Tutorial on Polynomial Functors and Type Theory

Steve Awodey

Workshop on Polynomial Functors Topos Institute March 2022

Outline

Part I

- 1 Polynomials
- 2 Type theory
- 3 Natural models of type theory

Part II

- 4 Universes in presheaves
- 5 A polynomial monad
- 6 Propositions and types

Let ${\mathcal E}$ be a locally cartesian closed category.

Thus for every map $f: B \to A$ we have adjoint functors on the slice categories,

$$\begin{array}{ccc}
B & & \mathcal{E}/B \\
\downarrow^f & & \Sigma_f \left(\begin{array}{c} \uparrow^* \\ \uparrow^* \end{array} \right) \Pi_f \\
A & & \mathcal{E}/A
\end{array}$$

When A = 1 we write

$$\Sigma_B \dashv B^* \dashv \Pi_B$$

for the corresponding functors determined by $B \rightarrow 1$.

Definition

The polynomial endofunctor $P_f:\mathcal{E}\longrightarrow\mathcal{E}$ determined by a map

$$f: B \longrightarrow A$$

is the composite

which we may write in the internal language of ${\mathcal E}$ as

$$P_f X = \Sigma_A \Pi_f B^* X = \Sigma_A \Pi_f f^* A^* X$$
$$= \Sigma_A \Pi_f f^* A^* X = \Sigma_A (A^* X)^f = \Sigma_{x:A} X^{B(x)}.$$

The construction of P_fX can be visualized as follows:

Lemma (UMP of $P_f X$)

Maps $p: Z \rightarrow P_f X$ correspond naturally to pairs (a, b) where

$$a: Z \to A$$
 $b: a^*B \to X$.

Proof.

Now suppose we have a pullback square

Then for each X we get a map $t_X : P_g X \to P_f X$ as follows:

because the lower square is a pullback by Beck-Chavalley,

$$P_g X \cong t^* P_f X$$
.

Then for each X we get map $t_X : P_g X \to P_f X$ as follows:

because the lower square is a pullback by Beck-Chavalley,

$$P_g X \cong t^* P_f X$$
.

Indeed, since $g = t^* f$, we have

$$P_{t^*f}X \cong P_gX \cong t^*P_fX.$$

Then for each $h: Y \to X$ we have the pullback square below.

Proposition

Taking the polynomial functor $P_f: \mathcal{E} \to \mathcal{E}$ of a map $f: B \to A$ determines a functor

$$P: \mathcal{E}_{\mathsf{cart}}^{\to} \longrightarrow \mathsf{End}(\mathcal{E}).$$

The cartesian squares in $\mathcal{E}^{\rightarrow}$ are taken to cartesian natural transformations between endofunctors on \mathcal{E} . Moreover, the polynomials are closed under composition.

Proof.

It remains only to show that polynomial functors compose: given any $f: B \to A$ and $g: D \to C$, there is a map $h: F \to E$ such that

$$P_g \circ P_f = P_h : \mathcal{E} \longrightarrow \mathcal{E}.$$

See Spivak (2022) for the definition of $h = g \triangleleft f$.

2. Dependent type theory

Types:

$$A, B, \ldots$$

Terms:

$$x:A, b:B, \ldots$$

Dependent types: ("type-indexed families of types")

$$x:A \vdash B(x)$$

$$x:A,y:B(x)\vdash C(x,y)$$

. .

Type forming operations:

$$\sum_{x:A} B(x)$$
, $\prod_{x:A} B(x)$, ...

Term forming operations:

$$\langle a, b \rangle$$
, $\lambda x.b(x)$, ...

