correlation on

the actual dataset (5). The p-value is the proportion of random

correlations that fall on the right side of the red vertical line.

Fig. 4: Histogram of linear correlations for 10,000 bootstrap

samples (left) and 10,000 subsamples (right) of the HCP (n =
793) dataset. Red vertical line indicates the correlation on the

actual dataset (0.120).

local white matter architectures, they are also more likely to

have similar functional brain dynamics.

Note that the correlation value for permutation test and

subsampling are indeed identical, because they both compute

exactly (5). The value in dCor t-test [16] differs, however, not

only because the distance metric is changed to the Euclidean

distances but because the test uses an unbiased estimate of

the (Euclidean distance-based) statistic. While conceptually

similar, the two computed values are estimates of different

statistics and thus cannot be compared directly.

Fig. 3 visualizes the result from our permutation tests. On

the left, we plot the structural and functional pairwise distances

in a scatterplot to explore the overall trend. The scatterplot

suggests that there is a positive trend between the pairwise

distances in the structural and functional features. On the right,

the permutation test shows that the correlation on real data

is on the far-right tail of the correlation on simulated null

data, suggesting that there is a statistically significant positive

correlation between the structural and functional pairwise

distances.

Nonparametric estimates of the correlation give analogous

results (Spearman’s ρ: 0.112, Kendall’s τ : 0.075). This is not

Fig. 5: Cross-validated sparse CCA projections on the HCP

dataset. (Left) 5-fold cross-validation plot on a validation set.

(Right) 2D Projections of the training and test set using the

best parameter found. Canonical correlations: 0.689 (train),

0.515 (test).

surprising, given that the 2D scatterplot in Fig. 3 does not

display an obvious nonlinear trend.

Fig. 4 justifies our use of subsampling instead of bootstrap-

ping for our confidence intervals. As we described earlier,

because each bootstrap sample contains multiple copies of the

same subject, the resulting structural and functional distance

matrices always contain many zeros, leading to a spuriously

high correlation compared to the truth. The plots show that

the bootstrap distribution fails to capture the actual correlation

and is significantly biased upwards, while subsampling does

not have this issue because it samples from the data without

replacement.

C. Sparse CCA

For sparse CCA, we select a pair of sparsity (�1) parameters

from a 2D grid, one for LCFs and another for FCGs, that yields

the maximum canonical correlation on the validation set. Our

cross-validation plot in the left panel of Fig. 5 shows that

there is a contiguous region of sparsity levels in both structural

and functional features where the canonical correlation on the

validation set is maximized. Using the optimal regularization

parameters, we find that sparse CCA selects 50,607 (11.7%)

LCF features and 2,890 (1.48%) FCG features to give a

canonical correlation of 0.689 (train) and 0.515 (test).4

The cross-validated sparse CCA projections of the training

data as well as the test data are plotted in Fig. 5. Since the

objective of CCA is to maximize the correlation between these

projected points, we expect to see a linearly increasing pattern

in the projected space. The right panel of Fig. 5 demonstrates

this expectation: the projections of the training data and the

test data exhibit similar linearly increasing patterns with a

similar degree of variation. This implies that the alignment

vectors we found can generalize well to unseen data in terms

of correlation in the linearly projected space.

Note that the projections still have relatively high variance

across the linear trend. This variability is likely due to both

4As described in Section II-C3, the final training canonical correlation is
computed on all 5 folds (size �5/6�n) of the training set. The test canonical
correlation is computed on the held-out test set (size �1/6�n), which is unused
during cross-validation.
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the variance coming from the optimization problem, which

is ill-conditioned and thus contains many local optima, and

the variance coming from the lack of statistical consistency

in the high-dimensional setting. Indeed, the optimal number

of variables chosen by cross-validation (50,607 and 2,890) is

still greater than the number of subjects (793).

In Fig. 6, we visualize the LCF and FCG features selected

by sparse CCA using the optimal sparsity parameters. In both

modalities, sparse CCA focuses on connectivity patterns in

specific regions of the brain. In particular, within the high-

dimensional LCF space, the algorithm points to contiguous

local pathways of the white matter structure. Our results show

that this specific set of local white matter pathways are highly

predictive of the lateral dynamics of functional connectivity

between the left and right hemispheres. The structure-function

association is observed between the core white matter path-

ways that regulate both intracortical and cortical-subcortical

communication, including the corpus callosum, thalamic ra-

diations, corticospinal, and corona radiata pathways, and the

resting state functional activity in a diversity of cortical and

subcortical nodes. This suggests that the structure-function

relationship is strongest in the large major communication fas-

cicles that are critical for global brain network communication.

D. Canonically Correlated Subcluster Pairs

In order to see if there is substructure in the structure-

function relationships identified by sparse CCA, we decom-

pose the canonical correlations into smaller subclusters of

both the LCF and FCG entries. In Fig. 7, we show the three

most canonically correlated pairs of LCF and FCG subclusters,

which are computed by a simple agglomerative clustering

(complete-linkage, same distances dX and dY respectively)

of the selected LCF and FCG features into 5 subclusters each.

We compute the canonical correlation between each pair of

subclusters without additional regularization terms, as in (7).

Here we see even further specificity in the structure-function

relationship. For example, variability in the centrum semio-

vale (Fig. 7, left), should predict functional dynamics of

intrahemispheric and interhemispheric cortical networks. This

pattern largely holds in the corresponding functional networks.

In contrast, a small cluster along the inferior longitudinal

fasiculus (Fig. 7, middle), a major means of communication

along the ventral visual stream, correlates with primarily

ventral visual pathway functional dynamics, as well as com-

munication between dorsal and ventral visual streams. Finally,

variability in the internal capsule (Fig. 7, right), a major

means of communication between cortex and subcortical areas,

correlates with primarily functional dynamics between cortical

and subcortical nodes. Thus, the specificity of the structure-

function relationships identified in this subclustering analysis

is consistent with a priori predictions derived from the neu-

roanatomical literature.

IV. DISCUSSION

In this paper, we show how variability in local white matter

architecture is associated with global patterns of functional

Fig. 6: Visualization of cross-validated CCA projections for

LCFs in MRIcron (top) and FCGs in BrainNet (bottom).

We select the features that gave the best testing canonical

correlation in cross-validation (best parameter, best fold).

brain dynamics. Using distance-based correlations, we found

a small, but significant effect whereby individuals with more

similar local white matter architecture tended to also be more

similar in their functional connectome. Using sparse CCA

approaches, we were able to show that individual variability in

white matter architecture along major brain fascicles correlated

with individual differences in functional dynamics within the

specific class of brain networks that would be predicted by ex-

isting neuroanatomical knowledge. Thus, in conjunction with

the constraints of global end-to-end structural connectivity

[10], our results highlight how variability in the local white

matter systems also impacts global brain communication.
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