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Abstract
There has been a growing interest in the potential for plasticity-inducing pharmacological interventions to enhance post-stroke 
recovery. One group of drugs that continues to garner a great deal of attention in this regard is a class of antidepressants called 
the selective serotonin reuptake inhibitors. Here we propose a model for the mechanism by which these drugs may enhance 
plasticity after ischemic brain injury. First, we review the research in animal models demonstrating how selective serotonin 
reuptake inhibitors reopen the critical period for ocular dominance plasticity in adulthood. We then compare this period of 
heightened plasticity to the cellular and biochemical milieu of perilesional tissue after an ischemic event in the adult brain. 
We argue that selective serotonin reuptake inhibitors administered acutely after an ischemic stroke alter excitatory–inhibitory 
balance in perilesional tissue and reinstate a type of plasticity reminiscent of the critical period in development. Finally, we 
discuss opportunities for future research in this area in both the preclinical and clinical realms.

Keywords Serotonin uptake inhibitors · Stroke · Neuronal plasticity · Critical period · Rehabilitation · Monocular 
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Stroke is a leading cause of long-term adult disability in 
the United States. While many stroke patients experience 
significant functional recovery in the first few months after 
a stroke, residual deficits persist beyond the first year in most 
patients [1, 2]. Given the attractiveness of a pharmacological 
approach for enhancing post-stroke recovery, many groups 
have explored the therapeutic potential of a class of anti-
depressants called selective serotonin reuptake inhibitors 
(SSRIs). The first large-scale randomized clinical trial of 
SSRIs in acute stroke patients (FLAME) found that initi-
ating fluoxetine acutely after an ischemic stroke improved 
motor outcomes at 90 days [3]. Furthermore, a meta-analy-
sis of over 4000 stroke patients showed a similar benefit of 
SSRIs in recovery [4]. The improvement in motor outcomes 
appears to be specific to the SSRI class of antidepressants 
[5] and independent of the antidepressant effects of these 
drugs [3].

These findings raise an important question: What is the 
mechanism by which SSRIs enhance post-stroke recovery? 
To understand the effects of SSRIs at the molecular level, we 
discuss animal studies that have shown that SSRIs are capa-
ble of reopening the critical period for ocular dominance 
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plasticity in adulthood by altering excitatory–inhibitory 
balance. Next, we extrapolate these findings to understand 
how SSRIs may improve recovery after stroke. We argue 
that, in the presence of rehabilitative therapy, SSRIs operate 
through the strengthening of unmasked connections and the 
creation of new ones in an experience-dependent fashion by 
decreasing inhibitory tone, which increases plasticity; the 
excitatory–inhibitory balance is then re-established after-
wards. This proposed mechanism not only helps explain the 
effects of SSRIs on motor recovery after stroke, but also sug-
gests that SSRIs may facilitate post-stroke recovery in other 
functional domains such as vision, language, and cognition.

Critical period in development

Critical periods in neural development occur in many func-
tional domains and are characterized by the potential for 
large-scale synaptic plasticity and cortical reorganization. 
Understanding the cellular and molecular underpinnings 
of this process can help us find ways to reopen the criti-
cal period in adulthood, which could in turn facilitate post-
stroke recovery. A commonly used system for the study of 
critical period plasticity is the visual cortex, where pertur-
bations to visual experience cause changes in ocular domi-
nance during a well-defined period of development [6], 
whereas similar perturbations fail to alter visual circuitry 
to the same degree in adulthood [7]. Recent animal studies 
show that SSRIs are capable of reopening the critical period 
in adulthood [8–10].

The balance between excitatory and inhibitory signaling 
governs the opening and closing of the critical period, as 
well as the changes in ocular dominance that result from 
monocular deprivation during the critical period. The begin-
ning of the critical period is marked by an initial matura-
tion of parvalbumin-positive gamma-aminobutyric acid 
(GABA)-ergic neurons. Increasing GABA type A signaling 
using diazepam causes a precocious opening of the critical 
period for ocular dominance plasticity, while the attenua-
tion of synaptic GABA synthesis in glutamic acid decar-
boxylase-65 knockout mice prevents the onset of the critical 
period altogether [11, 12].

Monocular deprivation during the critical period shifts 
the excitatory–inhibitory balance of visually deprived cor-
tex towards excitation to compensate for the sudden loss 
of activity from the deprived eye [11]. After monocular 
deprivation, pyramidal neurons become disinhibited due to 
a rapid loss of parvalbumin-positive inhibitory input [12]. 
Structural changes also promote the remodeling of corti-
cal responsiveness to the two eyes: monocular deprivation 
induces the retraction or elongation of interneuron dendritic 
branch tips and axonal boutons [8], and the changes in eye-
specific axonal and dendritic arborization of excitatory 

neurons [13]. The circuit refinement that normally occurs 
during the critical period does not happen, however, if the 
inhibitory tone is too high at the onset of the critical period 
[12].

