∞ -groupoids in Lextensive Categories

Karol Szumiło

University of Leeds

2021 March 5

Theorem (Quillen, 1967)

The category of simplicial sets sSet carries a proper cartesian model structure (the Kan–Quillen model structure) where

- weak equivalences are the weak homotopy equivalences,
- fibrations are the Kan fibrations,
- cofibrations are the monomorphisms.

Theorem (Quillen, 1967)

The category of simplicial sets sSet carries a proper cartesian model structure (the Kan–Quillen model structure) where

- weak equivalences are the weak homotopy equivalences,
- fibrations are the Kan fibrations,
- cofibrations are the monomorphisms.

Is it possible to internalize this theorem in categories more general than the category of sets? That is, for which categories $\mathcal E$ can we construct a model structure on the category of simplicial objects s $\mathcal E$ that specializes to the Kan–Quillen model structure when $\mathcal E=\mathsf{Set}$?

Theorem (constructive logic, CZF)

The category of simplicial sets sSet carries a proper cartesian model structure where

- weak equivalences are the weak homotopy equivalences,
- fibrations are the Kan fibrations,
- cofibrations are the Reedy decidable inclusions.

Theorem (constructive logic, CZF)

The category of simplicial sets sSet carries a proper cartesian model structure where

- weak equivalences are the weak homotopy equivalences,
- fibrations are the Kan fibrations,
- cofibrations are the Reedy decidable inclusions.
- ► S. Henry, A constructive account of the Kan-Quillen model structure and of Kan's Ex[∞] functor, https://arxiv.org/abs/1905.06160
- ▶ N. Gambino, C. Sattler, K. Szumiło, *The constructive Kan-Quillen model structure: two new proofs*, https://arxiv.org/abs/1907.05394

Theorem

If $\mathcal E$ is a countably lextensive category, then the category of simplicial objects $s\mathcal E$ carries a proper cartesian model structure (the effective model structure) where

- weak equivalences are the weak homotopy equivalences,
- fibrations are the Kan fibrations,
- cofibrations are the Reedy complemented inclusions.

Theorem

If $\mathcal E$ is a countably lextensive category, then the category of simplicial objects $s\mathcal E$ carries a proper cartesian model structure (the effective model structure) where

- weak equivalences are the weak homotopy equivalences,
- fibrations are the Kan fibrations,
- cofibrations are the Reedy complemented inclusions.

N. Gambino, S. Henry, C. Sattler, K. Szumiło, *The effective model structure and* ∞-groupoid objects, https://arxiv.org/abs/2102.06146

Theorem

If $\mathcal E$ is a countably lextensive category, then the category of simplicial objects $s\mathcal E$ carries a proper cartesian model structure (the effective model structure) where

- weak equivalences are the weak homotopy equivalences,
- fibrations are the Kan fibrations,
- cofibrations are the Reedy complemented inclusions.

N. Gambino, S. Henry, C. Sattler, K. Szumiło, *The effective model structure and* ∞-groupoid objects, https://arxiv.org/abs/2102.06146

Definition

A category $\mathcal E$ is countably lextensive if

- it has finite limits,
- it has van Kampen countable coproducts.

Let $\mathcal E$ have finite limits. The colimit Y_\star of a diagram $Y\colon D\to \mathcal E$ is

- ▶ universal if for every morphism $X_{\star} \to Y_{\star}$, $X_{\star} \cong \operatorname{colim}_d Y_d \times_{Y_{\star}} X_{\star}$.
- effective if for every cartesian transformation $X \to Y$, the colimit X_{\star} of X exists and $X_d \cong Y_d \times_{Y_{\star}} X_{\star}$ for all $d \in D$.
- van Kampen if it is both universal and effective.

Let $\mathcal E$ have finite limits. The colimit Y_\star of a diagram $Y\colon D\to \mathcal E$ is

- ▶ universal if for every morphism $X_{\star} \to Y_{\star}$, $X_{\star} \cong \operatorname{colim}_d Y_d \times_{Y_{\star}} X_{\star}$.
- ▶ effective if for every cartesian transformation $X \to Y$, the colimit X_{\star} of X exists and $X_d \cong Y_d \times_{Y_{\star}} X_{\star}$ for all $d \in D$.
- van Kampen if it is both universal and effective.