Equations:

$$s = t : A$$

Contexts:

$$\frac{x:A\vdash B(x)}{x:A,\ y:B(x)\vdash}$$

Writing Γ for any context, we have:

$$\frac{\Gamma \vdash C}{\Gamma, z : C \vdash}$$

Sums:

$$\frac{\Gamma, x : A \vdash B(x)}{\Gamma \vdash \sum_{x : A} B(x)} \qquad \frac{\Gamma \vdash a : A, \quad \Gamma \vdash b : B(a)}{\Gamma \vdash \langle a, b \rangle : \sum_{x : A} B(x)}$$

$$\frac{\Gamma \vdash c : \sum_{x : A} B(x)}{\Gamma \vdash \text{fst } c : A} \qquad \frac{\Gamma \vdash c : \sum_{x : A} B(x)}{\Gamma \vdash \text{snd } c : B(\text{fst } c)}$$

$$\Gamma \vdash \text{fst} \langle a, b \rangle = a : A \qquad \Gamma \vdash \text{snd} \langle a, b \rangle = b : B$$

$$\Gamma \vdash \langle \text{fst } c, \text{snd } c \rangle = c : \sum_{x : A} B(x)$$

Sums:

$$\frac{\Gamma, x : A \vdash B(x)}{\Gamma \vdash \sum_{x : A} B(x)} \qquad \frac{\Gamma \vdash a : A, \quad \Gamma \vdash b : B(a)}{\Gamma \vdash \langle a, b \rangle : \sum_{x : A} B(x)}$$

$$\frac{\Gamma \vdash c : \sum_{x : A} B(x)}{\Gamma \vdash \text{fst } c : A} \qquad \frac{\Gamma \vdash c : \sum_{x : A} B(x)}{\Gamma \vdash \text{snd } c : B(\text{fst } c)}$$

$$\Gamma \vdash \text{fst} \langle a, b \rangle = a : A \qquad \Gamma \vdash \text{snd} \langle a, b \rangle = b : B$$

$$\Gamma \vdash \langle \text{fst } c, \text{snd } c \rangle = c : \sum_{x : A} B(x)$$

Sums:

$$\frac{x:A \vdash B(x)}{\sum_{x:A} B(x)} \qquad \frac{a:A \qquad b:B(a)}{\langle a,b\rangle : \sum_{x:A} B(x)}$$

$$\frac{c:\sum_{x:A} B(x)}{\mathsf{fst } c:A} \qquad \frac{c:\sum_{x:A} B(x)}{\mathsf{snd } c:B(\mathsf{fst } c)}$$

$$\mathsf{fst}\langle a,b\rangle = a:A \qquad \mathsf{snd}\langle a,b\rangle = b:B$$

$$\langle \mathsf{fst } c, \mathsf{snd } c\rangle = c:\sum_{x:A} B(x)$$

Products:

$$\frac{x:A \vdash B(x)}{\prod_{x:A} B(x)} \qquad \frac{x:A \vdash b(x):B(x)}{\lambda x.b(x):\prod_{x:A} B(x)}$$

$$\frac{a:A \qquad f:\prod_{x:A} B(x)}{fa:B(a)}$$

$$x:A \vdash (\lambda x.b)x = b:B(x)$$

$$\lambda x.fx = f:\prod_{x:A} B(x)$$

2. Dependent type theory: Substitution

A tuple of terms in context $\sigma : \Delta \to \Gamma$ induces an operation

$$\frac{\sigma: \Delta \to \Gamma \qquad \Gamma \vdash a: A}{\Delta \vdash a[\sigma] : A[\sigma]}$$

which preserves everything.

For example given $y: Y \vdash s: Z$ and $z: Z, x: A(z) \vdash B(z, x)$ we can do

$$\frac{y:Y\vdash s:Z\quad \frac{z:Z,x:A(z)\vdash B(z,x)}{z:Z\vdash \prod_{x:A(z)}B(z,x)}}{y:Y\vdash (\prod_{x:A(z)}B(z,x))[s/z]}\quad \text{or}\quad \frac{\frac{y:Y\vdash s:Z\quad z:Z,x:A(z)\vdash B(z,x)}{y:Y,x:A(s)\vdash B(s,x)}}{y:Y\vdash \prod_{x:A(s)}B(s,x)}$$

and syntactically the results are the same,

$$(\prod_{x:A(z)} B(z,x))[s/z] = \prod_{x:A(s)} B(s,x)$$
.