At the end of the critical period, a second wave of inhibi-
tory maturation stabilizes established cortical connections. 
This wave is triggered, in part, by brain-derived neurotrophic 
factor (BDNF). Transgenic overexpression of BDNF accel-
erates the maturation of inhibitory neurons in young mice 
and prematurely opens and closes the critical period [14].

SSRIs reopen the critical period in adulthood

Restoration of the juvenile form of ocular dominance plas-
ticity in adulthood can be achieved using a variety of meth-
ods that reduce cortical inhibition, including treatment with 
SSRIs [9, 10]. In this section, we review the animal and 
human literature that shows that SSRIs promote a type of 
plasticity in adulthood reminiscent of the critical period for 
ocular dominance plasticity in the juvenile visual system. 
These studies suggest that the SSRI-induced acute increase 
in the local concentration of serotonin causes a decrease 
in long-range horizontal inhibition, facilitating synaptic 
plasticity.

Animal SSRI studies

Serotonin can modulate the homeostatic response of visual 
circuits by decreasing inhibition [15, 16], thereby tipping 
excitatory–inhibitory balance in favor of excitation. Simi-
larly, SSRIs have been shown to decrease inhibitory tone 
in the adult rat visual cortex [10] in a serotonin-dependent 
manner [17], by decreasing extracellular GABA concen-
trations and reducing the number of parvalbumin-positive 
GABAergic interneurons [18–20]. In addition, fluoxetine 
facilitates the degradation of the perineuronal nets sur-
rounding parvalbumin-positive interneurons [18, 19, 21], 
thus removing an important structural component of syn-
aptic stabilization.

With SSRIs decreasing the inhibitory tone of the circuit, 
the cortex becomes hyperexcitable [22, 23], which creates a 
permissive environment for novel visual experiences, such as 
monocular deprivation, to affect circuit organization in a way 
that is not typically seen in adulthood. For example, this type 
of SSRI-mediated hyperexcitability facilitates LTP in adult 
rat hippocampal neurons [24] and promotes remodeling of 
pyramidal cell dendritic spines [22, 25].

Like the end of the critical period, inhibitory tone rises 
again in the cortex of fluoxetine-treated adult animals on the 
order of days after monocular deprivation. This increase in 
inhibition, which re-establishes excitatory–inhibitory bal-
ance, is mediated by an SSRI-dependent increase in BDNF 
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[10] through either 5-HT1A receptors [17] or the activity-
dependent expression of the immediate early gene Npas4 
[26], a transcription factor that promotes BDNF-dependent 
[27] inhibitory synaptogenesis [14, 28]. The restoration 
of homeostatic balance in the visual cortex of fluoxetine-
treated, monocularly-deprived adult animals allows for the 
persistence and consolidation of these synaptic changes.

Human SSRI studies

The consequences of SSRI treatment appear to be similar in 
humans and animals. In the motor system of non-depressed 
healthy adults, a single dose of an SSRI decreases intracor-
tical inhibition and cortical excitability (reviewed by 29) 
and decreases functional connectivity of a variety of brain 
networks [30, 31]. In contrast, long-term administration of 
SSRIs seems to stabilize new circuits that perform a given 
task more efficiently. For instance, chronic SSRI treatment 
reduces the spread of motor cortex activation induced by a 
difficult finger tapping task in a manner that is proportional 
to how well the task is performed [32, 33] and increases sen-
sitivity to repeated visual stimulation as evidenced by larger 
visual evoked potential amplitudes after treatment [34].

Taken together, animal and human studies suggest that a 
single dose of an SSRI decreases intracortical inhibition to 
unmask pre-existing connections and establish new ones in 
an experience-dependent fashion, leading to the expansion 
of the cortical representation. On the other hand, chronic 
treatment leads to an increase in inhibition, a contraction of 
the cortical representation, and persistence of the novel and 
more efficient pathway. These two phases of SSRI-induced 
plasticity (Fig. 1) may be driven by the divergent effects of 
SSRI-induced BDNF expression, which depend on whether 
BDNF is up-regulated transiently or chronically [35].