Remark

If $\mathcal E$ has finite limits and countable coproducts, it is countably lextensive if and only if all countable coproducts are universal and disjoint.

Let $\mathcal E$ have finite limits. The colimit Y_\star of a diagram $Y\colon D\to \mathcal E$ is

- ▶ universal if for every morphism $X_{\star} \to Y_{\star}$, $X_{\star} \cong \operatorname{colim}_d Y_d \times_{Y_{\star}} X_{\star}$.
- effective if for every cartesian transformation $X \to Y$, the colimit X_{\star} of X exists and $X_d \cong Y_d \times_{Y_{\star}} X_{\star}$ for all $d \in D$.
- van Kampen if it is both universal and effective.

Remark

If \mathcal{E} has finite limits and countable coproducts, it is countably lextensive if and only if all countable coproducts are universal and disjoint.

Definition

A coproduct $X_{\star} = \coprod_{d} X_{d}$ is *disjoint* if $X_{d} \times_{X_{\star}} X_{d'}$ is initial for all $d \neq d'$.

▶ All presheaf categories are completely lextensive.

- ► All presheaf categories are completely lextensive.
- ▶ All Grothendieck toposes are completely lextensive. (Giraud's Theorem: a category is a Grothendieck topos if and only if it is locally presentable and coproducts and quotients by equivalence relations are van Kampen.)

- ► All presheaf categories are completely lextensive.
- ➤ All Grothendieck toposes are completely lextensive. (Giraud's Theorem: a category is a Grothendieck topos if and only if it is locally presentable and coproducts and quotients by equivalence relations are van Kampen.)
- ▶ The category of topological spaces is completely lextensive.

- All presheaf categories are completely lextensive.
- ➤ All Grothendieck toposes are completely lextensive. (Giraud's Theorem: a category is a Grothendieck topos if and only if it is locally presentable and coproducts and quotients by equivalence relations are van Kampen.)
- ▶ The category of topological spaces is completely lextensive.
- ► The category of affine schemes is finitely lextensive. The category of schemes is completely lextensive.

- All presheaf categories are completely lextensive.
- ➤ All Grothendieck toposes are completely lextensive. (Giraud's Theorem: a category is a Grothendieck topos if and only if it is locally presentable and coproducts and quotients by equivalence relations are van Kampen.)
- ▶ The category of topological spaces is completely lextensive.
- The category of affine schemes is finitely lextensive. The category of schemes is completely lextensive.
- ▶ The category of countable sets is countably lextensive.

- All presheaf categories are completely lextensive.
- ➤ All Grothendieck toposes are completely lextensive. (Giraud's Theorem: a category is a Grothendieck topos if and only if it is locally presentable and coproducts and quotients by equivalence relations are van Kampen.)
- ▶ The category of topological spaces is completely lextensive.
- The category of affine schemes is finitely lextensive. The category of schemes is completely lextensive.
- ▶ The category of countable sets is countably lextensive.
- ▶ The free κ -coproduct completion of a finitely complete category $\mathcal E$ is κ -lextensive.

A morphism $A \to B$ of $\mathcal E$ is a complemented inclusion if it has a complement, i.e., a morphism $C \to B$ such that $A \sqcup C \cong B$.

A morphism $A \to B$ of $\mathcal E$ is a complemented inclusion if it has a complement, i.e., a morphism $C \to B$ such that $A \sqcup C \cong B$.

Lemma

In a countably lextensive category

- pushouts along complemented inclusions exist and are van Kampen,
- colimits of sequences of complemented inclusions exist and are van Kampen.

A morphism $A \to B$ of $\mathcal E$ is a complemented inclusion if it has a complement, i.e., a morphism $C \to B$ such that $A \sqcup C \cong B$.

