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1. Polynomials

Let £ be a locally cartesian closed category.

Thus for every map f : B — A we have adjoint functors on the
slice categories,

B £/B
f zf< Tf> Me
A E/A

When A =1 we write
g 1B HMg

for the corresponding functors determined by B — 1.



1. Polynomials

Definition
The polynomial endofunctor P : £ — £ determined by a map

f:B— A
is the composite
3 Fr 3
N A
E/B——E/A
My

which we may write in the internal language of £ as
PrX = ZANB* X = L AN A X
= TAMFAX = TA(A*X) = ToeaX B,



1. Polynomials
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The construction of P¢X can be visualized as follows:

X<=—XxB PeX

L

B——A



1. Polynomials

Lemma (UMP of PrX)
Maps p : Z — P¢X correspond naturally to pairs (a, b) where

a:Z— A b:a*B — X.

Proof.




1. Polynomials

Now suppose we have a pullback square

D——B

O



1. Polynomials

Then for each X we get a map tx : PgX — PrX as follows:

D x X B x X
D——B
_
l lf
/C | A\
P X i = PeX,

because the lower square is a pullback by Beck-Chavalley,

Py X = t*PrX.



1. Polynomials
Then for each X we get map tx : P,X — P¢X as follows:

D x X Bx X
D——B
_
=l
TN
P X - - PeX,

because the lower square is a pullback by Beck-Chavalley,
PgX = t*PX.
Indeed, since g = t*f, we have

PeorX =2 PgX = t*PeX.



1. Polynomials
Then for each h: Y — X we have the pullback square below.

DxY Y BxY
_
Dxh Bxh
Y Y
D x X\ tx X / X
D——B
_
)
/ - A\
P X X PrX
A A
Pgh Prh

ty



1. Polynomials

Proposition
Taking the polynomial functor P : £ — & of amapf : B — A
determines a functor

P&

cart

— End(&).

The cartesian squares in £ are taken to cartesian natural
transformations between endofunctors on £. Moreover, the
polynomials are closed under composition.

Proof.
It remains only to show that polynomial functors compose: given
any f: B— Aand g: D — C, thereisa map h: F — E such that

PgOPf:PhZE—>8.

See Spivak (2022) for the definition of h= g <f. O



2. Dependent type theory

Types:
A B, ...
Terms:
x:A, b:B, ...
Dependent types: (“type-indexed families of types”)
x:AF B(x)

x:Ay:B(x)F C(x,y)

Type forming operations:
ZX:A B(X)v Hx:A B(X))

Term forming operations:
(a, b), Ax.b(x), ...

Equations:
s=t:A



2. Dependent type theory: Rules

Contexts:
x:At B(x)

x:A, y:B(x)F

Writing I for any context, we have:

e
Mz:CkH



2. Dependent type theory: Rules

Sums:
M x:Al B(x) M-a:A, TFb:B(a)
M ZX:A B(X) re <a> b> : ZXIA B(X)
MN-c:> . aB(x) MN-c:> . aB(x)
M-fstc: A [+ sndc: B(fstc)
I+ fst(a,b) =a: A ltsnd(a,b)=b:B

M= (fstc,sndc) =c: ) .2 B(x)



2. Dependent type theory: Rules

Sums:
M x:Al B(x) Ma:A, T+ b:B(a)
M ZX:A B(X) rE <a> b> : ZX:A B(X)
FEc: >, .4BKx) FEc: >, .4B(Kx)
[Efstc: A [+ sndc: B(fstc)
[+ fst(a,b) =a: A lFsnd(a,b)=b:B

[ (fstc,sndc) =c: ) .2 B(x)



2. Dependent type theory: Rules

Sums:
x:AF B(x) a:A b:B(a)
ZX:A B(X) <a7 b> : ZXIA B(X)
c: EXZA B(X) c: ZX:A B(X)
fstc: A snd ¢ : B(fstc)
fst(a,b) =a: A snd(a,b) =b: B

(fste,sndc) =c: ) .2 B(x)



2. Dependent type theory: Rules

Products:
x:AF B(x) x:AF b(x):B(x)
HX:A B(X) AXb(X) : HX:A B(X)
a:A f:1l.aB(x)
fa: B(a)

x:AF (Ax.b)x = b: B(x)
Ax.fx = f:[],.0B(x)



2. Dependent type theory: Substitution

A tuple of terms in context o : A — [ induces an operation

o:A—T NFa: A
A F afo] : Alo]

which preserves everything.

