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The story so far

Plan for the three talks:

1 Basic syntax of H.O.T.T.

2 Symmetries and semicartesian cubes

3 From semicartesian cubes to univalent universes



Outline

1 The magic of semicartesian cubes

2 Paths in exponentials

3 The parametricity universe

4 The universe of fibrant types

5 Cubical spaces

6 Explaining the universe



The semicartesian cube category

• The semicartesian cube category p� has, as objects, finite sets.

• A morphism φ ∈ p�(m, n) is a function φ : n→ m t {−,+}
that is injective on the preimage of m.

• The symmetric monoidal structure m ⊕ n is disjoint union.

• The automorphisms of n are the symmetric group Sn.

• The presheaf category p̂� = Set
p�op

has a Day convolution
monoidal structure. Write �n for the representable p�(−, n).

• A p̂�-enriched category with �n-powers has ID-structure:

x : A, y : A ` IdA(x , y) : U ←→
�1 t A

A× A



Cubical paths and cylinders

Let E be a presheaf category (such as Set). The category E p�op
of

cubical objects is p̂�-enriched with copowers and powers:

p̂�(K ,MapE p�op (X ,Y )) ∼= E p�op
(K � X ,Y ) ∼= E p�op

(X ,K t Y ).

In particular, it has path spaces �1 t X and cylinders �1 � X .
Path spaces are defined by shifting, while cylinders are magic:

(�1 t X )n = Xn⊕1

(�1 � X )n = Xn + Xn +
∑
k∈n

Xnr{k}

∼= 2 · Xn + n · Xn−1.

Almost no other cube category satisfies the magic cylinder formula;
we need symmetries but no diagonals or connections.
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For example:

(�1 � X )2 = X2 + X2 + X1 + X1
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Amazing right adjoints

Since the path-space is shifting, (�1 t X )n = Xn⊕1, it preserves all
colimits, hence has an (“amazing”) right adjoint

E p�op
(�1 t X ,Y ) ∼= E p�op

(X ,
√
Y )

This also has a fiberwise version:

Y

�1 tW

7→

√
YW

√
Y

W
√
�1 tW

y

The fiberwise version maps E p�op
/(�1 tW ) to E p�op

/W .
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Identity types of exponentials

For cartesian cubes, powers coincide with cartesian exponentials. So

�1 t (A→ B) ∼= A→ (�1 t B), and IdA→B(f , g) ∼=
∏

(x :A)IdB(fx , gx).

In the semicartesian case, we need to relate the cartesian
exponential A→ B with the monoidal path-space (�1 t −). To get
our desired rule

IdA→B(f , g) ∼=
∏

(u:A)

∏
(v :A)

∏
(q:IdA(u,v))IdB(f (u), g(v)).

we want a pullback in E p�op
:

�1 t (A→ B)
(
(�1 t A)→ (�1 t B)

)
(A→ B)× (A→ B) ((�1 t A)→ B)× ((�1 t A)→ B)

y
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Identity types of exponentials

By Yoneda, we want a pullback in Set for all X ∈ E p�op
:

E p�op
(X ,�1 t (A→ B)) E p�op(

X , (�1 t A)→ (�1 t B)
)

E p�op
(X , (A→ B)2) E p�op

(X , ((�1 t A)→ B)2)

y
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Now we apply universal properties. . .
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And now, by Yoneda again. . .



Identity types of exponentials

We equivalently want a pushout in E p�op
:

(2 · X )× (�1 t A) �1 � (X × (�1 t A))

(2 · X )× A (�1 � X )× A

p



Identity types of exponentials

Which means a pushout in E for all n:

((2 · X )× (�1 t A))n (�1 � (X × (�1 t A)))n

((2 · X )× A)n ((�1 � X )× A)n

p
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Identity types of exponentials

2 · (Xn × An+1) 2 · (Xn × An+1) + n · (Xn−1 × An)

2 · (Xn × An) 2 · (Xn × An) + n · (Xn−1 × An)
p

But this is just a coproduct of two pushout squares:

2 · (Xn × An+1) 2 · (Xn × An+1)

2 · (Xn × An) 2 · (Xn × An)
p

∅ n · (Xn−1 × An)

∅ n · (Xn−1 × An)

p

Thus, it is a pushout, completing the proof of our desired rule

IdA→B(f , g) ∼=
∏

(u:A)

∏
(v :A)

∏
(q:IdA(u,v))IdB(f (u), g(v)).