Lemma

In a countably lextensive category

- pushouts along complemented inclusions exist and are van Kampen,
- colimits of sequences of complemented inclusions exist and are van Kampen.

Proof.

- $(A \sqcup C) \sqcup_A X \cong X \sqcup C$
- ▶ $\operatorname{colim}(A_0 \to A_0 \sqcup A_1 \to A_0 \sqcup A_1 \sqcup A_2 \to \ldots) \cong \coprod_i A_i$

A morphism $A \to B$ of $s\mathcal{E}$ is a levelwise complemented inclusion if $A_k \to B_k$ is a complemented inclusion for all k.

A morphism $A \to B$ of $s\mathcal{E}$ is a levelwise complemented inclusion if $A_k \to B_k$ is a complemented inclusion for all k.

Lemma

If \mathcal{E} is countably lextensive, then

- pushouts along levelwise complemented inclusions exist in sE and are van Kampen,
- ▶ colimits of sequences of levelwise complemented inclusions exist in sE and are van Kampen.

A morphism $A \to B$ of $s\mathcal{E}$ is a levelwise complemented inclusion if $A_k \to B_k$ is a complemented inclusion for all k.

Lemma

If \mathcal{E} is countably lextensive, then

- pushouts along levelwise complemented inclusions exist in sE and are van Kampen,
- ▶ colimits of sequences of levelwise complemented inclusions exist in sE and are van Kampen.

Remark

If a functor $\mathcal{D} \to \mathcal{E}$ preserves coproducts, then the induced functor $s\mathcal{D} \to s\mathcal{E}$ preserves pushouts along levelwise complemented inclusions and colimits of sequences of levelwise complemented inclusions.

$$I = \{ \underline{\partial \Delta[m]} \to \underline{\Delta[m]} \mid m \ge 0 \}$$

$$J = \{ \underline{\Lambda^{i}[m]} \to \underline{\Delta[m]} \mid m \ge i \ge 0, m > 0 \}$$

$$I = \{ \underline{\partial \Delta[m]} \to \underline{\Delta[m]} \mid m \ge 0 \}$$

$$J = \{ \underline{\Lambda^{i}[m]} \to \underline{\Delta[m]} \mid m \ge i \ge 0, m > 0 \}$$

We would like to apply the small object argument to I and J, but we need an \mathcal{E} -enriched version.

$$I = \{ \underline{\partial \Delta[m]} \to \underline{\Delta[m]} \mid m \ge 0 \}$$

$$J = \{ \underline{\Lambda^{i}[m]} \to \underline{\Delta[m]} \mid m \ge i \ge 0, m > 0 \}$$

We would like to apply the small object argument to I and J, but we need an \mathcal{E} -enriched version. However, s \mathcal{E} is not \mathcal{E} -enriched in general since \mathcal{E} is not assumed to be cartesian closed.

$$I = \{ \underline{\partial \Delta[m]} \to \underline{\Delta[m]} \mid m \ge 0 \}$$

$$J = \{ \underline{\Lambda^{i}[m]} \to \underline{\Delta[m]} \mid m \ge i \ge 0, m > 0 \}$$

We would like to apply the small object argument to I and J, but we need an \mathcal{E} -enriched version. However, s \mathcal{E} is not \mathcal{E} -enriched in general since \mathcal{E} is not assumed to be cartesian closed.

For $X, Y \in s\mathcal{E}$, we define the Hom-presheaf $\operatorname{Hom}_{\operatorname{Psh}\mathcal{E}}(X, Y) \in \operatorname{Psh}\mathcal{E}$:

$$E \mapsto \operatorname{\mathsf{Hom}}_{\mathsf{Set}}(X \times E, Y).$$

$$I = \{ \underline{\partial \Delta[m]} \to \underline{\Delta[m]} \mid m \ge 0 \}$$
$$J = \{ \underline{\Lambda^{i}[m]} \to \underline{\Delta[m]} \mid m \ge i \ge 0, m > 0 \}$$

We would like to apply the small object argument to I and J, but we need an \mathcal{E} -enriched version. However, s \mathcal{E} is not \mathcal{E} -enriched in general since \mathcal{E} is not assumed to be cartesian closed.