SSRIs during monocular deprivation 
versus after stroke

In adult animal studies, SSRIs reopen the critical period 
by decreasing cortical inhibitory tone, which allows for an 
altered experience such as monocular deprivation to promote 
reorganization and reweighting of the cortical circuit. The 
type of plasticity characteristic of the critical period is also 
seen after ischemic injury in adulthood. Ischemia immedi-
ately reduces inhibitory synaptic transmission in perilesional 
tissue [36] through ipsilesional intracortical disinhibition 
[37, 38] and contralesional hyperactivation [39, 40]. These 
changes facilitate the unmasking and recruitment of pre-
existing cortical connections to rewire the circuit [41]. On 
top of the decrease in inhibitory tone produced by ischemia, 
SSRIs given to mice shortly after an ischemic event reduces 
the expression of inhibitory markers in perilesional tissue 

even further [20]. In addition, the extent of this reduction 
is associated with a prolongation of the sensitive period for 
successful forelimb rehabilitation [20]. Similarly, in suba-
cute stroke patients, a single dose of fluoxetine causes hyper-
activation of the ipsilesional primary motor cortex [42].

After rewiring and reweighting occurs in adult monocular 
deprivation SSRI experiments, chronic SSRI treatment re-
establishes excitatory–inhibitory balance, which stabilizes 
the altered circuit. Similarly, in the months following the 
ischemic event in stroke patients with good recovery, excita-
tory–inhibitory balance of ipsilesional and contralesional 
tissue normalizes, with the return of normal levels of inhibi-
tion [39, 43, 44], and cortical recruitment disappears [41]. 
In contrast, stroke patients with poor recovery never show 
a restoration of excitatory–inhibitory balance, especially in 
the contralesional hemisphere [40]: it is as if the reopened 
critical period never closes and inhibition is chronically 
reduced. Other studies have found that restoration of excita-
tory–inhibitory balance, either through reducing inhibitory 
tone with GABA receptor agonists or increasing excitation 
with AMPA receptor modulators, can improve recovery after 
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Fig. 1  Single-dose vs. chronic SSRI administration has different 
effects on cortical plasticity. The first dose of an SSRI decreases 
inhibition which allows a novel experience to impose changes in the 
cortical circuit through unmasking of existing connections or estab-
lishing new connections. Chronic SSRI treatment then completes the 
rewiring process and restores excitatory–inhibitory balance, thereby 
consolidating an efficient novel circuit
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stroke [45]. Since chronic SSRI treatment increases BDNF 
levels after stroke [46] and post-stroke BDNF levels are pos-
itively correlated with good functional outcomes [47], SSRIs 
may provide another way to address the excitatory–inhibi-
tory imbalance in stroke patients with poor recovery. We 
propose that a three-month course of SSRI therapy improves 
recovery after stroke [3] because it completes the rewiring 
process and restores excitatory–inhibitory balance in both 
hemispheres, thereby consolidating an efficient and effec-
tive altered circuit in the ipsilesional hemisphere. Evidence 
for this proposal comes largely from studying the visual and 
motor domains; however, it is possible that similar processes 
are at play in the recovery of more complex, distributed 
functions after stroke: there is some evidence to suggest that 
SSRIs can also improve stroke patients’ cognitive [48] and 
language [49] abilities.

A working model for SSRI‑induced recovery 
after stroke

To summarize, we synthesize the following model to explain 
how SSRIs might enhance post-stroke recovery (Fig. 1). In 
the acute phase after a stroke, SSRIs enhance the excitabil-
ity of perilesional cortex by decreasing inhibition, which 
allows for the reweighting of existing connections. In addi-
tion, SSRIs facilitate the development of new connections 
by removing the extracellular barriers to circuit remodeling 
(such as perineuronal nets) and boosting dendritic branch 
tip and axonal arborization dynamics. These changes, paired 
with rehabilitation therapies that challenge the damaged 
system, allow for greater experience-dependent plasticity, 
which facilitates functional recovery [50]. Finally, prolonged 
SSRI treatment leads to chronically elevated BDNF levels, 
which in turn increases local inhibition and restores the bal-
ance between excitation and inhibition. The restoration of 
the excitatory–inhibitory balance stabilizes the core of the 
novel circuit and prunes away redundant or inefficient com-
ponents, leading to contraction of the cortical representation.

Future directions for studying SSRIs 
in post‑stroke recovery

The current literature provides a rationale for using SSRIs to 
enhance recovery of neurologic function after an ischemic 
stroke. We see two opportunities for future research in this 
field: (1) investigation of the optimal dosing, timing and 
rehabilitation supplementation for this kind of treatment; 
and (2) exploration beyond the motor system to determine 
whether SSRIs can help enhance post-stroke recovery in 
other functional domains, such as vision and language.

SSRI dosing, timing and supplementation 
with rehabilitative therapies

To date, most studies investigating a role for fluoxetine in 
post-stroke recovery have used 20 mg of fluoxetine daily [3, 
5, 51–54]. However, if a lower dose demonstrates similar 
efficacy, the likelihood of adverse effects with this treatment 
would diminish, especially in older patients [55]; this is an 
important open question that should be studied in animal 
stroke models and future clinical trials.

