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1. Polynomials

Let E be a locally cartesian closed category.
Thus for every map f : B → A we have adjoint functors on the
slice categories,

B

f
��

E/B

Σf

  
Πf

~~
A E/A

f ∗

OO

When A = 1 we write

ΣB a B∗ a ΠB

for the corresponding functors determined by B → 1.



1. Polynomials

Definition
The polynomial endofunctor Pf : E −→ E determined by a map

f : B −→ A

is the composite

E

B∗ !!

Pf // E

E/B
Πf

// E/A
ΣA

>>

which we may write in the internal language of E as

Pf X = ΣAΠf B
∗X = ΣAΠf f

∗A∗X

= ΣAΠf f
∗A∗X = ΣA(A∗X )f = Σx :AX

B(x).



1. Polynomials

E

B∗ !!

Pf // E

E/B
Πf

// E/A
ΣA

>>

The construction of Pf X can be visualized as follows:

X X × Boo

��

Pf X

��
B

f
// A



1. Polynomials

Lemma (UMP of PfX )

Maps p : Z → Pf X correspond naturally to pairs (a, b) where

a : Z → A b : a∗B → X .

Proof.

a∗B
b

uu zz

//

��

Z
p

}}

a

��

X X × Boo

��

Pf X

��
B

f
// A



1. Polynomials

Now suppose we have a pullback square

D

g
��

// B

f
��

C
t
// A.



1. Polynomials

Then for each X we get a map tX : PgX → Pf X as follows:

D × X

##

// B × X

{{
D

g
��

// B

f
��

C
t
// A

PgX

<<

tX
// Pf X ,

bb

because the lower square is a pullback by Beck-Chavalley,

PgX ∼= t∗Pf X .



1. Polynomials
Then for each X we get map tX : PgX → Pf X as follows:

D × X

##

// B × X

{{
D

t∗f =g
��

// B

f
��

C
t
// A

Pt∗f X

;;

tX
// Pf X ,

bb

because the lower square is a pullback by Beck-Chavalley,

PgX ∼= t∗Pf X .

Indeed, since g = t∗f , we have

Pt∗f X ∼= PgX ∼= t∗Pf X .



1. Polynomials
Then for each h : Y → X we have the pullback square below.

D × Y

D×h
��

t×Y // B × Y

B×h
��

D × X

##

t×X
// B × X

{{
D

g
��

// B

f
��

C
t
// A

PgX

<<

tX // Pf X

bb

PgY

Pgh

OO

tY
// Pf Y

Pf h

OO



1. Polynomials

Proposition

Taking the polynomial functor Pf : E → E of a map f : B → A
determines a functor

P : E→cart −→ End(E).

The cartesian squares in E→ are taken to cartesian natural
transformations between endofunctors on E . Moreover, the
polynomials are closed under composition.

Proof.
It remains only to show that polynomial functors compose: given
any f : B → A and g : D → C , there is a map h : F → E such that

Pg ◦ Pf = Ph : E −→ E .

See Spivak (2022) for the definition of h = g / f .



2. Dependent type theory
Types:

A,B, . . .

Terms:
x :A, b :B, . . .

Dependent types: (“type-indexed families of types”)

x :A ` B(x)

x :A, y :B(x) ` C (x , y)

. . .

Type forming operations:∑
x :A B(x),

∏
x :A B(x), . . .

Term forming operations:

〈a, b〉, λx .b(x), . . .