The same ideas work for dependent types and for Π-types.
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Paths in the universe

If U “classifies” small maps, then

E p�op
(X ,�1 t U) ∼= E p�op

(�1 � X ,U)

so �1 t U “classifies” small maps over cylinders.

By “extensivity”, a map Y → (�1 � X ) decomposes Yn as a
coproduct too:

Yn An + Bn +
∑

k∈n Cn,k

(�1 � X )n Xn + Xn +
∑

k∈n Xnr{k}.

∼=

∼=



Cubes over cylinders

X2 X2

A2 B2

X1

C2,0

X1

C2,1∼=A1 B1



Cubes over cylinders

X2 X2

A2 B2

X1

C2,0

X1

C2,1∼=A1 B1



Cubes over cylinders

X2 X2

A2 B2

X1

C2,0

X1

C2,1∼=A1 B1



Cubes over cylinders

X2 X2

A2 B2

X1

C2,0

X1

C2,1

∼=A1 B1



Cubes over cylinders

X2 X2

A2 B2

X1

C2,0

X1

C2,1∼=

A1 B1



Cubes over cylinders

X2 X2

A2 B2

X1

C2,0

X1

C2,1∼=

A1 B1



Cubical operators over cylinders

Let φ ∈ p�(m, n), so φ : n→ m t {−,+}.

An + Bn +
∑

k∈n Cn,k Am + Bm +
∑

`∈m Cm,`

Xn + Xn +
∑

k∈n Xnr{k} Xm + Xm +
∑

`∈m Xmr{`}

φ∗

φ∗

• Any φ preserves the first two summands, so we have
A,B ∈ E p�op

with maps A→ X and B → X .

• Sn ⊆ p�(n, n) permutes the summands Xnr{k}, and its
subgroup Snr{k} acts on Xnr{k}. Thus, Cn,k

∼= Cn,k ′ ∀k, k ′.
• If φ(k) = ` ∈ m, then φ maps Xnr{k} to Xmr{`}. These

assemble the Cn,k into C ∈ E p�op
with a map C → X .

• If φ(k) ∈ {−,+}, then φ maps Xnr{k} to one of the first Xm’s.
These assemble into maps C → A and C → B over X .
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Type families over cylinders

Thus, from Y → (�1 � X ), we extract a span in E p�op
/X :

A C B

X

Theorem

For X ∈ E p�op
, we have an equivalence of categories

E p�op
/(�1 � X ) ' (E p�op

/X )(·←·→·)

(Also generalizes to many other K ∈ p̂� replacing �1.)



Identity types of the parametricity universe

Corollary

There is a U0 ∈ E p�op
that classifies small maps, and such that there

is a trivial fibration (i.e. a map with RLP against monos)

(�1 t U0)
∼
−−�

∑
(A,B:U0)(A→ B → U0)

This is not an isomorphism: the isomorphic copies Cn,k have to be
classified separately.

Trivial fibrations have sections, so we interpret a syntactic retraction

(A→ B → U0)
↑−→ IdU0(A,B)

↓−→ (A→ B → U0) p↑↓ ≡ p

Thus p̂� with U0 models a theory of internal parametricity, whose
“identity types” consist of arbitrary correspondences.
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Towards a universe of fibrant types

We’d like to define U to be

“the subtype of U0 whose identity type
correspondences are one-to-one.”

For any span A← C → B, i.e. correspondence C : A→ B → U0,
we have the type of assertions that it is one-to-one:

is11(C ) :≡
(∏

(a:A)isContr(
∑

(b:B)C (a, b))
)

×
(∏

(b:B)isContr(
∑

(a:A)C (a, b))
)

If A,B,C lie in a slice E p�op
/X , so does is11(C ) ∈ E p�op

/X .



