Towards third generation HOTT

 Part 2: Symmetries and semicartesian cubes

 Part 2: Symmetries and semicartesian cubes}

Michael Shulman
University of San Diego

joint work with Thorsten Altenkirch and Ambrus Kaposi

CMU HoTT Seminar
May 5, 2022

Up today

Plan for the three talks:
(1) Basic syntax of H.O.T.T.
(2) Symmetries and semicartesian cubes
(3) Semantics of univalent universes

Outline

(1) A calculus of telescopes
(2) Some problems revealed by cubes
(3) Symmetry solves all problems
(4) Semicartesian cubes
(5) Semantic identity types

Review

- Last week I described the "Book" version of H.O.T.T., starting with simple ideas, and introducing complexity only as necessary.
- By way of review, let's reformulate the resulting theory more concisely and cleanly.

In particular, we eventually ended up with n-variable ap (and Id) that bind a finite list of variables:

$$
\frac{\Gamma, x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash t: B \quad \cdots}{\Gamma \vdash \mathrm{ap}_{x_{1} \ldots . x_{n} . t}\left(p_{1}, \ldots, p_{n}\right): \operatorname{ld}_{B}(\cdots)}
$$

Such a "context suffix" is also called a telescope.
We now reify these into a "telescope calculus".

Telescopes

Telescopes are defined inductively as finite lists of types:

$$
\overline{\Gamma \vdash \epsilon \text { tel }}
$$

$$
\frac{\Gamma \vdash \Delta \text { tel } \quad \Gamma, \Delta \vdash A: U}{\Gamma \vdash(\Delta, x: A) \text { tel }}
$$

The "elements" of a telescope are substitutions:

$$
\frac{\delta: \Delta \quad \Delta \vdash A: U \quad a: A[\delta]}{(\delta, a):(\Delta, x: A)}
$$

These are defined mutually with their action on terms (and types):

$$
\frac{\Delta \vdash a: A \quad \delta: \Delta}{a[\delta]: A[\delta]}
$$

Dependent Id and ap with telescopes

Now we can define identity telescopes from identity types:

$$
\frac{\Delta \text { tel } \quad \delta: \Delta \quad \delta^{\prime}: \Delta}{\operatorname{ld}_{\Delta}\left(\delta, \delta^{\prime}\right) \text { tel }} \quad \quad \operatorname{ld}_{\epsilon}((),()) \equiv \epsilon
$$

$$
\operatorname{ld}_{(\Delta, x: A)}\left((\delta, a),\left(\delta^{\prime}, a^{\prime}\right)\right) \equiv\left(\varrho: \operatorname{ld}_{\Delta}\left(\delta, \delta^{\prime}\right), \alpha: \operatorname{ld}_{\Delta . A}^{\varrho}\left(a, a^{\prime}\right)\right)
$$

These are defined mutually with n-ary Id, which depends on them:

$$
\frac{\varrho: \operatorname{ld}_{\Delta}\left(\delta, \delta^{\prime}\right) \quad \Delta \vdash A: \cup \quad a: A[\delta] \quad a^{\prime}: A\left[\delta^{\prime}\right]}{\operatorname{ld}_{\Delta . A}^{\varrho}\left(a, a^{\prime}\right): \mathrm{U}}
$$

We write $\operatorname{Id}_{A}\left(a, a^{\prime}\right) \equiv \operatorname{Id}_{\epsilon . A}^{()}\left(a, a^{\prime}\right)$ in the non-dependent case.
(Last time I defined dependent Id in terms of ap; here we postulate it separately and then make them coincide later.)

Computing Id

As we saw last time, Id computes on all type formers:

$$
\operatorname{Id}_{\Delta . A \times B}^{\varrho}(s, t) \equiv \operatorname{ld}_{\Delta . A}^{\varrho}\left(\pi_{1} s, \pi_{1} t\right) \times \operatorname{ld}_{\Delta . B}^{\varrho}\left(\pi_{2} s, \pi_{2} t\right)
$$

$$
\operatorname{Id}_{\Delta \cdot \sum_{(x: A)} B}(s, t) \equiv \sum_{\left(q: 1 d_{\Delta \cdot A}^{\varrho}\left(\pi_{1} s, \pi_{1} t\right)\right)} \operatorname{Id}_{(\Delta, x: A) \cdot B}^{\varrho, q}\left(\pi_{2} s, \pi_{2} t\right)
$$

$$
\operatorname{ld}_{A \rightarrow B}^{\varrho}(f, g) \equiv \prod_{(u: A)} \prod_{(v: A)} \prod_{\left(q: I d_{\Delta: A}^{o}(u, v)\right)} \operatorname{ld}_{\Delta . B}^{\varrho}(f u, g v)
$$

$$
\operatorname{Id}_{\Pi_{(x: A)} B}^{\varrho}(f, g) \equiv \prod_{(u: A)} \prod_{(v: A)} \prod_{\left(q: \mathrm{Id}_{\Delta \cdot A}^{o}(u, v)\right)} \operatorname{Id}_{(\Delta, x: A) \cdot B}^{\rho, q}(f u, g v)
$$