For example given y : Y s: Z and z: Z,x: A(z) F B(z, x) we can
do

. . z:Z, x:A(z) -B(z,x) Ybs:Z  z:Z,x:A(z)FB(z,x)
y:Yks:Z z:ZF [Lea@z) B(z:X) . Sy:Y,x:A(s)FB(s,x)

Yy YF ([one B@ s/l & Y F T Bls:X)

and syntactically the results are the same,

(HX:A(Z) B(27 X))[S/Z] = Hx:A(s) B(S7X) :

This suggests a reformulation as an indexed algebraic structure.



3. Natural models

Definition
A natural transformation f : Y — X of presheaves on a category C

is called representable if its pullback along any yC — X is
representable:

D—>Y
yJ

|k

yC——X

Proposition (A, Fiore)

A representable natural transformation is the same thing as a
Category with Families in the sense of Dybjer.



3. Natural models

Definition

A natural transformation f : Y — X of presheaves on a category C
is called representable if its pullback along any yC — X is
representable: for all C € C and x € X(C) there is given

p:D — Candy € Y(D) such that the following is a pullback:

D—2>Y
e
ypl lf
Proposition (A, Fiore)
A representable natural transformation equipped with a choice of

such pullbacks is the same thing as a Category with Families in
the sense of Dybjer.



3. Natural models

Write the objects and arrows of C as o : A — T, thinking of a
category of contexts and substitutions.

Let p: U — U be a representable map of presheaves on C.

Think of U as the presheaf of types, U as the presheaf of terms,
and then p gives the type of a term.

rFA ~ Aeu(n
rFa:A ~ aeU(

U
T
r~  .u

A

where A= po a.



3. Natural models
Naturality of p: U — U means that for any substitution

o : A — T, we have the required action on types and terms:

M-A = Ak Afq]
N-a:A = At afo]: Alo]

a[o] 0
i l,,

Alo]




3. Natural models

Given any further 7 : A’ — A we clearly have
Alo][r] = Ao o 7] alo][r] = a[o o 7]
and for the identity substitution 1: " — T
Alll=A a[l] = a.

This is the basic structure of a CwF.



2. Natural models, context extension

The remaining operation of context extension

NrN=A
Mx:AlF

is modeled by the representability of p: U — U as follows.



3. Natural models, context extension

Given I' = A we need a new context [.A together with a
substitution pa : LA — A and a term

FAb ga: Alpal -
Let pa: [.A — T be the pullback of p along A.

rA-4.
_

U
pa ip
u

H

The map ga : I.A — U gives the required term I.A+F ga Alpal-
Syntactically, this is just the term

Hx:AF x:A.



3. Natural models, context extension

PA J{p
FHA U

The pullback means that given any substitution o : A — I and
term A F a: Alo] there is a map

(0,a): A —T.A
satisfying

pa(o,a) =o

galo, al = a.



3. Natural models, context extension

By the uniqueness of (o, a), we also have
(0,a)or = (cor,alr]) forany7:A"— A

and
(pA7 CIA) =1

These are all the laws for a CwF.



3. Natural models, algebraic formulation

Natural models can be presented as an essentially algebraic theory,
with several sorts, partial operations, and equations between terms.

We have four basic sorts:
C07 C17 A7 B

and the following operations and equations:

category: the usual domain, codomain, identity and
composition operations for the index category C:

cod
—_—

C1 X G C1 ° C1 id Co R

—_—
dom

together with the familiar equations for a category.



3. Natural models, algebraic formulation

presheaf: the indexing and action operations for the presheaves
A, B : C°P — Set:

Clxg A—2sA Cixe, B—~B
lPA lPB
Co CO

together with the equations making o an action:

pa(a(u, a)) = dom(u),
a(uov,a) =a(v,a(u, a)),

(1py(a),3) = 3,

and similarly for 5.



3. Natural models, algebraic formulation
natural transformation: an operation
f:A—>B
satisfying the naturality equations:
pgof = pa, foa=po(C xg f).

representable: a natural transformation f : A — B is representable
just if the associated functor,

JefiJcA— B

on the categories of elements has a right adjoint

F*:[.B— [ A

(an algebraic condition, see Newstead (2018)).



3. Natural models and initiality

® The notion of a natural model is thus essentially algebraic.

® The algebraic homomorphisms correspond exactly to syntactic
translations.

® There is an initial algebra as well as a free algebra over any
signature of basic types and terms.

® The rules of dependent type theory specify a procedure for
generating the free algebra.



3. Natural models and tribes

Let p: U — U be a natural model.

The fibration
JcU—=C

of all display maps pa:I\A—T, forall A: I — U, determines a
clan in the sense of Joyal (2017).