This suggests a reformulation as an *indexed algebraic structure*.

Definition

A natural transformation $f:Y\to X$ of presheaves on a category $\mathbb C$ is called *representable* if its pullback along any $yC\to X$ is representable:

Proposition (A, Fiore)

A representable natural transformation is the same thing as a **Category with Families** in the sense of Dybjer.

Definition

A natural transformation $f: Y \to X$ of presheaves on a category $\mathbb C$ is called *representable* if its pullback along any $yC \to X$ is representable: for all $C \in \mathbb C$ and $x \in X(C)$ there is given $p: D \to C$ and $y \in Y(D)$ such that the following is a pullback:

Proposition (A, Fiore)

A representable natural transformation equipped with a choice of such pullbacks is the same thing as a Category with Families in the sense of Dybjer.

Write the objects and arrows of \mathbb{C} as $\sigma: \Delta \to \Gamma$, thinking of a category of contexts and substitutions.

Let $p:\dot{\mathsf{U}}\to\mathsf{U}$ be a representable map of presheaves on $\mathbb{C}.$

Think of U as the presheaf of types, U as the presheaf of terms, and then p gives the type of a term.

$$\Gamma \vdash A \quad \approx \quad A \in U(\Gamma)$$
 $\Gamma \vdash a : A \quad \approx \quad a \in \dot{U}(\Gamma)$

where $A = p \circ a$.

Naturality of $p: \dot{U} \to U$ means that for any substitution $\sigma: \Delta \to \Gamma$, we have the required action on types and terms:

$$\Gamma \vdash A \quad \Rightarrow \quad \Delta \vdash A[\sigma]
\Gamma \vdash a : A \quad \Rightarrow \quad \Delta \vdash a[\sigma] : A[\sigma]$$

Given any further $\tau: \Delta' \to \Delta$ we clearly have

$$A[\sigma][\tau] = A[\sigma \circ \tau]$$
 $a[\sigma][\tau] = a[\sigma \circ \tau]$

and for the identity substitution $1:\Gamma\to\Gamma$

$$A[1] = A \qquad a[1] = a.$$

This is the basic structure of a CwF.

The remaining operation of **context extension**

$$\frac{\Gamma \vdash A}{\Gamma, x : A \vdash}$$

is modeled by the representability of $p:\dot{\mathsf{U}}\to\mathsf{U}$ as follows.

Given $\Gamma \vdash A$ we need a new context $\Gamma.A$ together with a substitution $p_A : \Gamma.A \to A$ and a term

$$\Gamma.A \vdash q_A : A[p_A]$$
.

Let $p_A : \Gamma.A \to \Gamma$ be the pullback of p along A.

$$\begin{array}{ccc}
\Gamma.A \xrightarrow{q_A} \dot{U} \\
\downarrow \rho_A \downarrow & \downarrow \rho \\
\Gamma \xrightarrow{\Delta} U
\end{array}$$

The map $q_A : \Gamma.A \to \dot{U}$ gives the required term $\Gamma.A \vdash q_A : A[p_A]$. Syntactically, this is just the term

$$\Gamma, x: A \vdash x: A$$
.

The pullback means that given any substitution $\sigma: \Delta \to \Gamma$ and term $\Delta \vdash a: A[\sigma]$ there is a map

$$(\sigma, a) : \Delta \rightarrow \Gamma.A$$

satisfying

$$egin{aligned} & oldsymbol{p}_{\mathcal{A}}(\sigma, oldsymbol{a}) = \sigma \ & oldsymbol{q}_{\mathcal{A}}[\sigma, oldsymbol{a}] = oldsymbol{a} \end{aligned}$$

By the uniqueness of (σ, a) , we also have

$$(\sigma,a)\circ \tau \ = \ (\sigma\circ \tau,a[\tau]) \qquad \text{for any } \tau:\Delta'\to \Delta$$

and

$$(p_A,q_A)=1.$$

These are all the laws for a CwF.

3. Natural models, algebraic formulation

Natural models can be presented as an essentially algebraic theory, with several sorts, partial operations, and equations between terms.