Id is a $1-1$ correspondence

All identity types are 1-1 correspondences:

$$
\frac{\varrho: \operatorname{ld}_{\Delta}\left(\delta, \delta^{\prime}\right) \quad \Delta \vdash A: U \quad a: A[\delta]}{\operatorname{corr}_{\Delta . A}^{\varrho}(a): \operatorname{isContr}\left(\sum_{\left(a^{\prime}: A\left[\delta^{\prime}\right]\right)} \operatorname{ld}_{\Delta . A}^{\varrho}\left(a, a^{\prime}\right)\right)}
$$

$$
\frac{\varrho: \operatorname{ld}_{\Delta}\left(\delta, \delta^{\prime}\right) \quad \Delta \vdash A: U \quad a^{\prime}: A\left[\delta^{\prime}\right]}{\operatorname{corr}_{\Delta . A}^{\varrho}\left(a^{\prime}\right): \operatorname{isContr}\left(\sum_{(a: A[\delta])} \operatorname{Id}_{\Delta \cdot A}^{\varrho}\left(a, a^{\prime}\right)\right)}
$$

The centers of contraction constitute transport:

$$
\begin{array}{ccc}
\varrho: \operatorname{Id}_{\Delta}\left(\delta, \delta^{\prime}\right) & \Delta \vdash A: \mathrm{U} & a: A[\delta] \\
\overrightarrow{\operatorname{tr}}_{\Delta . A}^{\varrho}(a): A\left[\delta^{\prime}\right] & \overrightarrow{\operatorname{lift}}_{\Delta . A}^{\varrho}(a): \operatorname{Id}_{\Delta . A}^{\varrho}\left(a, \overrightarrow{\operatorname{tr}}_{\Delta . A}^{\varrho}(a)\right)
\end{array}
$$

These witnesses compute on type formers:

$$
\overrightarrow{\operatorname{corr}}_{\Delta \cdot A \times B}^{\varrho}(a) \equiv \cdots,
$$ hence also $\overrightarrow{\operatorname{tr}}_{\Delta . A \times B}^{\varrho}(a) \equiv \cdots$, etc.

Computing ap

A term can be applied to Id of any telescope it depends on:

$$
\frac{\varrho: \operatorname{ld}_{\Delta}\left(\delta, \delta^{\prime}\right) \quad \Delta \vdash t: B}{\operatorname{ap}_{\Delta . t}(\varrho): \operatorname{ld}_{\Delta . B}^{\varrho}\left(t[\delta], t\left[\delta^{\prime}\right]\right)}
$$

This higher-dimensional explicit substitution computes on all ${ }^{*}$ terms:

$$
\operatorname{ap}_{\Delta .(s, t)}(\varrho) \equiv\left(\operatorname{ap}_{\Delta . s}(\varrho), \mathrm{ap}_{\Delta . t}(\varrho)\right.
$$

$$
\operatorname{ap}_{\Delta . \pi_{1} s}(\varrho) \equiv \pi_{1} \operatorname{ap}_{\Delta . s}(\varrho) \quad \operatorname{ap}_{\Delta . \pi_{2} s}(\varrho) \equiv \pi_{2} \operatorname{ap}_{\Delta . s}(\varrho)
$$

$$
\operatorname{ap}_{\Delta . f b}(\varrho) \equiv \operatorname{ap}_{\Delta . f}(p)\left(b[a / x], b\left[a^{\prime} / x\right], \mathrm{ap}_{\Delta . b}(\varrho)\right)
$$

$$
\operatorname{ap}_{\Delta \cdot(\lambda y \cdot t)}(\varrho) \equiv \lambda u \cdot \lambda v \cdot \lambda q \cdot \mathrm{ap}_{\Delta \cdot y \cdot t}(\varrho, q)
$$

We define reflexivity as the 0 -ary ap: $\operatorname{refl}_{a} \equiv \operatorname{ap}_{\epsilon . a}()$.

Univalence

$\operatorname{Id}_{\mathrm{U}}(A, B)$ contains as a retract the type of 1-1 correspondences:

$$
\begin{aligned}
& \text { 1-1-Corr }(A, B): \equiv \sum_{(R: A \rightarrow B \rightarrow U)}\left(\prod_{(a: A)} \text { isContr}\left(\sum_{(b: B)} R(a, b)\right)\right) \\
& \left.\times\left(\prod_{(b: B)} \text { isContr(} \sum_{(a: A)} R(a, b)\right)\right) . \\
& \text { 1-1-Corr }(A, B) \xrightarrow{\uparrow} \operatorname{Id}(A, B) \xrightarrow{\downarrow} \text { 1-1-Corr }(A, B) \quad p \uparrow \downarrow \equiv p
\end{aligned}
$$

We identify dependent Id with ap into the universe:

$$
\begin{aligned}
& \operatorname{Id}_{\Delta . B}^{\varrho}\left(b, b^{\prime}\right) \equiv \pi_{1}\left(\operatorname{ap}_{\Delta . B}(\varrho) \downarrow\right)\left(b, b^{\prime}\right) \\
& \stackrel{\operatorname{corr}_{\Delta . B}^{\varrho}}{\stackrel{\circ}{\operatorname{corr}}}{ }_{\Delta . B}^{\varrho}\left(b, b^{\prime}\right) \equiv \pi_{1} \pi_{2}\left(\operatorname{ap}_{\Delta . B}(\varrho) \downarrow\right)\left(b, b^{\prime}\right) \\
& \stackrel{\equiv \pi_{2}}{ } \pi_{2}\left(\operatorname{ap}_{\Delta . B}(\varrho) \downarrow\right)\left(b, b^{\prime}\right)
\end{aligned}
$$

(Last time, we defined the LHS as the RHS. Separating them is more natural for Tarski universes, and permits types not lying in any universe.)