For $X, Y \in s\mathcal{E}$, we define the Hom-presheaf $\operatorname{Hom}_{\operatorname{Psh}\mathcal{E}}(X, Y) \in \operatorname{Psh}\mathcal{E}$:

$$E \mapsto \operatorname{\mathsf{Hom}}_{\mathsf{Set}}(X \times E, Y).$$

If this presheaf is representable, then the representing object is denoted by $\operatorname{Hom}_{\mathcal{E}}(X,Y)$, e.g., $\operatorname{Hom}_{\mathcal{E}}(\Delta[m],Y)=Y_m$.

A morphism $i: A \to B$ in $s\mathcal{E}$ has the Psh \mathcal{E} -enriched left lifting property with respect to $p: X \to Y$ if

$$\operatorname{\mathsf{Hom}}_{\mathsf{Psh}\,\mathcal{E}}(B,X) o \operatorname{\mathsf{Prob}}_{\mathsf{Psh}\,\mathcal{E}}(i,p)$$

has a section, where

$$\mathsf{Prob}_{\mathsf{Psh}\,\mathcal{E}}(i,p) = \mathsf{Hom}_{\mathsf{Psh}\,\mathcal{E}}(A,X) \times_{\mathsf{Hom}_{\mathsf{Psh}\,\mathcal{E}}(A,Y)} \mathsf{Hom}_{\mathsf{Psh}\,\mathcal{E}}(B,Y).$$

A morphism $i: A \to B$ in $s\mathcal{E}$ has the Psh \mathcal{E} -enriched left lifting property with respect to $p: X \to Y$ if

$$\operatorname{\mathsf{Hom}}_{\mathsf{Psh}\,\mathcal{E}}(B,X) o \operatorname{\mathsf{Prob}}_{\mathsf{Psh}\,\mathcal{E}}(i,p)$$

has a section, where

$$\mathsf{Prob}_{\mathsf{Psh}\,\mathcal{E}}(i,p) = \mathsf{Hom}_{\mathsf{Psh}\,\mathcal{E}}(A,X) \times_{\mathsf{Hom}_{\mathsf{Psh}\,\mathcal{E}}(A,Y)} \mathsf{Hom}_{\mathsf{Psh}\,\mathcal{E}}(B,Y).$$

If these presheaves are representable this reduces to the $\mathcal{E}\text{-enriched}$ property, i.e.,

$$\mathsf{Hom}_{\mathcal{E}}(B,X) \to \mathsf{Prob}_{\mathcal{E}}(i,p)$$

having a section.

A morphism $i: A \to B$ in $s\mathcal{E}$ has the Psh \mathcal{E} -enriched left lifting property with respect to $p: X \to Y$ if

$$\operatorname{\mathsf{Hom}}_{\mathsf{Psh}\,\mathcal{E}}(B,X) o \operatorname{\mathsf{Prob}}_{\mathsf{Psh}\,\mathcal{E}}(i,p)$$

has a section, where

$$\mathsf{Prob}_{\mathsf{Psh}\,\mathcal{E}}(i,p) = \mathsf{Hom}_{\mathsf{Psh}\,\mathcal{E}}(A,X) \times_{\mathsf{Hom}_{\mathsf{Psh}\,\mathcal{E}}(A,Y)} \mathsf{Hom}_{\mathsf{Psh}\,\mathcal{E}}(B,Y).$$

If these presheaves are representable this reduces to the \mathcal{E} -enriched property, i.e.,

$$\mathsf{Hom}_{\mathcal{E}}(B,X) \to \mathsf{Prob}_{\mathcal{E}}(i,p)$$

having a section.

This refers to a weak factorization system on \mathcal{E} of (complemented inclusions, split epimorphisms.).