We have four basic sorts:

$$C_0$$
, C_1 , A , B

and the following operations and equations:

category: the usual domain, codomain, identity and composition operations for the index category \mathbb{C} :

$$C_1 \times_{C_0} C_1 \xrightarrow{\circ} C_1 \xrightarrow{\operatorname{cod} \atop \longleftarrow \operatorname{id} \xrightarrow{\operatorname{dom}}} C_0$$
,

together with the familiar equations for a category.

3. Natural models, algebraic formulation

presheaf: the indexing and action operations for the presheaves $A, B : \mathbb{C}^{op} \to \mathsf{Set}$:

$$\begin{array}{cccc}
C_1 \times_{C_0} A \xrightarrow{\alpha} A & C_1 \times_{C_0} B \xrightarrow{\beta} B \\
\downarrow^{\rho_A} & \downarrow^{\rho_B} \\
C_0 & C_0
\end{array}$$

together with the equations making α an action:

$$\begin{aligned} p_{A}(\alpha(u,a)) &= \mathsf{dom}(u), \\ \alpha(u \circ v, a) &= \alpha(v, \alpha(u, a)), \\ \alpha(1_{p_{A}(a)}, a) &= a, \end{aligned}$$

and similarly for β .

3. Natural models, algebraic formulation

natural transformation: an operation

$$f: A \rightarrow B$$

satisfying the naturality equations:

$$p_B \circ f = p_A, \qquad f \circ \alpha = \beta \circ (C_1 \times_{C_0} f).$$

representable: a natural transformation $f: A \rightarrow B$ is representable just if the associated functor,

$$\int_{\mathbb{C}} f : \int_{\mathbb{C}} A \to \int_{\mathbb{C}} B$$

on the categories of elements has a right adjoint

$$f^*: \int_{\mathbb{C}} B \to \int_{\mathbb{C}} A$$

(an algebraic condition, see Newstead (2018)).

3. Natural models and initiality

- The notion of a natural model is thus essentially algebraic.
- The algebraic homomorphisms correspond exactly to syntactic translations.
- There is an initial algebra as well as a free algebra over any signature of basic types and terms.
- The rules of dependent type theory specify a procedure for generating the free algebra.

3. Natural models and tribes

Let $p: \dot{U} \to U$ be a natural model.

The fibration

$$\int_{\mathbb{C}}\mathsf{U}\to\mathbb{C}$$

of all *display maps* $p_A : \Gamma.A \to \Gamma$, for all $A : \Gamma \to U$, determines a *clan* in the sense of Joyal (2017).

Conversely, given a clan $\mathcal{D} \hookrightarrow \mathbb{C}^{\rightarrow}$, there is a natural model in $\hat{\mathbb{C}}$,

$$\coprod_{f \in \mathcal{D}} \mathsf{y} f : \coprod_{f \in \mathcal{D}} \mathsf{ydom}(f) \longrightarrow \coprod_{f \in \mathcal{D}} \mathsf{ycod}(f).$$

This natural model $p_{\mathcal{D}}: \mathsf{U}_{\mathcal{D}} \to \mathsf{U}_{\mathcal{D}}$ determines a *splitting* of the associated fibration $\mathcal{D} \to \mathbb{C}$.

3. Natural models and tribes

Theorem (ish)

There is an adjunction between the categories of clans and of natural models, which specializes to a biequivalence between (certain) tribes and natural models with (certain) type-forming operations.

See A. (2017) for details.

4. Universes in presheaves

Recall the notion of a Hofmann-Streicher universe

$$\dot{V} \to V$$

in a category of presheaves $\widehat{\mathbb{C}} = \mathsf{Set}^{\mathbb{C}^\mathsf{op}}$.