That asterisk: Neutral reflexivities

I claimed that ap is never a normal form, but there's one exception:

When y is a variable, refly ${ }_{y}$ is neutral (hence normal).

Since refl is nullary ap, the rule that would apply is

$$
\operatorname{ap}_{x_{1} \cdots x_{n} \cdot y}\left(p_{1}, \ldots, p_{n}\right) \equiv \operatorname{refl}_{y} \text { (if } y \text { is a variable } \notin\left\{x_{1}, \ldots, x_{n}\right\} \text {) }
$$

where $n=0$, but this just reduces refly $\equiv \operatorname{ap}_{() \cdot y}()$ to itself!
This includes other terms that obviously must also be neutral:

- $\operatorname{ap}_{x . f(x)}(p) \equiv \operatorname{refl}_{f}\left(a_{0}, a_{1}, p\right)$ for a variable $f: A \rightarrow B$.
- $\operatorname{Id}_{A}\left(a_{0}, a_{1}\right) \equiv\left(\pi_{1} \operatorname{refl}_{A}\right)\left(a_{0}, a_{1}\right)$ for a variable $A: U$.

Similarly, refl ${ }_{\text {refl }}$, refl $_{\text {refl }}^{\text {refl }}$,, etc., are also neutral.

Outline

(1) A calculus of telescopes
(2) Some problems revealed by cubes
(3) Symmetry solves all problems
(4) Semicartesian cubes
(5) Semantic identity types

Squares and cubes

H.O.T.T. is not a "cubical type theory": there are no explicit cubes in the syntax. But like any other type theory with dependent identity types (including Book HoTT!), it has an emergent notion of cube:

$$
\begin{gathered}
a_{02}: \operatorname{ld}_{A}\left(a_{00}, a_{01}\right) \quad a_{12}: \operatorname{Id}_{A}\left(a_{10}, a_{11}\right) \quad a_{20}: \operatorname{ld}_{A}\left(a_{00}, a_{10}\right) \\
a_{21}: \operatorname{ld}_{A}\left(a_{01}, a_{11}\right) \\
a_{22}: \operatorname{ld}_{x \cdot y \cdot \operatorname{ld}_{A}(x, y)}^{a_{02}, a_{12}}\left(a_{20}, a_{21}\right) \\
a_{10} \xrightarrow{a_{12}} a_{11} \\
a_{20} \uparrow \xrightarrow{a_{22}} \overbrace{a_{21}} \\
a_{02}
\end{gathered}
$$

Similarly, $\operatorname{ld}_{\mathrm{Id}_{\mathrm{Id}_{A}}}$ is a type of 3-dimensional cubes, etc.

Very important point

The roles of a_{02}, a_{12} and a_{20}, a_{21} are asymmetrical!

Cubical horn-fillers

Given a_{02}, a_{12}, a_{20}, we have fillers of left-to-right cubical horns:

$$
\begin{aligned}
& \overrightarrow{\operatorname{tr}}_{x \cdot y \cdot \operatorname{ld}_{A}(x, y)}^{a_{002}, a_{12}}\left(a_{20}\right): \operatorname{ld}_{A}\left(a_{01}, a_{11}\right) \\
& \overrightarrow{\operatorname{lift}}_{x \cdot y \cdot \mathrm{Id}_{A}(x, y)}^{a_{20}, a_{12}}\left(a_{20}\right): \operatorname{ld}_{x \cdot y \cdot \operatorname{ld}_{A}(x, y)}^{a_{02}, a_{12}}\left(a_{20}, \overrightarrow{\operatorname{tr}}_{x \cdot y \cdot \operatorname{ld}_{A}(x, y)}^{a_{02}, a_{12}}\left(a_{20}\right)\right) \\
& a_{10} \xrightarrow{a_{12}} a_{11}
\end{aligned}
$$

Similarly, $\overleftarrow{t r}$ and lift fill right-to-left cubical horns. And $\overrightarrow{\operatorname{tr}}_{\mathrm{Id}_{\mathrm{ld}_{A}}}$, etc. fill higher-dimensional left-right horns.

Problem \#1

We don't seem to have top-to-bottom or bottom-to-top fillers.