A Psh $\mathcal E$ -enriched weak factorization system on s $\mathcal E$ is a pair $(\mathcal L,\mathcal R)$ of classes of morphisms such that

- ightharpoonup a morphism is in $\mathscr L$ if and only if it has the enriched left lifting property with respect to all morphisms of $\mathscr R$,
- ▶ a morphism is in $\mathcal R$ if and only if it has the enriched right lifting property with respect to all morphisms of $\mathcal L$,
- ightharpoonup every morphism factors as a morphism of ${\mathscr L}$ followed by a morphism of ${\mathscr R}.$

A Psh \mathcal{E} -enriched weak factorization system on s \mathcal{E} is a pair $(\mathcal{L}, \mathcal{R})$ of classes of morphisms such that

- ightharpoonup a morphism is in $\mathscr L$ if and only if it has the enriched left lifting property with respect to all morphisms of $\mathscr R$,
- ▶ a morphism is in \mathcal{R} if and only if it has the enriched right lifting property with respect to all morphisms of \mathcal{L} ,
- ightharpoonup every morphism factors as a morphism of ${\mathscr L}$ followed by a morphism of ${\mathscr R}.$

Theorem

If I is a countable set of levelwise complemented inclusions between finite objects of $s\mathcal{E}$, then there is a Psh \mathcal{E} -enriched weak factorization system, where

- \triangleright \mathscr{R} are the I-fibrations, i.e., morphisms with the enriched right lifting property with respect to I,
- $ightharpoonup \mathscr{L}$ are the I-cofibrations, i.e., morphisms with the enriched left lifting property with respect to \mathscr{L} .

- ► A (Kan) fibration is a J-fibration.
- ► A trivial (Kan) fibration is an I-fibration.
- ▶ A *cofibration* is an *I*-cofibration.
- A trivial cofibration is a *J*-cofibration.

- ► A (Kan) fibration is a J-fibration.
- ▶ A *trivial* (Kan) fibration is an *I*-fibration.
- ▶ A *cofibration* is an *I*-cofibration.
- ▶ A *trivial cofibration* is a *J*-cofibration.

Lemma

- ▶ A morphism $A \to B$ is a cofibration if and only if it is a Reedy complemented inclusion, i.e., $A_k \sqcup_{L_k A} L_k B \to B_k$.
- ▶ A morphism $X \to Y$ is a trivial fibration if and only if it is a Reedy split epimorphism, i.e., $X_k \to M_k X \times_{M_k Y} Y_k$.

- ► A (Kan) fibration is a J-fibration.
- ▶ A *trivial* (Kan) fibration is an *I*-fibration.
- ▶ A *cofibration* is an *I*-cofibration.
- ▶ A *trivial cofibration* is a *J*-cofibration.

Lemma

- ▶ A morphism $A \to B$ is a cofibration if and only if it is a Reedy complemented inclusion, i.e., $A_k \sqcup_{L_k A} L_k B \to B_k$.
- ▶ A morphism $X \to Y$ is a trivial fibration if and only if it is a Reedy split epimorphism, i.e., $X_k \to M_k X \times_{M_k Y} Y_k$.

Definition

A morphism $X \rightarrow Y$ is a pointwise weak equivalence if

$$\mathsf{Hom}_{\mathsf{sSet}}(E,X) \to \mathsf{Hom}_{\mathsf{sSet}}(E,Y)$$

is a weak homotopy equivalence in sSet for all $E \in \mathcal{E}$.

Proposition

A fibration between fibrant objects is trivial if and only if it is a pointwise weak equivalence.

Proof.

This holds pointwise, i.e., on applying of $\mathsf{Hom}_{\mathsf{sSet}}(E,-)$ for all $E \in \mathcal{E}$. \square

Proposition

A fibration between fibrant objects is trivial if and only if it is a pointwise weak equivalence.

Proof.

This holds pointwise, i.e., on applying of $\mathsf{Hom}_{\mathsf{sSet}}(E,-)$ for all $E \in \mathcal{E}$. \square

Definition

A morphism $X \to Y$ is a *weak homotopy equivalence* if its canonical fibrant replacement $\widehat{X} \to \widehat{Y}$ (produced by the enriched small object argument) is a pointwise weak equivalence.

