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Tribes

Let E be a category together with a subcategory of fibrations

F ™ E.

I A morphism of called anodyne if it has the LLP with respect

to the class of fibrations.

The category E is called a tribe if the following conditions are

satisfied:

I E has a terminal object 1 and all objects are fibrant

I Pullbacks along fibrations exist and fibrations are stable under

pullback

I Every morphism admits a factorization into an anodyne

morphism followed by a fibration

I Anodyne morphisms are stable under pullback along fibrations



Tribe Axioms

We call the fibrations in E isofibrations. We further assume that E
admits a hierarchy of universes: an infinite well-ordered set I and

for each U œ I a subtribe EU ™ E such that

I U1 < U2 ∆ EU1 ™ EU2

I t
UœI EU = E

I for any finite family of objects A1, . . . , An of E with each Ai
belonging to EUi for some Ui œ I, any object of E obtained

from them by applying the deduction rules of dependent type

theory (when they make sense in E) belongs to

max{Ui | 1 Æ i Æ n}.
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Tribe Axioms

Universality of sums
For any finite set J and any family (Aj)jœJ of objects of E the sum

A :=

·

jœJ
Aj

exists and the pullback functor

E(A) æ
Ÿ

jœJ
E(Aj)

is an equivalence of tribes.



Tribe Axioms

Internal hom
The category E admits an internal hom, i.e. for any object A of E
the functor A ◊ (≠) admits a right adjoint Fun(A, ≠).
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Interval axioms

Existence of an interval
There is an object I equipped with two maps

ˆi : 1 æ I, i = 0, 1

such that

1. the diagonal I æ I ◊ I is both an isofibration and a

monomorphism

2. the map i = (ˆ1, ˆ0) : 1 Û 1 æ I is an isofibration and a

monormorphism

3. dependent products along i exist.

4. the interval I is 0-truncated.
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Interval axioms

Connections
The map

ˆ0 : 1 æ I

is a right deformation retract and the map

ˆ1 : 1 æ I

is a left deformation retract.
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Interval axioms

Simplicial structure
There is an isomorphism

a : 1 ú I
≥=≠æ I ú 1

such that the square below commutes

1 Û (1 Û 1) (1 Û 1) Û 1

1 ú (1 Û 1) (1 Û 1) ú 1

1 ú I I ú 1

≥=

idúi iúid
a

Moreover, these isomorphisms satisfy the Pentagon axiom.
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Category axioms

Segal map
For each isofibration p : X æ Y and 0 Æ i Æ n the maps induced

by ˆn
i

Fun(�
n, X ) æ Fun(�

n, Y ) ◊Fun(�n≠1,Y ) Fun(�
n≠1, X )

is an isofibration. Furthermore, the Segal map

Fun(�
n, X ) æ Fun(�

1, X ) ◊X · · · ◊X Fun(�
1, X )

is a trivial fibration.
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Category axioms

Maximal groupoid
The inclusion gr(E) Òæ E has a right adjoint

(≠)
ƒ

: E æ gr(E)

which is a morphism of tribes. Furthermore, we demand that we

have an equivalence

ˆ�
1 æ (�

1
)
ƒ
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Category axioms

Uniqueness of inverses
For any object C the canonical functor C æ IsInv(C) is an

equivalence.
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Category axioms
Full subtype former
Given an object C and a homotopy monomorphism of groupoids

j : X Òæ Cƒ

then there exists a functor

CX Òæ C

such that when restricted to maximal groupoids we obtain the

original map

j : X = (CX )
ƒ æ Cƒ

and such that the map

Fun(A, CX ) æ Fun(A, C) ◊Fun(Aƒ,Cƒ) Fun(Aƒ, X )

is an equivalence.


