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Pre-talk Comments

Three Comments:

This is not a type theory talk (but has some type theory
words)!

Will assume basic category theory, but no ∞-category theory.

For more details see the paper “Every Elementary Higher
Topos has a Natural Number Object” arXiv:1809.01734 or
Theory and Applications of Categories, Vol. 37, 2021, No. 13,
pp 337-377.
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1-Categories vs. Type Theories

There are various 1-categories which are models of various type
theories (table by Shulman):

propositional logic Boolean/Heyting algebras

first-order logic Boolean/Heyting categories

simply typed λ-calculus cartesian closed categories

higher-order type theory elementary toposes

Focus on the last line!
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Elementary Toposes

Definition (Elementary Topos)

An elementary topos E is a locally Cartesian closed category
with subobject classifier.

• LCCC: For all f : X → Y we have an adjunction

E/Y E/X

f ∗

⊥
f∗

.

• SOC: Natural isomorphism

HomE(X ,Ω) ∼= Sub(X )

where Sub(X ) are iso classes of subobjects.
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Examples of Elementary Toposes

The category of sets Set, where Ω = {0, 1}.
The category of finite sets Setfin (more generally category of
sets smaller than a certain inaccessible cardinal).

Presheaves on set Fun(Cop, Set).

Left-exact localizations thereof (Grothendieck toposes).

Filter products
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Constructions in an Elementary Topos

Using the axioms of an elementary topos we can already prove a
lot of cool stuff:

1 Existence of finite colimits

2 Giraud axiom’s

3 Classification of left exact localizations

4 epi-mono factorization

5 ...
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Non-Constructions in an Elementary Topos

Some constructions cannot be carried out in every elementary
topos. For example constructing free monoids.

Example

The category of finite sets does not have free monoids. Similarly,
presheaves of finite sets and filter products on finite sets.

We need an additional axiom.
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An infinite object

Key difference between sets and finite sets: existence of
infinite sets.

Need to add an axiom that gives us infinite sets.

One way would be to simply assume the existence of small
colimits. But the definition of small colimits would not be
elementary!

Want to do better!
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Freyd natural number object

One elementary way to indicate an object is infinite is to state it
has a non-trivial self-injection.

Definition (Freyd NNO)

A triple (N, o : 1→ N, s : N→ N) is a Freyd natural number
object if the following are colimits:

N N 1
id

s
,

∅ N

1 N

s

o
p

.
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Peano natural number object

Another elementary way to define an infinite object is to focus on
the set of natural numbers and axiomatize the Peano axioms.

Definition (Peano NNO)

A triple (N, o : 1→ N, s : N→ N) is a Peano natural number
object if s is monic, o and s are disjoint subobjects of N, and for
every subobject N′ ↪→ N that is closed under the maps o and s,
meaning we have a commutative diagram

N′ N′

1

N N

s
o

o
s

the inclusion N′
∼=
↪→ N is an isomorphism.
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Lawvere natural number object

Finally, Lawvere found another categorical way to think about
NNOs, namely via a universal property.

Definition (Lawvere NNO)

A triple (N, o : 1→ N, s : N→ N) is a Lawvere natural number
object if for any other triple (X , b : 1→ X , u : X → X ) there is a
unique map f : N→ X making the following diagram commute

N N

1

X X

s

∃!f ∃!f

o

b u

.
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A Zoo of NNOs

How are all these notions related? We have in fact the best
possible result.

Theorem (Elephant D5.1.2)

Let (N, o, s) be a triple in an elementary topos. Then the following
are equivalent.

1 It is a Freyd natural number object.

2 It is a Peano natural number object.

3 It is a Lawvere natural number object.

Hence, we can simply call such an object a natural number object.
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Natural Number Objects are Useful

Using natural number objects we now have nice extra results.

Proposition (Elephant D5.3.3)

Let E be an elementary topos with NNO. Then forgetful functor
Mon(E)→ E has a left adjoint given explicitly by

F (X ) = E/N(N1,X × N),

where N1 → N is the universal finite cardinal.

Recall, this condition cannot be relaxed and assuming NNOs is in
fact necessary!
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What about higher dimensions?