Proposition

A fibration between fibrant objects is trivial if and only if it is a pointwise weak equivalence.

Proof.

This holds pointwise, i.e., on applying of $\mathsf{Hom}_{\mathsf{sSet}}(E,-)$ for all $E \in \mathcal{E}$. \square

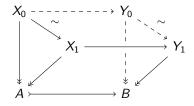
Definition

A morphism $X \to Y$ is a *weak homotopy equivalence* if its canonical fibrant replacement $\widehat{X} \to \widehat{Y}$ (produced by the enriched small object argument) is a pointwise weak equivalence.

To complete the proof of the main theorem we need to generalize the proposition to fibrations between all objects.

Proposition (Equivalence extension property)

Given the diagram of morphisms between cofibrant objects



where the lower square is a pullback and $X_0 \to X_1$ is a homotopy equivalence over A, there is Y_0 and dashed morphisms such that the back square is a pullback and $Y_0 \to Y_1$ is a homotopy equivalence over B.

Proposition (Fibration extension property)

If X, A and B are cofibrant, $X \to A$ is a fibration and $A \to B$ a trivial cofibration, then there is a pullback square

where $Y \to B$ is a fibration and $X \to Y$ is a trivial cofibration.

Proposition (Fibration extension property)

If X, A and B are cofibrant, $X \to A$ is a fibration and $A \to B$ a trivial cofibration, then there is a pullback square

where $Y \to B$ is a fibration and $X \to Y$ is a trivial cofibration.

Corollary

A fibration between cofibrant objects is trivial if and only if it is a pointwise weak equivalence.

If G is a group and $\mathcal{E}=G ext{-Set}$, then the resulting model structure on $G ext{-sSet}$ coincides with the genuine equivariant model structure.

If G is a group and $\mathcal{E}=G ext{-Set}$, then the resulting model structure on $G ext{-sSet}$ coincides with the genuine equivariant model structure.

Definition

Let \mathcal{E} be completely lextensive.

- ▶ $X \in \mathcal{E}$ is *connected* if $\mathsf{Hom}_{\mathsf{sSet}}(X, -)$ preserves van Kampen coproducts.
- $ightharpoonup \mathcal{E}$ is *locally connected* if every object is a van Kampen coproduct of connected objects.

If G is a group and $\mathcal{E}=G ext{-Set}$, then the resulting model structure on $G ext{-sSet}$ coincides with the genuine equivariant model structure.

Definition

Let \mathcal{E} be completely lextensive.

- ▶ $X \in \mathcal{E}$ is *connected* if $\mathsf{Hom}_{\mathsf{sSet}}(X, -)$ preserves van Kampen coproducts.
- E is locally connected if every object is a van Kampen coproduct of connected objects.

Theorem (Generalized Elmendorf's Theorem)

If $\mathcal E$ is a locally connected completely lextensive category, then $\operatorname{Ho}_\infty s\mathcal E$ is equivalent to the $\operatorname{Ho}_\infty s\operatorname{Psh}(\mathcal E^{con})$ where $\mathcal E^{con}$ is the category of connected objects of $\mathcal E$.

Proof sketch.

- ightharpoonup We consider the category of *small* simplicial preseaves sPsh(\mathcal{E}^{con}).
- This category carries a projective model structure with class cofibrantly generated weak factorization systems by results of Chorny and Dwyer.
- ▶ These weak factorization systems correspond to those of s \mathcal{E} under the restricted Yoneda embedding s $\mathcal{E} \to \mathsf{sPsh}(\mathcal{E}^\mathsf{con})$.

Proof sketch.

- ightharpoonup We consider the category of *small* simplicial preseaves sPsh(\mathcal{E}^{con}).
- This category carries a projective model structure with class cofibrantly generated weak factorization systems by results of Chorny and Dwyer.
- ▶ These weak factorization systems correspond to those of s \mathcal{E} under the restricted Yoneda embedding s $\mathcal{E} \to \mathrm{sPsh}(\mathcal{E}^{\mathsf{con}})$.