Degenerate cubes

Given $a_{2}: \operatorname{Id}_{A}\left(a_{0}, a_{1}\right)$, there are two degenerate squares:

$$
\begin{aligned}
& \operatorname{refl}_{a_{2}}: \operatorname{Id}_{\operatorname{Id}_{A}\left(a_{0}, a_{1}\right)}\left(a_{2}, a_{2}\right) \quad \equiv \operatorname{Id}_{x \cdot y \cdot \operatorname{Id}_{A}(x, y)}^{\text {refl }_{a_{0}}, \text { refl }_{a_{1}}}\left(a_{2}, a_{2}\right) \\
& \operatorname{ap}_{x \cdot \text { refl }}\left(a_{2}\right): \operatorname{ld}_{x \cdot \mid d_{A}(x, x)}^{a_{2}}\left(\text { refl }_{a_{0}}, \text { refl }_{a_{1}}\right) \equiv \operatorname{ld}_{x \cdot y \cdot \mid d_{A}(x, y)}^{a_{2}, d_{2}}\left(\text { refl }_{a_{0}}, \text { refl }_{a_{1}}\right) \\
& a_{1} \xrightarrow{\text { refl } a_{1}} a_{1} \\
& a_{0} \xrightarrow{a_{2}} a_{1} \\
& a_{2} \uparrow \quad \operatorname{refl}_{a_{2}} \uparrow a_{2} \\
& a_{0} \xrightarrow[\text { refla }_{a_{0}}]{ } a_{0} \\
& \begin{array}{c}
\operatorname{refl}_{a_{0}} \uparrow \operatorname{ap}_{x . \text { refl }_{x}\left(a_{2}\right)} \uparrow \operatorname{refl}_{a_{1}} \\
a_{0} \xrightarrow[a_{2}]{ } a_{1}
\end{array}
\end{aligned}
$$

Degenerate cubes

Given $a_{2}: \operatorname{Id}_{A}\left(a_{0}, a_{1}\right)$, there are two degenerate squares:

$$
\begin{gathered}
a_{1} \xrightarrow{\text { refl }_{a_{1}}} a_{1} \\
a_{2} \uparrow \underset{a_{0}}{\operatorname{refl}_{a_{2}}} \overbrace{a_{2}} a_{0}
\end{gathered}
$$

$$
\begin{gathered}
a_{0} \xrightarrow[a_{2}]{a_{1}} \\
\operatorname{refl}_{a_{0}} \uparrow \operatorname{ap}_{x \cdot \text { refl }_{x}\left(a_{2}\right)} \uparrow_{\operatorname{refl}_{a_{1}}} \\
a_{0} \xrightarrow[a_{2}]{ } a_{1}
\end{gathered}
$$

Problem \#2

For a : A, the two doubly-degenerate squares

$$
a \xrightarrow{\text { refl }_{a}} a
$$

$$
\begin{aligned}
& a \operatorname{refl}_{a} \\
& \operatorname{refl}_{a} \uparrow \operatorname{ap}_{x \cdot \operatorname{refl}_{x}\left(\operatorname{refl}_{a}\right)}{ }^{a} \uparrow \operatorname{refl}_{a} \\
& a \xrightarrow[\operatorname{refl}_{a}]{ } a
\end{aligned}
$$

seem to be definitionally unrelated.

Stuck degeneracies break canonicity

Problem \#3

Our rules so far compute refl ${ }_{a_{2}}$ based on the structure of a_{2}, but $\mathrm{ap}_{x . \text { refl }}\left(a_{2}\right)$ is stuck, even if a_{2} is very concrete.

- refl ${ }_{x}$ doesn't reduce when x is a variable.
- ap doesn't inspect its identification argument.

Stuck degeneracies break canonicity

Problem \#3

Our rules so far compute refl $a_{a_{2}}$ based on the structure of a_{2}, but $\mathrm{ap}_{x . \text { refl }}\left(a_{2}\right)$ is stuck, even if a_{2} is very concrete.

- refl ${ }_{x}$ doesn't reduce when x is a variable.
- ap doesn't inspect its identification argument.

A bit nonobviously, this also breaks canonicity for \mathbb{N}.

Intuitive homotopy-theoretic reason

For a type A : U , the square $\mathrm{ap}_{x . \text { refl }}\left(\right.$ refl $\left._{A}\right)$ in U is essentially a self-homotopy of the identity equivalence of A, i.e. $\prod_{(a: A)} \operatorname{ld}_{A}(a, a)$. Taking $A=S^{1}$ we get a stuck loop in $\mathrm{Id}_{S^{1}}$ (base, base), hence in \mathbb{Z}.
(There's also an explicit argument using two universes instead of S^{1}.)

Outline

(1) A calculus of telescopes
(2) Some problems revealed by cubes
(3) Symmetry solves all problems

4 Semicartesian cubes
(5) Semantic identity types

Symmetry

To solve these problems, we introduce a symmetry operation that transposes squares:

$$
\frac{a_{22}: \operatorname{ld}_{x \cdot y \cdot l d_{A}(x, y)}^{a_{02}, a_{12}}\left(a_{20}, a_{21}\right)}{\operatorname{sym}_{A}\left(a_{22}\right): \operatorname{ld}_{x \cdot y \cdot I_{A}\left(d_{A}(x, y)\right.}^{a_{20}}\left(a_{02}, a_{12}\right)}
$$

The other Kan operations

Now we can fill other cubical horns, solving problem \#1:

Computing symmetry

To solve problem \#3, we define

$$
\operatorname{ap}_{x . \text { refl }_{x}}\left(a_{2}\right) \equiv \operatorname{sym}_{A}\left(\text { refl }_{a_{2}}\right)
$$

This computes based on $a_{2} \ldots$ if sym also computes!