Let’s summarize:

1 We have several notions of natural number objects that all
coincide.

2 The existence does not follow from the axioms of elementary
toposes.

3 Assuming its existence we can prove cool things.

How about ∞-categories? Can we generalize the results we just
reviewed? Are there are any differences?
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What is an ∞-Category?

For the purposes of this talk we will take an ∞-category to be the
following data:

1 Objects X , Y , ... in C.

2 Mapping space MapC(X ,Y ) with a composition operation
defined up to contractible ambiguity.

3 All classical categorical terms (limits, adjunctions, Cartesian
closure, ... ) still hold, although some need to be adjusted.

We will review two concepts in more detail: descent and
subobject classifier.
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Weak Descent

If E is an elementary topos then Giraud’s axioms imply that there
is an equivalence of categories

E/X
∐

Y ' E/X × E/Y

which takes an object Z → X
∐

Y to the pullback ((ιX )∗Z , (ιY )∗Z ).

In ∞-categories this can be generalized to all colimits
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Descent

Definition (Descent)

Let E be a category with finite limits and colimits. Then E satisfies
descent for a diagram F : I → E if there is an equivalence

E/colimI F
'−−→ (EI

/F )Cart ,

where (EI
/F )Cart consists of natural transformations over F where

all naturality squares are pullbacks.
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Subobject classifier

Subobject classifiers for ∞-categories are defined analogously.

Definition (Subobject classifier for ∞-Categories)

Let E be an ∞-category with finite limits. A subobject classifier Ω
represents

Sub : Eop → Set

taking an object X to the set of isomorphism classes of subobjects
Sub(X ) in the ∞-category E.

Note f : X → Y is a subobject if ∆ : X → X ×Y X is an
equivalence in C.
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Which ∞-Categories?

We want to study various constructions internal to ∞-categories.
Here we would like to use a similar table relating intensional type
theories and ∞-categories, but that table is not complete yet.

For the remainder fix an ∞-category E that satisfies following
conditions:

1 It has finite limits and colimits.

2 It is locally Cartesian closed.

3 It has a subobject classifier.

4 It satisfies descent for all colimit diagrams that exist.

Note these are very reasonable conditions and are satisfied by any
commonly discussed definition of elementary ∞-topos.
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Do they exist?

Examples include:

The ∞-category of spaces.

Presheaves Fun(Cop, S)

Grothendieck ∞-toposes

Filter product ∞-toposes.

...
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Natural Number Objects in ∞-Categories

Given that we have finite colimits, we can adjust all three
definitions for Freyd, Peano and Lawvere natural number objects.

• Freyd: We have colimits N N 1
id

s
, 1

∐
N No+s

∼=
.

• Peano: s is monic, o and s are disjoint subobjects of N, and
every subobject N′ ↪→ N that is closed under the maps o and s is
isomorphic to N.
• Lawvere: The space of maps

N N

1

X X

s

f f

o

b u

.

is contractible.
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Main Theorem

Theorem (R)

Let E be a locally Cartesian closed finitely bicomplete ∞-category
which satisfies descent and has a subobject classifier. Then all
three notions of natural number object coincide and exist!

For the remainder of this talk we focus on the proof and various
complications, and (maybe) some implications.
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Main Steps of the Proof

The proof neatly breaks down in three major steps each using a
different type of mathematics:

1 Algebraic Topology: Constructing an object that includes
the NNO

2 Elementary Topos Theory: Constructing the desired object
and proving it is a Freyd and Peano NNO in E

3 Homotopy Type Theory: Proving it is a Lawvere NNO in E
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The Circle and its Loops

The first step uses standard algebraic topology.

Definition (Circle)

We define the circle in E as 1 1 S1
id

id

i .

Definition (Loop Object of Circle)

The loop object ΩS1 is defined as the pullback

ΩS1 1

1 S1

p
i

i

.
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The Circle and Descent

Using descent we have an equivalence between maps X → S1 and
objects F along with a choice of self equivalence.

F F X

1 1 S1

' e1

' e2p p

id

id

Under this equivalence, 1→ S1 corresponds to (ΩS1, s).
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The Loop Object is Nice

Using descent we can prove following nice properties about ΩS1:

1 Universality of Pullback: It is 0-truncated.

2 Covering Spaces: We have ΩS1 ∼= ΩS1
∐

ΩS1.