Conversely, given a clan D < C™, there is a natural model in C,

Hrep ¥f : Hsep ydom(f) — [{scp ycod(f).

This natural model pp : UD — Up determines a splitting of the
associated fibration D — C.



3. Natural models and tribes

Theorem (ish)

There is an adjunction between the categories of clans and of
natural models, which specializes to a biequivalence between

(certain) tribes and natural models with (certain) type-forming
operations.

See A. (2017) for details.
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4. Universes in presheaves

Recall the notion of a Hofmann-Streicher universe
VoV

in a category of presheaves C = Set®”.

1. Let set — Set be the full subcategory of small sets s < k.

2. Let set = 1/set be the category of small pointed sets.
3. Then for ¢ € C let:

V(c) = Cat(C/cP, set) the set of small presheaves on C/.,
V(c) = Cat(C/, sét) ... small pointed presheaves on C/..

4. The action on d — c is given by precomposition with
postcomposition C/4 — C/..

5. There is a natural transformation V — V determined by
composing with the forgetful functor set — set



4. Universes in presheaves

Definition R
In a category C = Set® of presheaves,
® an object A is small if its values A(c) are small, for all c € C,

® a map A — X is small if its fibers A, = x*A are small,
for all x: yc — X,

Note that small maps are stable under pullback.
And that the map V — V is small, since the fiber Vs over
S :yc — V has as elements pointed presheaves S : C/. — set.



4. Universes in presheaves

Proposition

For every small map A — X there is a canonical classifying map
« : X =V fitting into a pullback diagram of the form

]

— V.

Proof.

Do it first for the small maps Ax — yc, for all x : yc — X, for
which there is a canonical choice of ay : yc — V. Then use the
presentation of X as a colimit over its category of elements
(c,x) € Jo X togeta: X —U.



4. Universes in presheaves

Remark
For large enough « the small maps are closed under the adjoints

>4 1 A* 414 to pullback along small maps A — X.

This fact gives rise to natural operations on the universe VoV
that can be used to (coherently!) model the corresponding
type-forming operations, as follows:
* a universe V — V is a natural model on the category of
contexts C,

® 3 universe V — V generates a polynomial endofunctor
pP:C—C.

® The type forming operations in the natural model will
correspond to algebraic structure on the polynomial
endofunctor.



5. Polynomial monad and type formers

Let p: U — U be a natural model on an arbitrary category C,
and consider the associated polynomial endofunctor,

P:UIOP*OU*:@—>@,
which we can write as,

X) =y xA
A:U

where [A] = p~1(A) is the fiber of p: U — U at A: U.
Lemma
Maps T — P(X) correspond naturally to pairs (A, B) where

X< ra—u0.

b

—>U



5. Polynomial monad and type formers

Applying P to U itself therefore gives the object
PU=> UM
A:U

for which maps ' — PU correspond naturally to pairs (A, B) of
the form,

U<B-rA—=U

b

*>U

Since maps ' — U correspond naturally to types in context I - A,
we see that maps [ — PU correspond naturally to types in the
extended context A+ B.



5. Polynomial monad and type formers

Proposition
For a natural model U — U, the polynomial object

PU =) UM
AU

classifies types in context. Specifically, there is a natural
isomorphism between maps I — PU and pairs (A, B) where

AF B.

Similarly, the object
PU =Y UM
A:U

classifies terms in context: pairs (A,b: B) where LA+ b: B,
for (A, B) the composite with Pp : PU — PU.



5. Polynomial monad and type formers: [1

Proposition
The natural model p : U — U models the rules for products just if
there are maps A, 1 making the following a pullback.

PU—2

PU——

n



5. Polynomial monad and type formers: [1

Proposition

The map p: U — U models the rules for products just if there are
maps A, 1 making the following a pullback.

Proof-:



5. Polynomial monad and type formers: [1

Proposition
The map p : U — U models the rules for products just if there are
maps X\, [l making the following a pullback.

Proof-:

PU) —2
S U PU)
A:U

A+ B MaB



5. Polynomial monad and type formers: [1

Proposition

The map p: U — U models the rules for products just if there are
maps A, [1 making the following a pullback.

Proof-
AFb: B Aab
3 UlAl P(U) I S
A:U | |
S Ukl P(U) ———U
AU

AFB NaB



5. Polynomial monad and type formers: [1

Proposition
The map p : U — U models the rules for products Jjust if there are
maps A, [ making the following a pullback.