Our current understanding of the ideal timing for start-
ing SSRI treatment after a stroke is “the sooner the better”. 
SSRIs are less effective at promoting recovery if started later 
than one week after a stroke, but one study suggests that 
they remain more effective than placebo for up to 6 months 
[52]. It is possible, however, that SSRIs may have ben-
eficial effects even beyond six months given that chronic 
stroke patients who received a single dose of an SSRI had 
greater muscle activity in the paretic arm five hours later 
[56]. Whether SSRI treatment facilitates recovery in chronic 
stroke patients has yet to be investigated with a randomized 
double-blind placebo-controlled clinical trial. The question 
of optimal treatment duration also remains unanswered.

Another open question is whether patients already on an 
SSRI at the time of the stroke might show a different recov-
ery trajectory compared to SSRI-naïve stroke patients. There 
are conflicting data on how SSRI use before an ischemic 
stroke affects functional recovery [57, 58]. The antiplatelet 
effects of SSRIs [59] may cause poor outcomes in hemor-
rhagic stroke patients or in ischemic stroke patients treated 
with intravenous thrombolysis when the patient was on an 
SSRI before the stroke [60, 61]. It is also possible that the 
benefit of SSRI treatment after stroke depends on the acute 
peak in synaptic serotonin levels upon commencing treat-
ment [62], in which case there may be no SSRI-dependent 
boost in recovery, if the patient was taking an SSRI before 
the stroke.

Additionally, it is unclear whether SSRIs improve stroke 
recovery independent of a rehabilitation program. In the 
FLAME study, all patients, regardless of treatment group 
assignment, received rehabilitation therapies [3]. In con-
trast, the more recent negative clinical trial, FOCUS, did 
not require that all patients receive rehabilitative therapies, 
nor did it report the percentage of patients who did receive 
therapy [55]. The possibility that SSRIs need to be paired 
with rehabilitative therapy to be an effective treatment for 
stroke recovery is supported by the studies we have high-
lighted here showing that rewiring occurs when SSRIs are 
paired with novel experience (such as monocular deprivation 
or physical therapy). Future studies with three arms (drug 
alone, therapy alone, drug plus therapy) could shed light on 
whether SSRIs need to be paired with rehabilitation to be 
maximally effective at promoting functional recovery.
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Can SSRIs promote vision recovery after stroke?

While past [3–5, 48, 51–55, 63–66] and current clini-
cal trials (AFFINITY, EFFECTS, FLOW, SELEIS, CISS, 
RECONISE, ELISA, and NCT02208466) studying the 
effects of SSRIs on stroke recovery have largely focused on 
strokes affecting motor function, we are currently conduct-
ing a randomized, placebo-controlled phase IIa exploratory 
clinical trial investigating a potential role for fluoxetine in 
promoting vision recovery in acute ischemic stroke patients 
with homonymous visual field deficits [67] (FLUORESCE: 
NCT02737930). Given that only 7.5–26% of stroke patients 
with homonymous visual field deficits completely recover 
vision [1, 68, 69] and that visual restoration therapy remains 
experimental in nature, with no currently proven rehabilita-
tive treatment that enhances vision recovery in this patient 
population [70], the results from this and future pharma-
cological studies have the potential to expand the realm of 
possibilities for post-stroke vision restoration [71].

We have reason to believe that SSRIs will enhance vision 
recovery in hemianopic stroke patients for multiple reasons. 
First, as reviewed above, much of the basic research dem-
onstrating the neuroplastic effects of SSRIs has been con-
ducted in the visual system. Second, stroke patients with 
persistent hemianopia exhibit similar neural markers of 
poor recovery when compared to those with poor motor 
recovery, including persistent expansion of cortical activity 
[72, 73] and contralateral hemisphere activation [74–76]. 
Third, evidence of reorganization of the visual circuit has 
been detected in patients with spontaneous vision recovery 
after a stroke [73, 77]. Taken together, these studies suggest 
that SSRI administration in the first week after a stroke may 
push those with less potential for spontaneous vision recov-
ery towards a more favorable outcome in the same way that 
it supports greater post-stroke motor recovery. In addition, 
since visual ability can be quantified with a high degree of 
spatial resolution using standard clinical measures (auto-
mated perimetry), and reorganization of the visual cortex 
can be probed using functional neuroimaging [78, 79], we 
believe future studies in the visual system have the potential 
to demonstrate not only the effectiveness of fluoxetine in 
post-stroke vision recovery, but also the neural substrates of 
fluoxetine-mediated plasticity after stroke.
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