3 Loop Spaces: ΩS1 is a group object.

This ends the first part!
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The Underlying Elementary Topos

Definition (0-Truncated object)

An object X in E is 0-truncated if for all Y , MapE(Y ,X ) is
(equivalent to) a set. We denote the full subcategory of E
consisting of 0-truncated objects by τ0E.

E has finite limits, is locally Cartesian closed and has a subobject
classifier. Hence τ0E is an elementary topos, which we call the
underlying elementary topos. The previous result implies that
ΩS1 is an object in τ0E.
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Using the Underlying Elementary Topos

We can use our understanding of elementary topos theory and the
object ΩS1 to construct natural number objects.

1 Non-Canonical: ΩS1 ∼= ΩS1
∐

ΩS1 implies that τ0E has an
NNO by Corollary 5.1.3 in the Elephant. The constructed
NNO depends on the choice of isomorphism.

2 Canonical: We can prove the minimal subobject of
(ΩS1, s, o) closed under s, o is an NNO.

So, τ0E has all kinds of NNOs. Can we move it back up?
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Moving up Peano NNOs

Recall the axioms of a Peano natural number object are about
subobjects and disjointness. However, the inclusion τ0E→ E is
limit preserving and so we immediately get following result:

Proposition

E has a Peano natural number object.
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Moving Up Freyd NNOs

Moving up Freyd is a little more subtle. The map 1
∐

N No+s
∼=

is still formally an equivalence in E.
The equivalence

N N 1
id

s

can be computed. Hence:

Proposition

E has a Freyd natural number object.
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How about Lawvere NNOs?

The Lawvere NNO condition does not generalize, so we need a
different strategy. We want to prove being a Peano NNO implies
Lawvere NNO. However, the proof in the elementary topos setting
doesn’t generalize:

It uses type theoretical language to construct object in the
topos!

Even if we manually translated the construction, it involves
identity types, which behave very differently.

Even if we took care of that it relies on a lemma from a
different construction, which does not give us the desired
object in an ∞-category (in fact, even in spaces).
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A Counter-Example in Spaces
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Enter Homotopy Type Theory

Here we use our knowledge of homotopy type theory to prove a
Peano natural number object in E is a Lawvere natural number
object. The key is to use the wisdom of Shulman, who does a
similar construction in homotopy type theory.
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Constructing Lawvere NNOs in HoTT

Let (X , b : 1→ X , u : X → X ) be a triple:

There is a map that takes f : N→ X to the product of the
restriction maps (f |[n] : [n]→ X )n∈N

Being indexed over N in type theory allows us to restrict to
the diagonal (f |[n](n))n∈N : N→ X .

As the appearance suggests this map is the identity (i.e.
f |[n](n) = f (n)) and so we have a retract diagram.

Finally, the type of maps f[n] : [n]→ X with assumption
(X , b : 1→ X , u : X → X ) is contractible and the product of
contractible types is contractible.
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Transforming HoTT into Category Theory

We want to make this into a categorical argument. The correct
argument would be to realize homotopy type theory as the internal
language of our (∞, 1)-category and be done with it...

We don’t have that, so we will manually translate some ideas and
add some other ideas to complete the proof! In particular, there
are two key tricks we use to make the manual translation work.
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Parametrizing over the Natural Numbers

In order to be able to restrict the collection of partial maps to a
global map out of N it needs to be parameterized over N by
definition. So, for a triple (X , b, u) we define the space
Part(X , b, u) as

Part(π2 : N1 → N, (π2 : X×N→ N, (b, idN) : N→ X×N, u×idN : X×N→ X×N))

which is the space of maps f that fit into the diagram

N1 N
∐

N1

N

X × N X × N

ι2

f ◦inc f

o×id

b u×id

.
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The Object of Contractibility

The second trick is to use the object of contractibility
isContrB : (E/B)' → (E/B)', which has following properties:

isContrB(p : E → B)→ B is final if and only if p is an
equivalence.

isContrB(p : E → B)→ B is always (−1)-truncated.

Combining this with the axioms of a Peano NNO we have
following useful lemma.