Proof:
f
S UA P(U) N, S
A:U | |
S Ul P(V) ——F—U
A:U

AFB MNaB



5. Polynomial monad and type formers: [1

Proposition

The map p: U — U models the rules for products just if there are
maps A, [1 making the following a pullback.

Proof-:
A f: B Aafx = 1F
s gl PO — > )
A:U \ |
S Ul P(U) ———F—U
A:U

Al B NaB



5. Polynomial monad and type formers: X

Proposition
The map p : U — U models the rules for sums just if there are
maps (pair, X) making the following a pullback

pair

Q U
ql lp
P(U) — U
where g = p<p: Q — P(U) is the generating map of the
composite Pqg = Ppqp = Pp o Pp.
Explicitly:

Q=22 > Bk

A:U B:UA x:A



5. Polynomial monad and type formers: T

Rules for a terminal type T

FT Fax:T x:ThEx=x:T

Proposition
The map p : U — U models the rules for a terminal type just if

there are maps (x, T) making the following a pullback.

1

*
_—



5. Polynomial monad

Consider the pullback squares for T and X.

pair

1———U Q u
J{ lP p@l lp
l————U P(U) ——~—U

These determine cartesian natural transformations between the
corresponding polynomial endofunctors.

T:1=P c:PoP=P



5. Polynomial monad

Theorem (A-Newstead)

A natural model p : U — U models the T and ¥ type formers just
if the associated polynomial endofunctor P has the structure maps
of a cartesian monad.

T:1=P c:PoP=P

What about the monad laws?



5. Polynomial monad

The monad laws correspond to the following type isomorphisms.

coPo=coop | >, > C(C(ab) = > C(a, b)
a:A b:B(a) (a,b):>" B(a)
aA
coPr=1 1A
a:A
x:1




5. Polynomial monad

The pullback square for I

A

PU—"

PU——

n

determines a cartesian natural transformation
. P2
Tm:Pp=p

where P2 : C2 — €2 is the extension of P to the arrow category.



5. Polynomial monad

Theorem (A-Newstead)

A natural model p : U — U models the N type former just if it has
an algebra structure for the extended endofunctor =

7r:P2p2>p.



5. Polynomial monad

The algebra laws correspond to the following type isomorphisms.

moPr = moo | [[ I C(a,b) = II C(a, b)
a:A b:B(a) (a,b):ZE‘B(a)
moT =1 [JA = A
x:1




6. Propositions and types

We can compare these operations on types
>n:PU—U
with those on subobjects of objects A in the topos C,
4. Va4 A — Q.
Consider

PQ = Z A
A:U

for the polynomial endofunctor of U—U.
We then have the comparable maps

V:PQ— Q.



6. Propositions and types

Proposition

There is a retraction i : 2 — U, s : U — Q such that the
following squares commute.

PQ E Q PQ v Q
Pil Ts Pil Ts
PU— U PU— U

p n



6. Propositions and types

For the proof, factor the natural model p: U — U as on the right
rA U

) \'-A \U
A

r . U

So ||U|| — U is a universal family of small propositions.



6. Propositions and types

Let s : U — Q classify the mono ||U|| — U.
r.A U

\ \U

r/r-A L/

U

A s



6. Propositions and types

Let s : U — Q classify the mono ||U|| — U.

F.A\ U\U |

S

A

]

Let i : Q — U classify the family of small propositions 1 — €.



6. Propositions and types

A \5_/
(1
Let
[|-]| :=ios:U—U.
We have
soi=1:Q—= Q.
So

Q = im(]|-])).



6. Propositions and types

The following diagrams then commute, as required.

QA J Q ST QA
A:U ] AU
p,-l s Pii
ZUA s U ZUA

A:U A:U

@)
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Appendix: Natural models of HoTT

Theorem

A category C with a terminal object 1 admits a natural model of
Homotopy type theory if it has a class of maps D satisfying the
following conditions:

® total: every C — 1isinD,
e stable: D is closed under pullbacks along all maps in C,

® closed: D is closed under composition and under dependent
products along all maps in D,

e factorizing: every map f : A— B in C factorsas f =d o a
with a € "D and d € D.

Proof.
Uses the main idea of the Lumsdaine-Warren coherence theorem:
a left-adjoint splitting of the fibration of D-maps. Ol



Appendix: Natural models of HoTT

Examples of categories satisfying the conditions of the theorem:
e Kan complexes with the fibration wfs on sSets.

® Any right-proper Cisinski model category (restricted to the
fibrant objects).

Groupoids, n-Groupoids, co-Groupoids.

Joyal's mh-tribes.

The syntactic category of contexts of type theory itself.