Cf. F. Hörmann, *Model category structures on simplicial objects*, https://arxiv.org/abs/2103.01156

Proof sketch.

- ightharpoonup We consider the category of *small* simplicial preseaves sPsh(\mathcal{E}^{con}).
- This category carries a projective model structure with class cofibrantly generated weak factorization systems by results of Chorny and Dwyer.
- ► These weak factorization systems correspond to those of s \mathcal{E} under the restricted Yoneda embedding s $\mathcal{E} \to \mathrm{sPsh}(\mathcal{E}^{\mathsf{con}})$.

Cf. F. Hörmann, *Model category structures on simplicial objects*, https://arxiv.org/abs/2103.01156

Proposition

- If $\mathcal E$ is κ -lextensive, then $\operatorname{Ho}_\infty s\mathcal E$ satisfies κ -descent, i.e., κ -small colimits in $\operatorname{Ho}_\infty s\mathcal E$ are van Kampen.
- If \mathcal{E} is locally cartesian closed, then so is $Ho_{\infty} s\mathcal{E}$.

Theorem

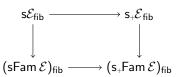
If $\mathcal E$ is either countably complete or countably lextensive, then $Ho_\infty(s\mathcal E_{fib})$ is equivalent to the full subcategory of simplicial presheaves over $\mathcal E$ that are homotopy colimits (geometric realizations) of Kan complexes in $\mathcal E$.

Theorem

If $\mathcal E$ is either countably complete or countably lextensive, then $Ho_\infty(s\mathcal E_{fib})$ is equivalent to the full subcategory of simplicial presheaves over $\mathcal E$ that are homotopy colimits (geometric realizations) of Kan complexes in $\mathcal E$.

Proof sketch.

- ▶ There is a *fibration category* $s_{+}\mathcal{E}_{fib}$ of *semisimplicial objects* in \mathcal{E} and an equivalence of fibration categories $s\mathcal{E}_{fib} \rightarrow s_{+}\mathcal{E}_{fib}$ provided that \mathcal{E} is countably complete or countably lextensive.
- ▶ The category Fam \mathcal{E} (the coproduct completion of s \mathcal{E}) is completely lextensive.
- ► In the diagram



the right functor is fully faithful on Ho_{∞} and hence so is the left one.

▶ Apply Elmendorf's Theorem ((Fam \mathcal{E})^{con} = \mathcal{E}).

Corollary

Under the same assumptions, the full subcategory of set-truncated objects in $Ho(s\mathcal{E}_{fib})$ is equivalent to the ex/lex completion of \mathcal{E} .

Corollary

Under the same assumptions, the full subcategory of set-truncated objects in $Ho(s\mathcal{E}_{fib})$ is equivalent to the ex/lex completion of \mathcal{E} .

Conjecture

Under the same assumptions, the ex/lex completion of the ∞ -category $\mathcal E$ is equivalent to the full subcategory of $\mathsf{Ho}_\infty(\mathsf{s}\mathcal E_\mathsf{fib})$ on objects that are n-truncated for some n.

Corollary

Under the same assumptions, the full subcategory of set-truncated objects in $Ho(s\mathcal{E}_{fib})$ is equivalent to the ex/lex completion of \mathcal{E} .

Conjecture

Under the same assumptions, the ex/lex completion of the ∞ -category $\mathcal E$ is equivalent to the full subcategory of $\mathsf{Ho}_\infty(\mathsf{s}\mathcal E_\mathsf{fib})$ on objects that are n-truncated for some n.

Conjecture

For general finitely complete \mathcal{E} , the ex/lex completion of the ∞ -category \mathcal{E} is equivalent to the full subcategory of $\mathsf{Ho}_\infty(\mathsf{s}_{\scriptscriptstyle+}\mathcal{E}_\mathsf{fib})$ on objects that are n-truncated for some n.