Lemma

A map X → N is an equivalence if and only if isContrN(X → N) is
closed under (o, s).
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Building the maps

We now use these observations to build the maps! Let Ind(X , b, u)
be the space of diagrams of the form

N N

1

X X

s

f f

o

b u

and recall Part(X , b, u) is the space of diagrams of the form

N1 N
∐

N1

N

X × N X × N

ι2

f ◦inc f

o×id

b u×id

.
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From Global to Local

N1 N
∐

N1

N× N N× N

N N N

X × N X × N

s×idN

π2

idN
∐
π2

f×idN

s×idN

f×idN

o

(b,idN)

π2

u×idN

π2
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From Local to Global

N N

N1 N
∐

N1

1 N N N

X × N X × N

X X

∆

s

∆

π2

s×idN

idN
∐
π2

b

o

o

o

(b,idN)

π2

u×idN

π1

π2

π1

u
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Combining the Steps!

We can now combine everything to finish the proof:

1 Show the two maps compose to the identity i.e. we have a
retract diagram

Ind(X , b, u)→ Part(X , b, u)→ Ind(X , b, u).

2 Prove Part(X , b, u)→ N is an equivalence using
isContrN(Part(X , b, u)) and induction.

3 Deduce Ind(X , b, u) is contractible, proving N is a Lawvere
natural number object.
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Who cares?

We want to end this talk with some implications:

1 Relation to enveloping ∞-toposes

2 External and Internal Colimits

3 Connections to Truncations

4 Future Directions
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Not All Elementary Toposes Lift

Here is a cool implication of these results relating 1-categories and
∞-categories.

Corollary

Let E be an elementary topos without natural number object (such
as finite sets), then there does not exist a locally Cartesian closed
finitely bicomplete ∞-category Ê satisfying descent such that
τ0(Ê) ' E.

This is in stark contrast to Grothendieck toposes, which always
have enveloping ∞-toposes.
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Implications for Examples of ∞-Toposes

Note this also means that the ∞-category of finite spaces cannot
give us ∞-toposes (unlike finite sets). Rather we have to take
κ-small spaces for κ large enough. This has also been studied by
Lo Monaco.
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Universes

For further applications of NNOs we need universes.

Definition

A map p : U∗ → U in E is a universe if the induced pullback map
of spaces

p∗(−) : MapE(X ,U)→ (E/X )'

is fully faithful and the essential image is closed under finite limits
and colimits.

Here (E/X )' is the maximal sub-space of the ∞-category E/X .
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External Countable Colimits

Using NNOs we can give a nice criterion for the existence of
countable colimits.

Proposition

Let E be a locally Cartesian closed finitely bicomplete ∞-category
with subobject classifier satisfying descent. Let U be a universe
and denote the full subcategory of E in the image of U by ES .
Then ES is countably bicomplete if and only if N is in ES and is
the countable colimit of 1.

The key is to recover general (co)products from morphism∐
N 1→ U.
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Internal Coproducts

Using NNOs we can study colimits internally! Fix E as before with
a universe U.

Definition

A sequence is a morphism {An}n : N→ U. The internal
coproduct

∑
An is the pullback along p : U∗ → U.

For example, the internal coproduct of a constant diagram
{X} : N→ U can be evaluated to be X × N.
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Internal Sequential Colimits

For a sequence {An}n : N→ U a sequential diagram is a map

{fn}n :
∑
n:N

An →
∑
n:N

An+1

and the sequential colimit A∞ is defined as the coequalizer:∑
n:N

An

∑
n:N

An A∞
f

id
.

We can prove cofinality results using this definition.

Theorem

Let {fn : An → An+1}n:N be a sequential diagram. Then {fn}n:N
has the same sequential colimit as {fn+1}n:N.
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Truncations

The existence of natural number objects and sequential colimits
can be used in a variety of ways.

Using natural number objects we can define internal
truncation levels (which can differ from the classical ones in
spaces).

We can translate other homotopy type theory results, such as
the join construction (due to Rijke) to get (−1)-truncations.

For more details see “An Elementary Approach to Truncations”
arXiv:1812.10527.
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Further Questions

Can we use natural number objects to construct free A∞-monoids?
We can use the same construction to get the object we expect to
be the free A∞-monoid, however:

1 In the ∞-setting we need operads to define A∞-monoids.

2 Even more generally the definition of operads could depend on
the natural number object.

3 Developing A∞-objects in homotopy type theory has been
challenging.

4 ...
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The End

Thank You!

Questions?
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