- 1. Let set \hookrightarrow Set be the full subcategory of *small* sets $s < \kappa$.
- 2. Let set = 1/set be the category of small *pointed* sets.
- 3. Then for $c \in \mathbb{C}$ let:

$$V(c) = \operatorname{Cat}(\mathbb{C}/c^{\operatorname{op}}, \operatorname{set})$$
 the *set* of small presheaves on \mathbb{C}/c , $\dot{V}(c) = \operatorname{Cat}(\mathbb{C}/c^{\operatorname{op}}, \operatorname{set})$... small *pointed* presheaves on \mathbb{C}/c .

- 4. The action on $d \to c$ is given by *pre*composition with *post*composition $\mathbb{C}/_d \to \mathbb{C}/_c$.
- 5. There is a natural transformation $\dot{V} \to V$ determined by composing with the forgetful functor $\dot{set} \to set$

4. Universes in presheaves

Definition

In a category $\widehat{\mathbb{C}} = \mathsf{Set}^{\mathbb{C}^{\mathsf{op}}}$ of presheaves,

- an object A is *small* if its values A(c) are small, for all $c \in \mathbb{C}$,
- a map A → X is small if its fibers A_x = x*A are small, for all x : yc → X,

Note that small maps are stable under pullback. And that the map $\dot{V} \to V$ is small, since the fiber \dot{V}_S over $S: yc \to V$ has as elements pointed presheaves $\dot{S}: \mathbb{C}/_c \to \dot{set}$.

4. Universes in presheaves

Proposition

For every small map $A \to X$ there is a canonical classifying map $\alpha: X \to V$ fitting into a pullback diagram of the form

Proof.

Do it first for the small maps $A_x \to yc$, for all $x : yc \to X$, for which there is a canonical choice of $\alpha_x : yc \to V$. Then use the presentation of X as a colimit over its category of elements $(c,x) \in \int_{\mathbb{C}} X$ to get $\alpha : X \to U$.

4. Universes in presheaves

Remark

For large enough κ the small maps are closed under the adjoints $\Sigma_A\dashv A^*\dashv \Pi_A$ to pullback along small maps $A\to X$.

This fact gives rise to natural operations on the universe $\dot{V} \to V$ that can be used to (coherently!) model the corresponding type-forming operations, as follows:

- a universe $\dot{V} \to V$ is a natural model on the category of contexts $\widehat{\mathbb{C}},$
- ullet a universe $\dot{V}
 ightarrow V$ generates a polynomial endofunctor

$$P:\widehat{\mathbb{C}}\longrightarrow\widehat{\mathbb{C}}.$$

 The type forming operations in the natural model will correspond to algebraic structure on the polynomial endofunctor.

Let $p:\dot{\mathsf{U}}\to\mathsf{U}$ be a natural model on an arbitrary category \mathbb{C} , and consider the associated polynomial endofunctor,

$$P = \mathsf{U}_! \circ p_* \circ \dot{\mathsf{U}}^* : \widehat{\mathbb{C}} \longrightarrow \widehat{\mathbb{C}},$$

which we can write as,

$$P(X) = \sum_{A:U} X^{[A]},$$

where $[A] = p^{-1}(A)$ is the fiber of $p : \dot{U} \to U$ at A : U.

Lemma

Maps $\Gamma \to P(X)$ correspond naturally to pairs (A, B) where

Applying *P* to U *itself* therefore gives the object

$$PU = \sum_{A:U} U^{[A]},$$

for which maps $\Gamma \to PU$ correspond naturally to pairs (A,B) of the form,

Since maps $\Gamma \to U$ correspond naturally to types in context $\Gamma \vdash A$, we see that maps $\Gamma \to PU$ correspond naturally to types in the extended context $\Gamma.A \vdash B$.

Proposition

For a natural model $\dot{U} \rightarrow U$, the polynomial object

$$PU = \sum_{A \in I} U^{[A]}$$

classifies types in context. Specifically, there is a natural isomorphism between maps $\Gamma \to PU$ and pairs (A,B) where

$$\Gamma.A \vdash B.$$

Similarly, the object

$$P\dot{\mathsf{U}} = \sum_{A:\mathsf{U}} \dot{\mathsf{U}}^{[A]}$$

classifies *terms* in context: pairs (A, b : B) where $\Gamma.A \vdash b : B$, for (A, B) the composite with $Pp : P\dot{U} \rightarrow PU$.