Computing symmetry

To solve problem \#3, we define

$$
\operatorname{ap}_{x . \text { refl }_{x}}\left(a_{2}\right) \equiv \operatorname{sym}_{A}\left(\text { refl }_{a_{2}}\right)
$$

This computes based on $a_{2} \ldots$ if sym also computes!
For the most part, computing symmetry is straightforward, e.g.:

$$
\begin{aligned}
& \operatorname{ld}_{u . v . v}^{s_{02}, s_{12}}{ }_{A \times B}(u, v)\left(s_{20}, s_{21}\right) \\
& \equiv \operatorname{ld}_{u . v . \operatorname{ld}_{A}\left(\pi_{1} u, \pi_{1} v\right) \times \operatorname{ld}_{B}\left(\pi_{2} u, \pi_{2} v\right)}^{s_{02}, s_{12}}\left(s_{20}, s_{21}\right) \\
& \equiv \operatorname{ld}_{u . v . v d_{A}\left(\pi_{1} u, \pi_{1} v\right)}^{s_{02}, s_{12}}\left(\pi_{1} s_{20}, \pi_{1} s_{21}\right) \times \operatorname{Id}_{u . v . d_{B}\left(\pi_{2} u, \pi_{2} v\right)}^{s_{02}, s_{12}}\left(\pi_{2} s_{20}, \pi_{2} s_{21}\right) \\
& \equiv \operatorname{ld}_{x \cdot w \cdot \operatorname{ld}_{A}(x, w)}^{\pi_{1} s_{0}, \pi_{1} s_{12}}\left(\pi_{1} s_{20}, \pi_{1} s_{21}\right) \times \operatorname{Id}_{y . z \cdot \mathrm{Id}_{B}(y, z)}^{\pi_{2} s_{02}, \pi_{2} s_{12}}\left(\pi_{2} s_{20}, \pi_{2} s_{21}\right) .
\end{aligned}
$$

So we can define

$$
\operatorname{sym}_{A \times B}((p, q)) \equiv\left(\operatorname{sym}_{A}(p), \operatorname{sym}_{B}(q)\right)
$$

Dependent symmetry

To generalize this to \sum-types, we need dependent symmetry over a square in a telescope (don't worry too much about the syntax):

$$
\frac{\delta_{22}: \operatorname{ld}_{\delta . \delta^{\prime} \cdot \operatorname{ld}}^{\delta_{02}, \delta_{12}}\left(\delta, \delta^{\prime}\right)}{\delta_{20}\left(\delta_{20}, \delta_{21}\right) \quad a_{22}: \operatorname{ld}_{\delta . \delta^{\prime} \cdot \varrho . u \cdot v \cdot \operatorname{ld}_{\Delta \cdot A}^{d}(u, v)}^{\delta_{02}, \delta_{12}, \delta_{22}, a_{20}, a_{12}}\left(a_{20}, a_{21}\right)}
$$

Then we can define

$$
\operatorname{sym}_{\Delta \cdot \sum_{(x: A)} B}^{\delta_{22}}((p, q)) \equiv\left(\operatorname{sym}_{\Delta \cdot A}^{\delta_{22}}(p), \operatorname{sym}_{(\Delta, x: A) \cdot B}^{\delta_{22, p}}(q)\right)
$$

Symmetry for functions

$$
\begin{aligned}
& \operatorname{ld}_{f . g .1 d_{A \rightarrow B}(f, g)}^{f_{02}, f_{12}}\left(f_{20}, f_{21}\right) \equiv \operatorname{ld}_{\left.f . g . \Pi_{\left(x_{0}: A\right)} \Pi_{\left(x_{1}: A\right)} \Pi_{\left(x_{2}:\right.}: f_{A}\left(\mathrm{f}_{A}, x_{1}\right)\right)} \operatorname{ld}_{B}\left(f_{\left.x_{0}, g x_{1}\right)}\left(f_{20}, f_{21}\right)\right. \\
& \equiv \prod_{\left(x_{00}: A\right)} \Pi_{\left(x_{01}: A\right)} \Pi_{\left(x_{02}: \operatorname{ld}_{A}\left(x_{00}, x_{01}\right)\right)} \\
& \prod_{\left(x_{10}: A\right)} \Pi_{\left(x_{11}: A\right)} \prod_{\left(x_{12}: \operatorname{ld}_{A}\left(x_{10}, x_{11}\right)\right)} \\
& \prod_{\left(x_{20}: \operatorname{ld}_{A}\left(x_{00}, x_{10}\right)\right)} \Pi_{\left(x_{21}:: \operatorname{ld}_{A}\left(x_{01}, x_{11}\right)\right)} \prod_{\left(x_{22}: \mathrm{Id}_{x . y . \mathrm{Id}_{A}(x, y)}^{x_{0}, x_{12}}\left(x_{20}, x_{21}\right)\right)} \\
& \operatorname{ld}_{u \cdot v . \operatorname{ld}_{B}(u, v)}^{f_{02} x_{0}, f_{12} x_{12}}\left(f_{20} x_{20}, f_{21} x_{21}\right)
\end{aligned}
$$