Equations:
s = t : A



2. Dependent type theory: Rules

Contexts:
x :A ` B(x)

x :A, y :B(x) `

Writing Γ for any context, we have:

Γ ` C

Γ, z :C `



2. Dependent type theory: Rules

Sums:

Γ, x :A ` B(x)

Γ `
∑

x :A B(x)

Γ ` a :A, Γ ` b :B(a)

Γ ` 〈a, b〉 :
∑

x :A B(x)

Γ ` c :
∑

x :A B(x)

Γ ` fst c : A

Γ ` c :
∑

x :A B(x)

Γ ` snd c : B(fst c)

Γ ` fst〈a, b〉 = a : A Γ ` snd〈a, b〉 = b : B

Γ ` 〈fst c , snd c〉 = c :
∑

x :A B(x)



2. Dependent type theory: Rules

Sums:

Γ, x :A ` B(x)

Γ `
∑

x :A B(x)

Γ ` a :A, Γ ` b :B(a)

Γ ` 〈a, b〉 :
∑

x :A B(x)

Γ ` c :
∑

x :A B(x)

Γ ` fst c : A

Γ ` c :
∑

x :A B(x)

Γ ` snd c : B(fst c)

Γ ` fst〈a, b〉 = a : A Γ ` snd〈a, b〉 = b : B

Γ ` 〈fst c , snd c〉 = c :
∑

x :A B(x)



2. Dependent type theory: Rules

Sums:

x :A ` B(x)∑
x :A B(x)

a :A b :B(a)

〈a, b〉 :
∑

x :A B(x)

c :
∑

x :A B(x)

fst c : A

c :
∑

x :A B(x)

snd c : B(fst c)

fst〈a, b〉 = a : A snd〈a, b〉 = b : B

〈fst c, snd c〉 = c :
∑

x :A B(x)



2. Dependent type theory: Rules

Products:

x :A ` B(x)∏
x :A B(x)

x :A ` b(x) :B(x)

λx .b(x) :
∏

x :A B(x)

a :A f :
∏

x :A B(x)

fa : B(a)

x : A ` (λx .b)x = b : B(x)

λx .fx = f :
∏

x :A B(x)



2. Dependent type theory: Substitution

A tuple of terms in context σ : ∆→ Γ induces an operation

σ : ∆→ Γ Γ ` a : A

∆ ` a[σ] : A[σ]

which preserves everything.

For example given y : Y ` s : Z and z :Z , x :A(z) ` B(z , x) we can
do

y : Y ` s : Z z:Z , x :A(z)`B(z,x)
z:Z `

∏
x :A(z) B(z,x)

y : Y ` (
∏

x :A(z) B(z , x))[s/z ]
or

y :Y`s:Z z:Z , x :A(z)`B(z,x)
y :Y , x :A(s)`B(s,x)

y :Y `
∏

x :A(s) B(s, x)

and syntactically the results are the same,(∏
x :A(z) B(z , x)

)
[s/z ] =

∏
x :A(s) B(s, x) .

This suggests a reformulation as an indexed algebraic structure.



3. Natural models

Definition
A natural transformation f : Y → X of presheaves on a category C
is called representable if its pullback along any yC → X is
representable:

yD

��

// Y

f
��

yC // X

Proposition (A, Fiore)

A representable natural transformation is the same thing as a
Category with Families in the sense of Dybjer.



3. Natural models

Definition
A natural transformation f : Y → X of presheaves on a category C
is called representable if its pullback along any yC → X is
representable: for all C ∈ C and x ∈ X (C ) there is given
p : D → C and y ∈ Y (D) such that the following is a pullback:

yD

yp

��

y // Y

f
��

yC x
// X

Proposition (A, Fiore)

A representable natural transformation equipped with a choice of
such pullbacks is the same thing as a Category with Families in
the sense of Dybjer.



3. Natural models

Write the objects and arrows of C as σ : ∆→ Γ, thinking of a
category of contexts and substitutions.

Let p : U̇→ U be a representable map of presheaves on C.

Think of U as the presheaf of types, U̇ as the presheaf of terms,
and then p gives the type of a term.

Γ ` A ≈ A ∈ U(Γ)

Γ ` a : A ≈ a ∈ U̇(Γ)

where A = p ◦ a.