The universal correspondence

We pull back the universal type family along the adjunction counit:

• Ũ0

�1 � (�1 t U0) U0

y

This yields a type family over the cylinder �1 � (�1 t U0), hence a
universal correspondence over �1 t U0:

A0 C 0 B0

�1 t U0

Thus we have the classifying object is11(C 0) ∈ E p�op
/(�1 t U0).

BUT: this is a predicate on �1 t U0, not U0 itself.



A first-order approximation

We can fix this with the fiberwise amazing right adjoint:

U1 =
√

is11(C 0)
U0
.

Theorem

The classifying map ∆→ U0 of a type family ∆ ` P : U0 lifts to U1

if and only if the correspondence Id%∆.P is one-to-one.

BUT: This correspondence is still U0-valued: even for ∆ ` P : U1,

Id%∆.P : P[δ]→ P[δ′]→ U0.

So we can’t consistently use U1 as “the” universe.
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So we can’t consistently use U1 as “the” universe.



A second-order approximation

For any A← C → B we have a type classif(C ,U1) of U1-valued
classifying maps for C , i.e. pullback squares

C Ũ1

A× B U1

y

Then we define a further improved universe:

U2 =
√

is11(C 1)× classif(C 1,U1)
U1

The identity types of ∆ ` P : U2 are one-to-one and U1-valued.



A limit construction

We continue inductively and take a limit:

Un+1 =
√

is11(Cn)× classif(Cn,Un)Un

U = lim
n

(· · · → Un → · · · → U1 → U0)

Theorem

The identity types of ∆ ` P : U are one-to-one and U-valued.

U classifies maps with contractible spaces of uniform Kan fillers.



Higher coinduction for IdU

U is a higher coinductive type: the terminal coalgebra of a functor
involving

√
.

• Its higher destructors assemble into

↓ : IdU(A,B)→ 1-1-Corr(A,B)

• The magic cylinder formula implies a formula for paths in
√

.
Thus, IdU is also a higher coinductive type.

• By higher coinduction (univ. prop. of lim and
√

) we define

↑ : 1-1-Corr(A,B)→ IdU(A,B)

such that p↑↓ ≡ p.

Even if ↑/↓ for U0 were an isomorphism, this wouldn’t be:
IdU contains more data than 1-1-Corr.



Fibrancy of type-formers

We lift all the type-formers from U0 to U by higher coinduction.
E.g. for Σ-types: ∑

(A:U)(A→ U) U

∑
(A:U0)(A→ U0) U0

Σ

Σ0

We must show that:

• Σ takes identifications to one-to-one correspondences.

• These correspondences are isomorphic to some Σ-type.



Strictifying identity types

This amounts to specifying the computation rules for apΣ and IdΣ:

apX .Y .
∑

(x :X )Y (x)(A2,B2) ≡ (IdA2,B2

X .Y .
∑

(x :X )Y (x), , )

Id%∆.∑(x :A)B
(s, t) ≡

∑
(q:Id%

∆.A(π1s,π1t))Id%,q(∆,x :A).B(π2s, π2t)

such that the latter equality holds up to isomorphism for powers
(�1 t −) in E p�op

.

• This works because the identity types of a Σ-type are another
Σ-type (and similarly for all other type-formers).

• This is the coherence theorem strictifying IdΣ
∼= to a

definitional equality.



Conclusion: cubical universes

Theorem-in-progress

H.O.T.T. has a model in E p�op
, for any presheaf topos E .

In particular, it has a model in p̂�.

Conjecture

By gluing with a global-sections or nerve functor valued in p̂� or
presheaves thereof, we can prove canonicity and normalization.

Note that

1 We must have symmetry in p�, to interpret IdΠ and IdU.

2 We must have symmetry in syntax, for the nerve to lie in p̂�.
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Towards higher topos models

Symmetry solves syntactic problems, but creates semantic ones:
The “syntax-like” model in p̂� doesn’t present classical homotopy.

There could be an equivariant version. But there’s another way.