So $f_{22}: \operatorname{ld}_{f . g . \operatorname{ld}}^{f_{A \rightarrow B}, f_{12}(f, g)}\left(f_{20}, f_{21}\right)$ is a function from squares in A, with arbitrary boundary, to squares in B with specified boundary. Thus we define sym $A_{A \rightarrow B}$ by transposing both input and output:

$$
\begin{aligned}
& \operatorname{sym}_{A \rightarrow B}\left(f_{22}\right)\left(x_{00}, x_{10}, x_{20}, x_{01}, x_{11}, x_{21}, x_{02}, x_{12}, x_{22}\right) \\
& \quad \equiv \operatorname{sym}\left(f_{22}\left(x_{00}, x_{01}, x_{02}, x_{10}, x_{11}, x_{12}, x_{20}, x_{21}, \operatorname{sym}\left(x_{22}\right)\right)\right)
\end{aligned}
$$

Symmetry for Π-types is similar, using dependent symmetry.

Rules for symmetry

Some obvious rules for symmetry are that it should be an involution:

$$
\operatorname{sym}_{A}\left(\operatorname{sym}_{A}\left(a_{22}\right)\right) \equiv a_{22}
$$

and it should commute with iterated ap on squares:

$$
\operatorname{sym}_{B}\left(\operatorname{ap}_{\mathrm{ap}_{f}}\left(\mathrm{a}_{22}\right)\right) \equiv \operatorname{ap}_{\mathrm{ap}_{f}}\left(\operatorname{sym}_{A}\left(a_{22}\right)\right)
$$

The nullary case of the latter is sym $\left(\right.$ refl $\left._{\text {refl }_{a}}\right) \equiv$ refl $_{\text {refl }}^{a}$. This solves problem \#2:

$$
\operatorname{ap}_{x . \text { refl }_{x}}\left(\text { refl }_{a}\right) \equiv \operatorname{sym}\left(\text { refl }_{\text {refl }_{a}}\right) \equiv \text { refl }_{\text {refl }_{a}}
$$

Higher-dimensional symmetry

For n-dimensional cubes (i.e. n-fold iterated Id-types):

- We would expect symmetries to permute all n dimensions. The symmetric group S_{n} should act on n-cubes.
- We have transpositions of adjacent dimensions, from our sym.

Fortunately, S_{n} is generated by adjacent transpositions!

$$
S_{n}=\left\langle\begin{array}{l|l}
\sigma_{1}, \ldots, \sigma_{n-1} & \begin{array}{l}
\sigma_{k} \sigma_{k}=1 \\
\sigma_{j} \sigma_{k}=\sigma_{k} \sigma_{j} \quad(j+1<k) \\
\sigma_{k} \sigma_{k+1} \sigma_{k}=\sigma_{k+1} \sigma_{k} \sigma_{k+1}
\end{array}
\end{array}\right\rangle
$$

The first two relations follow from the equations on the last slide. To obtain the third, we assert

$$
\operatorname{sym}_{\text {Id }_{A}}\left(\operatorname{ap}_{\text {sym }_{A}}\left(\operatorname{sym}_{\text {Id }_{A}}\left(a_{222}\right)\right)\right) \equiv \operatorname{ap}_{\text {sym }_{A}}\left(\operatorname{sym}_{\text {ld }_{A}}\left(\operatorname{ap}_{\text {sym }_{A}}\left(a_{222}\right)\right)\right) .
$$

Outline

(1) A calculus of telescopes
(2) Some problems revealed by cubes
(3) Symmetry solves all problems
(4) Semicartesian cubes
(5) Semantic identity types

Towards computation by gluing

Symmetry computes the previously stuck term ap $\mathrm{p}_{x . \text { refl }}\left(a_{2}\right)$. But how do we know there aren't other stuck terms?

Obviously, by proving canonicity/normalization.
We haven't done this yet, but the first step (from a modern perspective) is constructing a set-based semantic model to be the codomain for Artin gluing.

Identity contexts

Question

What categorical structure corresponds to our identity types?

- The objects of a category \mathcal{C} correspond to syntactic contexts.
- The fundamental operation on contexts takes Δ to

$$
\mathrm{ID}_{\Delta}: \equiv\left(\delta: \Delta, \delta^{\prime}: \Delta, \varrho: \operatorname{Id}_{\Delta}\left(\delta, \delta,,^{\prime}\right)\right)
$$

which factors the diagonal (i.e. is a path object):

$$
\Delta \xrightarrow{\text { refl }} \mathrm{ID}_{\Delta} \rightarrow\left(\delta: \Delta, \delta^{\prime}: \Delta\right) \cong \Delta \times \Delta
$$

- This operation is functorial (via ap).
- We have natural symmetries $\mathrm{ID}_{\mathrm{ID}_{\Delta}} \cong \mathrm{ID}_{\mathrm{ID}_{\Delta}}$, yielding an S_{n}-action on n-fold identity contexts..