U̇

p

��
Γ

a

88

A
// U



3. Natural models

Naturality of p : U̇→ U means that for any substitution
σ : ∆→ Γ, we have the required action on types and terms:

Γ ` A ⇒ ∆ ` A[σ]

Γ ` a : A ⇒ ∆ ` a[σ] : A[σ]

U̇

p

��
∆ σ

//

A[σ]

<<

a[σ] ,,

Γ

a

88

A
// U



3. Natural models

Given any further τ : ∆′ → ∆ we clearly have

A[σ][τ ] = A[σ ◦ τ ] a[σ][τ ] = a[σ ◦ τ ]

and for the identity substitution 1 : Γ→ Γ

A[1] = A a[1] = a.

This is the basic structure of a CwF.



2. Natural models, context extension

The remaining operation of context extension

Γ ` A

Γ, x :A `

is modeled by the representability of p : U̇→ U as follows.



3. Natural models, context extension

Given Γ ` A we need a new context Γ.A together with a
substitution pA : Γ.A→ A and a term

Γ.A ` qA : A[pA] .

Let pA : Γ.A→ Γ be the pullback of p along A.

Γ.A

pA
��

qA // U̇

p

��
Γ

A
// U

The map qA : Γ.A→ U̇ gives the required term Γ.A ` qA : A[pA].
Syntactically, this is just the term

Γ, x :A ` x :A .



3. Natural models, context extension

∆

σ

''

(σ,a)

  

a

��
Γ.A

pA
��

qA
// U̇

p

��
Γ

A
// U

The pullback means that given any substitution σ : ∆→ Γ and
term ∆ ` a : A[σ] there is a map

(σ, a) : ∆→ Γ.A

satisfying

pA(σ, a) = σ

qA[σ, a] = a.



3. Natural models, context extension

∆

σ

##

(σ,a)

  

a

��
Γ.A

pA
��

qA
// U̇

p

��
Γ

A
// U

By the uniqueness of (σ, a), we also have

(σ, a) ◦ τ = (σ ◦ τ, a[τ ]) for any τ : ∆′ → ∆

and
(pA, qA) = 1.

These are all the laws for a CwF.



3. Natural models, algebraic formulation

Natural models can be presented as an essentially algebraic theory,
with several sorts, partial operations, and equations between terms.

We have four basic sorts:

C0, C1, A, B

and the following operations and equations:

category: the usual domain, codomain, identity and
composition operations for the index category C:

C1 ×C0 C1
◦ // C1

dom
//

cod //
C0 ,idoo

together with the familiar equations for a category.



3. Natural models, algebraic formulation

presheaf: the indexing and action operations for the presheaves
A,B : Cop → Set:

C1 ×C0 A
α // A

pA
��

C0

C1 ×C0 B
β // B

pB
��

C0

together with the equations making α an action:

pA(α(u, a)) = dom(u),

α(u ◦ v , a) = α(v , α(u, a)),

α(1pA(a), a) = a,

and similarly for β.



3. Natural models, algebraic formulation

natural transformation: an operation

f : A→ B

satisfying the naturality equations:

pB ◦ f = pA, f ◦ α = β ◦ (C1 ×C0 f ).

representable: a natural transformation f : A→ B is representable
just if the associated functor,∫

C f :
∫
C A→

∫
C B

on the categories of elements has a right adjoint

f ∗ :
∫
C B →

∫
C A

(an algebraic condition, see Newstead (2018)).



3. Natural models and initiality

• The notion of a natural model is thus essentially algebraic.

• The algebraic homomorphisms correspond exactly to syntactic
translations.

• There is an initial algebra as well as a free algebra over any
signature of basic types and terms.

• The rules of dependent type theory specify a procedure for
generating the free algebra.



3. Natural models and tribes

Let p : U̇→ U be a natural model.

The fibration ∫
C U→ C

of all display maps pA : Γ.A→ Γ, for all A : Γ→ U, determines a
clan in the sense of Joyal (2017).