Proposition

The natural model $p: \dot{U} \to U$ models the rules for products just if there are maps λ, Π making the following a pullback.

Proposition

The map $p: \dot{U} \to U$ models the rules for products just if there are maps λ, Π making the following a pullback.

Proposition

The map $p:\dot{U}\to U$ models the rules for products just if there are maps λ,Π making the following a pullback.

Proposition

The map $p:\dot{U}\to U$ models the rules for products just if there are maps λ,Π making the following a pullback.

$$A \vdash b : B \qquad \qquad \lambda_{A}b$$

$$\sum_{A:U} \dot{U}^{[A]} \qquad P(\dot{U}) \xrightarrow{\lambda} \dot{U}$$

$$\sum_{A:U} U^{[A]} \qquad P(U) \xrightarrow{\Pi} U$$

$$A \vdash B \qquad \qquad \Pi_{A}B$$

Proposition

The map $p: \dot{U} \to U$ models the rules for products just if there are maps λ, Π making the following a pullback.

Proof:

 $A \vdash B$ $\Pi_A B$

Proposition

The map $p: \dot{U} \to U$ models the rules for products just if there are maps λ, Π making the following a pullback.

$$A \vdash fx : B \qquad \qquad \lambda_A fx = f$$

$$\sum_{A:U} \dot{U}^{[A]} \qquad P(\dot{U}) \xrightarrow{\lambda} \dot{U}$$

$$\sum_{A:U} V^{[A]} \qquad P(U) \xrightarrow{\Pi} U$$

$$A \vdash B \qquad \qquad \Pi_A B$$

Proposition

The map $p:\dot{U}\to U$ models the rules for sums just if there are maps (pair, Σ) making the following a pullback

$$Q \xrightarrow{\text{pair}} \rightarrow \dot{U}$$

$$\downarrow q \qquad \qquad \downarrow p$$

$$P(U) \xrightarrow{\Sigma} \qquad U$$

where $q = p \triangleleft p : Q \rightarrow P(U)$ is the generating map of the composite $P_q = P_{p \triangleleft p} = P_p \circ P_p$.

Explicitly:

$$Q = \sum_{A:U} \sum_{B:UA} \sum_{x:A} B(x)$$

Rules for a terminal type T

$$\overline{\vdash \mathsf{T}}$$
 $\overline{\vdash * : \mathsf{T}}$ $\overline{x : \mathsf{T} \vdash x = * : \mathsf{T}}$

Proposition

The map $p:\dot{U}\to U$ models the rules for a terminal type just if there are maps (*,T) making the following a pullback.

Consider the pullback squares for T and Σ .

These determine cartesian natural transformations between the corresponding polynomial endofunctors.

$$\tau: 1 \Rightarrow P$$
 $\sigma: P \circ P \Rightarrow P$

Theorem (A-Newstead)

A natural model $p: \dot{U} \to U$ models the T and Σ type formers just if the associated polynomial endofunctor P has the structure maps of a cartesian monad.

$$\tau: 1 \Rightarrow P$$
 $\sigma: P \circ P \Rightarrow P$

What about the monad laws?

The monad laws correspond to the following type isomorphisms.

$\sigma \circ P\sigma = \sigma \circ \sigma_P$	$\sum_{a:A} \sum_{b:B(a)} C(a,b) \cong \sum_{(a,b):\sum_{a:A} B(a)} C(a,b)$
$\sigma \circ P au = 1$	$\sum_{a:A} 1 \cong A$
$\sigma \circ au_{P} = 1$	$\sum_{x:1} A \cong A$

The pullback square for Π

determines a cartesian natural transformation

$$\pi: P^2p \Rightarrow p$$

where $P^2: \hat{\mathbb{C}}^2 \to \hat{\mathbb{C}}^2$ is the extension of P to the arrow category.