Cubical actions

Thus, an ID-structure on \mathcal{C} is the same as

- A functor ID : $\mathcal{C} \rightarrow \mathcal{C}$
- Nat. trans. $r: 1_{\mathcal{C}} \rightarrow \mathrm{ID}$ and $s, t: \mathrm{ID} \rightrightarrows 1_{\mathcal{C}}$ with $s r=t r=1_{1_{\mathcal{C}}}$
- Natural symmetries ID \circ ID \cong ID \circ ID satisfying S_{n} relations.

Definition

Let \square^{op} be the monoidal category freely generated by an object \mathbb{I}, morphisms $r: \mathbb{1} \rightarrow \mathbb{I}$ and $s, t: \mathbb{I} \rightarrow \mathbb{1}$ with $s r=\operatorname{tr}=1_{\mathbb{1}}$, where $\mathbb{1}$ is the unit, and symmetries $\mathbb{I} \otimes \mathbb{I} \cong \mathbb{I} \otimes \mathbb{I}$ satisfying S_{n} relations.

Then an ID-structure on \mathcal{C} is also equivalently

- A monoidal functor $\square^{\mathrm{op}} \rightarrow[\mathcal{C}, \mathcal{C}]$ and therefore also equivalently
- A coherent action $\square^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathcal{C}$.

The semicartesian cube category

- \square is a semicartesian monoidal category: symmetric monoidal and its unit $\mathbb{1}$ is terminal. Projections, but no diagonals.
- It is also the semicartesian monoidal category freely generated by an object \mathbb{I} and morphisms $s, t: \mathbb{1} \rightarrow \mathbb{I}$.
We call \square the semicartesian cube category.
This is the category used by:
- Bernardy-Coquand-Moulin, for internal parametricity (actually they used a unary version, this would be the binary one)
- Bezem-Coquand-Huber, for the original cubical model
- Cavallo-Harper, for the parametricity direction of parametric cubical type theory

Enrichment

The presheaf category $\widehat{\mathbb{\square}}=$ Set ${ }^{\square^{\text {op }}}$ inherits a Day convolution monoidal structure (also semicartesian):

$$
(X \otimes Y)_{n}=\int^{k, \ell} X_{k} \times Y_{\ell} \times \square(n, k \oplus \ell)
$$

We write \square^{n} for the representable $\square\left(-, \mathbb{I}^{\otimes n}\right)$. Note \square^{0} is terminal.

Theorem

An action $\triangleright: \square^{\mathrm{op}} \times \mathcal{C} \rightarrow \mathcal{C}$ is the same as an enrichment of \mathcal{C} over $\widehat{\square}$ that has powers by representables (write $\square^{n} \pitchfork X \equiv \mathbb{I}^{\otimes n} \triangleright X$).

$$
\begin{aligned}
\operatorname{Map}(A, B)_{n} & :=\mathcal{C}\left(A, \square^{n} \pitchfork B\right) \\
\widehat{\square}\left(X, \operatorname{Map}\left(A, \square^{n} \pitchfork B\right)\right) & \cong \widehat{\square}\left(X \otimes \square^{n}, \operatorname{Map}(A, B)\right)
\end{aligned}
$$

$\widehat{\mathbb{\square}}$-enriched categories are the natural home for H.O.T.T. semantics.

Cubical objects

Of course, $\widehat{\square}$ is enriched over itself.
Similarly, any category $\mathcal{E}^{\square{ }^{\square \rho}}$ of cubical objects is $\widehat{\square}$-enriched, with powers and copowers if \mathcal{E} is complete and cocomplete:

$$
\begin{aligned}
(A \odot X)_{n} & =\int^{k, \ell}\left(A_{k} \times \square(n, k \oplus \ell)\right) \cdot X_{\ell} \\
(A \pitchfork X)_{n} & =\int_{k, \ell}\left(X_{k}\right)^{A_{\ell} \times \square(k, n \oplus \ell)} \\
\left(\square^{m} \pitchfork X\right)_{n} & =X_{n \oplus m} \\
M_{a p}(X, Y)_{n} & =\mathcal{E}^{\square \circ p}\left(X, \square^{n} \pitchfork Y\right)
\end{aligned}
$$

More about the cube category

Up to equivalence:

- The objects of \square are finite sets.
- A morphism $\phi \in \square(m, n)$ is a function $\phi: n \rightarrow m \sqcup\{-,+\}$ that is injective on the preimage of m.
- The monoidal structure $m \oplus n$ is disjoint union.

Sometimes use a skeletal version with objects $\underline{n}=\{0,1, \ldots, n-1\}$, but often the non-skeletal version with all finite sets is better.