Conversely, given a clan D ↪→ C→, there is a natural model in Ĉ,∐
f ∈D yf :

∐
f ∈D ydom(f ) −→

∐
f ∈D ycod(f ).

This natural model pD : U̇D → UD determines a splitting of the
associated fibration D → C.



3. Natural models and tribes

Theorem (ish)

There is an adjunction between the categories of clans and of
natural models, which specializes to a biequivalence between
(certain) tribes and natural models with (certain) type-forming
operations.

See A. (2017) for details.



Part II



4. Universes in presheaves

Recall the notion of a Hofmann-Streicher universe

V̇→ V

in a category of presheaves Ĉ = SetC
op

.

1. Let set ↪→ Set be the full subcategory of small sets s < κ.

2. Let ˙set = 1/set be the category of small pointed sets.

3. Then for c ∈ C let:

V(c) = Cat
(
C/cop, set

)
the set of small presheaves on C/c ,

V̇(c) = Cat
(
C/cop, ˙set

)
... small pointed presheaves on C/c .

4. The action on d → c is given by precomposition with
postcomposition C/d → C/c .

5. There is a natural transformation V̇→ V determined by
composing with the forgetful functor ˙set→ set



4. Universes in presheaves

Definition
In a category Ĉ = SetC

op
of presheaves,

• an object A is small if its values A(c) are small, for all c ∈ C,

• a map A→ X is small if its fibers Ax = x∗A are small,
for all x : yc → X ,

Ax

��

// A

��
yc x

// X .

Note that small maps are stable under pullback.
And that the map V̇→ V is small, since the fiber V̇S over
S : yc → V has as elements pointed presheaves Ṡ : C/c → ˙set.



4. Universes in presheaves

Proposition

For every small map A→ X there is a canonical classifying map
α : X → V fitting into a pullback diagram of the form

A

��

// V̇

��
X α

// V.

Proof.
Do it first for the small maps Ax → yc , for all x : yc → X , for
which there is a canonical choice of αx : yc → V. Then use the
presentation of X as a colimit over its category of elements
(c , x) ∈

∫
C X to get α : X → U.



4. Universes in presheaves

Remark
For large enough κ the small maps are closed under the adjoints
ΣA a A∗ a ΠA to pullback along small maps A→ X .

This fact gives rise to natural operations on the universe V̇→ V
that can be used to (coherently!) model the corresponding
type-forming operations, as follows:

• a universe V̇→ V is a natural model on the category of
contexts Ĉ,

• a universe V̇→ V generates a polynomial endofunctor

P : Ĉ −→ Ĉ.

• The type forming operations in the natural model will
correspond to algebraic structure on the polynomial
endofunctor.



5. Polynomial monad and type formers
Let p : U̇→ U be a natural model on an arbitrary category C,
and consider the associated polynomial endofunctor,

P = U! ◦ p∗ ◦ U̇∗ : Ĉ −→ Ĉ ,

which we can write as,

P(X ) =
∑
A : U

X [A],

where [A] = p−1(A) is the fiber of p : U̇→ U at A : U.

Lemma
Maps Γ→ P(X ) correspond naturally to pairs (A,B) where

X Γ.A
Boo

��

// U̇

p

��
Γ

A
// U

.



5. Polynomial monad and type formers

Applying P to U itself therefore gives the object

PU =
∑
A:U

U[A],

for which maps Γ→ PU correspond naturally to pairs (A,B) of
the form,

U Γ.A
Boo

��

// U̇

p

��
Γ

A
// U

Since maps Γ→ U correspond naturally to types in context Γ ` A,
we see that maps Γ→ PU correspond naturally to types in the
extended context Γ.A ` B.



5. Polynomial monad and type formers

Proposition

For a natural model U̇→ U, the polynomial object

PU =
∑
A:U

U[A]

classifies types in context. Specifically, there is a natural
isomorphism between maps Γ→ PU and pairs (A,B) where

Γ.A ` B.

