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Laryngeal motor control is crucial in a variety of fundamental
behaviors, including swallowing and breathing, and in humans,
spoken language and vocalization. Proximate control of the laryn-
geal muscles during speech production is known to be supported
by ventral laryngeal motor cortex (VLMC) [1]. More controversially,
a human-unique and recently evolved dorsal laryngeal motor cor-
tex area (dLMC) with direct (mono-synaptic) control of laryngeal
muscles through the nucleus retroambiguus has been proposed
[2,3]. This dorsal laryngeal motor control area is the focus of the
current investigation.

Patient AJ presented at the age of 27 with a tumor in the right
frontal lobe undercutting the superior and middle frontal gyri
(Fig. 1a). AJ] had no discernible cognitive, sensory or motor impair-
ments prior to surgery (Supplemental Online Materials). Because of
the proximity of the lesion to motor cortex, and because pre-
operative fMRI suggested involvement of right frontal regions in
speech production, the surgery for removal of the tumor was car-
ried out using an asleep-awake-asleep procedure for language
and motor mapping [4]. The rare clinical opportunity to explore
direct electrical stimulation mapping of dLMC in the right hemi-
sphere of a left-language-dominant individual allowed us to assess
the specific role of dLMC in speech production.

During the awake portion of his surgery, A] completed 70 trials
of a picture naming task in which he read a short preamble (‘This is
a...) and then named a target picture (e.g., ...CAT.”). 7 of the 70 tri-
als were excluded from analyses because of interruptions unrelated
to stimulation (e.g. patient talking to clinicians). Of the remaining
63 trials, 33 were paired with DES to the cortical surface and 30
were without stimulation. Of the 33 trials paired with stimulation,
12 were characterized by disruptions to the patient’s speech pro-
duction. Of the 30 trials not paired with stimulation, three trials
were marked by observable errors; there was a significant effect
of stimulation on the likelihood of error (12/33 vs 3/30; %2 = 4.7;
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p < .05; see Fig. 1A for all locations of DES, plotted on a 3D recon-
struction of AJ’s brain).

Eleven of the 33 stimulation trials were localized to a ~2cm re-
gion (i.e. 9mm radius) centered on the anterior aspect of right dor-
sal BA 6, anterior to speech motor cortex. This is the region
previously identified as dorsal laryngeal motor cortex (dLMC)
[3,5,6]. All (i.e., 11/11) trials with stimulation to dLMC resulted in
an observable disruption to speech. There were several types of er-
rors caused by stimulation of dLMC. First, A] was unable to initiate
coherent speech for the duration that the stimulator was in contact
with cortex (see below, and Fig. 1B, for additional analyses). Second,
he made involuntary guttural vocalizations and non-linguistic
voiced intrusions. And third, when AJ did initiate recognizable
speech on a trial involving stimulation to dLMC, the resulting utter-
ance was dysfluent and slurred (see Supporting Video, https://
youtu.be/1GjjvIPQmv8). By contrast, of the 22 trials paired with
stimulation to structures surrounding dLMC, the patient produced
an error on one trial, and fluent, accurate responses on 21 trials. The
higher incidence of errors in association with stimulation to dLMC
compared to stimulation to surrounding structures was significant
(11/11 vs. 1/22; %2 = 24.90; p < .001). Furthermore, there was no
difference in response time for accurate trials without stimulation
(n=27; 1059 ms, SD = 403 ms) compared to trials with stimulation
to structures adjacent to (but not overlapping) dLMC (Welch Two
Sample t-test, t = 1.31, p =.199). This lack of a difference in response
times indicates that stimulation of structures adjacent to dLMC did
not, even subtly, disrupt the initiation of a correct linguistic
response. This pattern is also consistent with the assumption, based
on pre-operative functional MRI (Fig. 1A) that the right hemisphere
is the non-dominant hemisphere in this right-handed individual.

Of the 11 picture-naming trials in which stimulation was applied
to dLMC, AJ eventually produced a correct response on 6 of those
trials and never produced a correct response on the remaining 5 tri-
als. A salient aspect of the patient’s behavior on the 6 trials in which
he eventually produced the correct response was what we refer to
as ‘transient speech arrest’: the patient was unable to initiate a cor-
rect response until after the stimulator discontinued contact with
the surface of the brain. Furthermore, when the patient did initiate
speech after stimulation to dLMC, he was able to do so within
200 ms of the stimulator discontinuing contact with the brain
(Fig. 1b). That pattern of exceedingly rapid recovery to speech onset
indicates that the entire utterance was retrieved and planned, and
thus that stimulation of the dLMC disrupted speech at a very pe-
ripheral stage of processing (namely, vocalization).

Our observations provide causal evidence in support of the
inference that dLMC has direct feedforward control of laryngeal
muscles [3,5,6]. In considering the evolution of vocal control in
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Fig. 1. Stimulation of dorsal Laryngeal Motor Cortex disrupts vocalization during speech production. (A) Overview of intra-operative direct electrical stimulation mapping
and pre-operative functional MRI. Reconstruction of the right hemisphere of Patient AJ’s brain, with locations of intraoperative stimulation associated with errors (red circles) and
correct trials (green circles). The tumor in the right frontal lobe is represented in purple (visible in the mesh where it came to the cortical surface). Also plotted on the cortical
surface are the results of pre-operative functional MRI for wrist, lip, and tongue movements, object identification, and verbal fluency. (B) Speech production is disrupted by
stimulation to dLMC but not to adjacent structures. All data points are temporally aligned (y-axis) with respect to the onset of the picture stimulus on the corresponding trial. The
left panel plots data for stimulation to dLMC (red circles) while the right panel plots data for stimulation to structures adjacent to (but not including) dLMC. The left column of data
points in each panel corresponds to the time-point, after picture presentation, when direct electrical stimulation to the cortical surface was discontinued; the right column in each
panel plots the time point (post picture onset) at which speech initiated (the two measures for each trial connected by line). The key observation is that for trials involving
stimulation to dLMC (left panel), it was always the case that onset of a correct response occurred after electrical stimulation was discontinued. By contrast, when stimulation was
applied to structures adjacent to dLMC (right panel), the patient was always able to initiate a correct response prior to discontinuation of stimulation. This pattern was substantiated
with formal analysis: For those trials in which the patient eventually produced an accurate response after stimulation to dLMC, the average response time (from picture stimulus
onset to initiation of a correct response) was 2983 ms (SD = 605 ms). That response time was longer than the average response time for the 21 accurate trials associated with
stimulation to structures adjacent to, but not overlapping with, dLMC (Response Time = 939 ms, SD = 229 ms; Welch Two Sample t-test, t = 8.11, p <.001). Importantly, the bipolar
stimulator was not in contact with the brain for a longer period of time on trials of transient speech arrest involving stimulation to dLMC (mean = 2277 ms, range = 1800:2740 ms)
compared to trials with stimulation to surrounding structures (mean = 2103 ms, range = 1530:3200 ms; t = 1.02, p = .33). (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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