Theorem (A-Newstead)

A natural model $p:\dot{U}\to U$ models the Π type former just if it has an algebra structure for the extended endofunctor P^2 ,

$$\pi: P^2p \Rightarrow p.$$

The algebra laws correspond to the following type isomorphisms.

$\pi \circ P\pi = \pi \circ \sigma$	$\prod_{a:A} \prod_{b:B(a)} C(a,b) \cong \prod_{(a,b):\sum_{a:A} B(a)} C(a,b)$
$\pi \circ au \ = \ 1$	$\prod_{x:1} A \cong A$

We can compare these operations on types

$$\Sigma, \Pi : PU \longrightarrow U$$

with those on subobjects of objects A in the topos $\widehat{\mathbb{C}}$,

$$\exists_A, \forall_A : \Omega^A \longrightarrow \Omega.$$

Consider

$$P\Omega = \sum_{A:\Pi} \Omega^A$$

for the polynomial endofunctor of $\dot{U} \to U$. We then have the comparable maps

$$\exists$$
, \forall : $P\Omega \longrightarrow \Omega$.

Proposition

There is a retraction $i:\Omega\rightarrowtail U$, $s:U\twoheadrightarrow \Omega$ such that the following squares commute.

For the proof, factor the natural model $p:\dot{\mathsf{U}}\to\mathsf{U}$ as on the right below.

So $||\dot{U}|| \rightarrow U$ is a universal family of small propositions.

Let $s: \mathsf{U} \to \Omega$ classify the mono $||\dot{\mathsf{U}}|| \rightarrowtail \mathsf{U}.$

Let $s: \mathsf{U} \to \Omega$ classify the mono $||\dot{\mathsf{U}}|| \rightarrowtail \mathsf{U}$.

Let $i: \Omega \to U$ classify the family of small propositions $1 \rightarrowtail \Omega$.

$$||\cdot||:=i\circ s:\mathsf{U}\to\mathsf{U}.$$

We have

$$s\circ i=1:\Omega o\Omega.$$

So

$$\Omega = im(||\cdot||).$$

The following diagrams then commute, as required.

References

- Awodey, S. (2017) Natural models of homotopy type theory, MSCS 28(2). arXiv:1406.3219
- Awodey, S. and N. Gambino and S. Hazratpour (2022) Kripke-Joyal semantics for homotopy type theory. arXiv:2110.14576
- Awodey, S. and C. Newstead (2018) Polynomial pseudomonads and dependent type theory. arXiv:1802.00997
- 4. Dybjer, P. (1995) Internal Type Theory. Types 1995.
- 5. Joyal, A. (2017) Notes on clans and tribes. arXiv:1710.10238
- Newstead, C. (2018) Algebraic Models of Dependent Type Theory, CMU PhD thesis. arXiv:2103.06155
- 7. Spivak, D. (2022) A summary of categorical structures in Poly. arXiv:2202.00534

Appendix: Natural models of HoTT

Theorem

A category $\mathbb C$ with a terminal object 1 admits a natural model of Homotopy type theory if it has a class of maps $\mathcal D$ satisfying the following conditions:

- total: every $C \rightarrow 1$ is in \mathcal{D} ,
- **stable:** \mathcal{D} is closed under pullbacks along all maps in \mathbb{C} ,
- closed: \mathcal{D} is closed under composition and under dependent products along all maps in \mathcal{D} ,
- **factorizing:** every map $f: A \to B$ in $\mathbb C$ factors as $f = d \circ a$ with $a \in {}^{\pitchfork}\mathcal D$ and $d \in \mathcal D$.

Proof.

Uses the main idea of the Lumsdaine-Warren coherence theorem: a left-adjoint splitting of the fibration of \mathcal{D} -maps.

Appendix: Natural models of HoTT

Examples of categories satisfying the conditions of the theorem:

- Kan complexes with the fibration wfs on sSets.
- Any right-proper Cisinski model category (restricted to the fibrant objects).
- Groupoids, *n*-Groupoids, ∞-Groupoids.
- Joyal's π h-tribes.
- The syntactic category of contexts of type theory itself.