Similarly, the object

PU̇ =
∑
A:U

U̇[A]

classifies terms in context: pairs (A, b : B) where Γ.A ` b : B,
for (A,B) the composite with Pp : PU̇→ PU.



5. Polynomial monad and type formers: Π

Proposition

The natural model p : U̇→ U models the rules for products just if
there are maps λ,Π making the following a pullback.

PU̇

Pp
��

λ // U̇

p

��
PU

Π
// U



5. Polynomial monad and type formers: Π

Proposition

The map p : U̇→ U models the rules for products just if there are
maps λ,Π making the following a pullback.

Proof:

P(U̇)

��

λ // U̇

��∑
A:U

U[A] P(U)
Π

// U



5. Polynomial monad and type formers: Π

Proposition

The map p : U̇→ U models the rules for products just if there are
maps λ,Π making the following a pullback.

Proof:

P(U̇)

��

λ // U̇

��∑
A:U

U[A] P(U)
Π

// U

A ` B ΠAB



5. Polynomial monad and type formers: Π

Proposition

The map p : U̇→ U models the rules for products just if there are
maps λ,Π making the following a pullback.

Proof:
A ` b : B λAb

∑
A:U

U̇[A] P(U̇)

��

λ // U̇

��∑
A:U

U[A] P(U)
Π

// U

A ` B ΠAB



5. Polynomial monad and type formers: Π

Proposition

The map p : U̇→ U models the rules for products just if there are
maps λ,Π making the following a pullback.

Proof:
f

∑
A:U

U̇[A] P(U̇)

��

λ // U̇

��∑
A:U

U[A] P(U)
Π

// U

A ` B ΠAB



5. Polynomial monad and type formers: Π

Proposition

The map p : U̇→ U models the rules for products just if there are
maps λ,Π making the following a pullback.

Proof:

A ` fx : B λAfx = f

∑
A:U

U̇[A] P(U̇)

��

λ // U̇

��∑
A:U

U[A] P(U)
Π

// U

A ` B ΠAB



5. Polynomial monad and type formers: Σ

Proposition

The map p : U̇→ U models the rules for sums just if there are
maps (pair,Σ) making the following a pullback

Q

q

��

pair // U̇

p

��
P(U)

Σ
// U

where q = p / p : Q → P(U) is the generating map of the
composite Pq = Pp/p = Pp ◦ Pp.

Explicitly:

Q =
∑
A:U

∑
B:UA

∑
x :A

B(x)



5. Polynomial monad and type formers: T

Rules for a terminal type T

` T ` ∗ : T x : T ` x = ∗ : T

Proposition

The map p : U̇→ U models the rules for a terminal type just if
there are maps (∗,T) making the following a pullback.

1
∗ //

��

U̇

p

��
1

T
// U



5. Polynomial monad

Consider the pullback squares for T and Σ.

1
∗ //

��

U̇

p

��
1

T
// U

Q

p/p

��

pair // U̇

p

��
P(U)

Σ
// U

These determine cartesian natural transformations between the
corresponding polynomial endofunctors.

τ : 1⇒ P σ : P ◦ P ⇒ P



5. Polynomial monad

Theorem (A-Newstead)

A natural model p : U̇→ U models the T and Σ type formers just
if the associated polynomial endofunctor P has the structure maps
of a cartesian monad.

τ : 1⇒ P σ : P ◦ P ⇒ P

What about the monad laws?



5. Polynomial monad

The monad laws correspond to the following type isomorphisms.

σ ◦ Pσ = σ ◦ σP
∑
a:A

∑
b:B(a)

C (a, b) ∼=
∑

(a,b):
∑
a:A

B(a)

C (a, b)

σ ◦ Pτ = 1
∑
a:A

1 ∼= A

σ ◦ τP = 1
∑
x :1

A ∼= A



5. Polynomial monad

The pullback square for Π

PU̇

Pp
��

λ // U̇

p

��
PU

Π
// U

determines a cartesian natural transformation

π : P2p ⇒ p

where P2 : Ĉ2 → Ĉ2 is the extension of P to the arrow category.