- The coface $\delta_{k, \pm} \in \square(n \backslash\{k\}, n)$ is the identity on $n \backslash\{k\}$ and sends k to \pm.
- The codegeneracy $\sigma_{k} \in \square(n, n \backslash\{k\})$ is the inclusion.
- The endomorphism monoid $\square(n, n)$ is the symmetric group S_{n}.

The magic of semicartesian cubes

The monoidal structure of \square is "almost" cartesian; only the injectivity requirement spoils it. If it were cartesian we would have

$$
\text { ¿ } \square(n, k \oplus \ell) \cong \square(n, k) \times \square(n, \ell) . \quad ?
$$

Instead, we have

$$
\square(n, k \oplus \ell) \cong \sum_{\phi: \square(n, k)} \square(n \backslash \phi(k), \ell)
$$

Removing $\phi(k)$ from the second domain ensures the copaired function $k \sqcup \ell \rightarrow n \sqcup\{-,+\}$ is still injective on the preimage of n.

But in some ways this is even better!

Copowers by representables

For $A \in \widehat{\square}$ and $X \in \mathcal{E}^{\square{ }^{\square \mathbf{p}}}$, we have

$$
\begin{aligned}
(A \odot X)_{n} & =\int^{k, \ell}\left(A_{k} \times \square(n, k \oplus \ell)\right) \cdot X_{\ell} \\
\left(\square^{m} \odot X\right)_{n} & =\int^{k, \ell}(\square(k, m) \times \square(n, k \oplus \ell)) \cdot X_{\ell} \\
& =\int^{\ell} \square(n, m \oplus \ell) \cdot X_{\ell} \\
& =\int^{\ell}\left(\sum_{\phi \in \square(n, m)} \square(n \backslash \phi(m), \ell)\right) \cdot X_{\ell} \\
& =\sum_{\phi \in \square(n, m)} \int^{\ell} \square(n \backslash \phi(m), \ell) \cdot X_{\ell} \\
& =\sum_{\phi \in \square(n, m)} X_{n \backslash \phi(m)} .
\end{aligned}
$$

Semicartesian cylinders

Taking $m=1$, we get

$$
\left(\square^{1} \odot X\right)_{n}=\sum_{\phi \in \mathbb{\square}(n, 1)} X_{n \backslash \phi(1)}
$$

A morphism $\phi \in \square(n, 1)$ is a function $1 \rightarrow n \sqcup\{-,+\}$, so either:

- some $k \in n$, in which case $n \backslash \phi(1)=n \backslash\{k\}$, or
- + or - , in which case $n \backslash \phi(1)=n$. Thus:

$$
\left(\square^{1} \odot X\right)_{n}=X_{n}+X_{n}+\sum_{k \in n} X_{n \backslash\{k\}} .
$$

An n-cube in $\square^{1} \odot X$ is either an n-cube in the left-hand copy of X, an n-cube in the right-hand copy of X, or an $(n-1)$-cube in X stretched out in some dimension along the cylinder.

There is almost no other cube category for which this holds.

Outline

(1) A calculus of telescopes
(2) Some problems revealed by cubes
(3) Symmetry solves all problems
(4) Semicartesian cubes
(5) Semantic identity types

Semantic identity types

In a $\widehat{\square}$-enriched category with representable powers, we also need:
(1) Coherence theorems.
(2) Transport and lifting ("fibrancy").
\leftarrow next time
(3) Categorical computation rules for Id, up to isomorphism.

Semantic identity types

In a $\widehat{\square}$-enriched category with representable powers, we also need:
(1) Coherence theorems. \leftarrow next time
(2) Transport and lifting ("fibrancy").
\leftarrow next time
(3) Categorical computation rules for Id, up to isomorphism.

It's tempting to think that, at least in $\widehat{\square}$, we can just define $\mathrm{Id}_{A \times B}$, $\operatorname{ld}_{A \rightarrow B}$, etc., to be whatever we want. But we can't: Id X must be defined as $\square^{1} \pitchfork X$. What we can define is the individual sets of n-cubes in a particular $X \in \widehat{\mathbb{\square}}$. But:

- It can be non-obvious how these lead to a categorical characterization of the entire cubical set Id_{X}.
- For type formers like $A \times B, A \rightarrow B$, we don't even have this much choice: they are determined by their universal properties.

The computation rules for Id are non-trivial theorems about $\mathcal{E}^{\square^{\mathrm{op}}}$.

Identity types of products

Note $x: A, y: A \vdash \operatorname{ld}_{A}(x, y): \mathrm{U}$ is represented semantically by the projection from the representable power $\square^{1} \pitchfork A \rightarrow A \times A$.

Since ($\square^{1} \pitchfork-$) is a right adjoint, it preserves products:

Syntactically, this gives

$$
\operatorname{Id}_{A \times B}(u, v) \cong \operatorname{Id}_{A}\left(\pi_{1} u, \pi_{1} v\right) \times \operatorname{Id}_{B}\left(\pi_{2} u, \pi_{2} v\right) .
$$

Same idea works for Σ-types. A coherence theorem will improve \cong to $=$.

Up next

Plan for the three talks:
(1) Basic syntax of H.O.T.T.
(2) Symmetries and semicartesian cubes
(3) Univalent universes