Two approaches to defining higher homotopical structures:

1 As diagrams of sets
• E.g. quasicategories
• More parsimonious

2 As diagrams of spaces
• E.g. complete Segal spaces
• Often better-behaved



Cubical spaces

Let E be a type-theoretic model presheaf topos, e.g.:

• E = sSet, simplicial sets, with the Kan model structure
(presents the homotopy theory of spaces).

• E = simplicial presheaves, with a left exact localization of the
injective model structure (presents an (∞, 1)-topos).

Theorem (cf. Rezk–Schwede–Shipley for the simplicial version)

The injective model structure on E p�op
admits a left Bousfield

localization, called the realization model structure, such that:

1 It is Quillen equivalent to E .

2 It is also a type-theoretic model topos.
(Though not a left exact localization of the injective one.)



The universe of realization fibrations

Theorem

If U0,rlz classifies realization fibrations, and Urlz = limn Un,rlz as
before, there is a trivial fibration

(�1 t Urlz)
∼
−−�

∑
(A,B:Urlz)1-1-Corr(A,B).

Corollary

The realization model structure interprets all of H.O.T.T.
Thus, H.O.T.T. has models in all Grothendieck (∞, 1)-toposes.



Why IdU has no η-rule

1 IdU0(A,B) is not isomorphic to A→ B → U0.

2 IdU contains higher destructors in addition to 1-1-Corr.

3 Injective fibration structures over a cylinder contain more data
than those on a span.

4 Homotopical constancy structures over a cylinder contain more
data than those on a span.

5 Syntactically, IdU must contain additional sym data.
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What kind of type is the universe?

Traditionally, the universe is thought of (informally) as inductively
defined, with constructors Σ,Π, . . . , and Tarski eliminator El
defined by recursion.

• Not true internally, but informs “meaning explanations” and
inductive-recursive universe constructions.

• An observational Id would also be defined by recursion over
these constructors, with clauses for IdΣ, IdΠ, etc.

But:

• It’s hard (not impossible) to make an inductively defined
universe univalent.

• Suggests a closed universe, which has to be redefined whenever
we add new type formers.



Co-meaning explanations

We instead consider U (still informally) to be coinductively defined.

• Now El and Id are destructors.

• Each type former Σ, Π, . . . is defined by corecursion, specifying
its elements, and its identity types “of the same class”.

E.g. Σ is a corecursive function
(∑

(A:U)(A→ U)
)
→ U,

which makes sense because IdΣ is another Σ-type.

• Explains an open universe: can introduce new type formers
without redefining U, just applying its corecursion principle.

• The semantic universe of fibrant types is higher coinductive.

This gives a philosophical reason for the “coinductive” behavior of
IdU, having β but no η.



Back to Bishop

Recall Bishop’s dicta:

A set is defined by describing exactly what must be
done in order to construct an element of the set and what
must be done in order to show that two elements are equal.

An operation f from A into B is called a function if
whenever a, a′ ∈ A and a = a′, we have f (a) = f (a′).



Coinductive synthetic ∞-groupoids

Under propositions-as-types, this naturally becomes coinductive:

A type is defined by describing exactly what must be
done in order to construct an element of the type and
defining a type of ways to identify any two such elements.

An operation f from A into B is called a function if for
a, a′ : A we have a function from a = a′ to f (a) = f (a′).



Coinductive synthetic ∞-groupoids

Under propositions-as-types, this naturally becomes coinductive:

A type is defined by describing exactly what must be
done in order to construct an element of the type and
defining a type of ways to identify any two such elements.

An operation f from A into B is called a function if for
a, a′ : A we have a function from a = a′ to f (a) = f (a′).

If we augment it with a bit of univalence:

We define a type U whose elements are types, where
two types are identified by a one-to-one correspondence.

Every element of every type is identified with itself. For
a type A : U, this yields its own type of identifications.

We get a philosophical vision that leads ineluctably to H.O.T.T.,
as a theory of coinductive ∞-groupoids.


	The magic of semicartesian cubes
	Paths in exponentials
	The parametricity universe
	The universe of fibrant types
	Cubical spaces
	Explaining the universe