5. Polynomial monad

Theorem (A-Newstead)

A natural model p : U̇→ U models the Π type former just if it has
an algebra structure for the extended endofunctor P2,

π : P2p ⇒ p.



5. Polynomial monad

The algebra laws correspond to the following type isomorphisms.

π ◦ Pπ = π ◦ σ
∏
a:A

∏
b:B(a)

C (a, b) ∼=
∏

(a,b):
∑
a:A

B(a)

C (a, b)

π ◦ τ = 1
∏
x :1

A ∼= A



6. Propositions and types

We can compare these operations on types

Σ,Π : PU −→ U

with those on subobjects of objects A in the topos Ĉ,

∃A,∀A : ΩA −→ Ω.

Consider
PΩ =

∑
A:U

ΩA

for the polynomial endofunctor of U̇→ U.
We then have the comparable maps

∃, ∀ : PΩ −→ Ω.



6. Propositions and types

Proposition

There is a retraction i : Ω� U , s : U� Ω such that the
following squares commute.

PΩ

Pi
��

∃ // Ω

PU
Σ

// U

s

OO PΩ

Pi
��

∀ // Ω

PU
Π

// U

s

OO



6. Propositions and types

For the proof, factor the natural model p : U̇→ U as on the right
below.

Γ.A

��

"" ""

// U̇

��

    
Γ.||A||
{{

{{

// ||U̇||
~~

~~
Γ

A
// U

So ||U̇||� U is a universal family of small propositions.



6. Propositions and types

Let s : U→ Ω classify the mono ||U̇||� U.

Γ.A

��

"" ""

// U̇

��

    
Γ.||A||
{{

{{

// ||U̇||
~~

~~

// 1��

��
Γ

A
// U s

// Ω



6. Propositions and types

Let s : U→ Ω classify the mono ||U̇||� U.

Γ.A

��

"" ""

// U̇

��

    
Γ.||A||
{{

{{

// ||U̇||
~~

~~

// 1��

��

// U̇

��
Γ

A
// U s

// Ω
i

// U

Let i : Ω→ U classify the family of small propositions 1� Ω.



6. Propositions and types

Γ.A

��

"" ""

// U̇

��

    
Γ.||A||
{{

{{

// ||U̇||
~~

~~

// 1��

��

// U̇

��
Γ

A
// U s

// //

||·||

88Ω //
i

// U

Let
||·|| := i ◦ s : U→ U.

We have
s ◦ i = 1 : Ω→ Ω.

So
Ω = im(||·||).



6. Propositions and types

The following diagrams then commute, as required.

∑
A:U

ΩA

Pi

��

∃ // Ω

∑
A:U

UA
Σ

// U

s

OO
∑
A:U

ΩA

Pi

��

∀ // Ω

∑
A:U

UA
Π

// U

s

OO
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Appendix: Natural models of HoTT

Theorem
A category C with a terminal object 1 admits a natural model of
Homotopy type theory if it has a class of maps D satisfying the
following conditions:

• total: every C → 1 is in D,

• stable: D is closed under pullbacks along all maps in C,

• closed: D is closed under composition and under dependent
products along all maps in D,

• factorizing: every map f : A→ B in C factors as f = d ◦ a
with a ∈ tD and d ∈ D.

Proof.
Uses the main idea of the Lumsdaine-Warren coherence theorem:
a left-adjoint splitting of the fibration of D-maps.



Appendix: Natural models of HoTT

Examples of categories satisfying the conditions of the theorem:

• Kan complexes with the fibration wfs on sSets.

• Any right-proper Cisinski model category (restricted to the
fibrant objects).

• Groupoids, n-Groupoids, ∞-Groupoids.

• Joyal’s πh-tribes.

• The syntactic category of contexts of type theory itself.


