Univalent Directed Type Theory

Denis-Charles Cisinski, Hoang Kim Nguyen, Tashi Walde

March 13, 2023

Tribes

Let \mathbf{E} be a category together with a subcategory of fibrations $\mathbf{F} \subseteq \mathbf{E}$.

- A morphism of called anodyne if it has the LLP with respect to the class of fibrations.

The category \mathbf{E} is called a tribe if the following conditions are satisfied:

- E has a terminal object 1 and all objects are fibrant
- Pullbacks along fibrations exist and fibrations are stable under pullback
- Every morphism admits a factorization into an anodyne morphism followed by a fibration
- Anodyne morphisms are stable under pullback along fibrations

Tribe Axioms

We call the fibrations in \mathbf{E} isofibrations. We further assume that \mathbf{E} admits a hierarchy of universes: an infinite well-ordered set I and for each $U \in I$ a subtribe $\mathbf{E}_{U} \subseteq E$ such that

- $U_{1}<U_{2} \Rightarrow \mathbf{E}_{U_{1}} \subseteq \mathbf{E}_{U_{2}}$
- $\cup_{U \in I} \mathbf{E}_{U}=\mathbf{E}$
- for any finite family of objects A_{1}, \ldots, A_{n} of \mathbf{E} with each A_{i} belonging to $\mathbf{E}_{U_{i}}$ for some $U_{i} \in I$, any object of \mathbf{E} obtained from them by applying the deduction rules of dependent type theory (when they make sense in \mathbf{E}) belongs to $\max \left\{U_{i} \mid 1 \leq i \leq n\right\}$.

Terminology:
an infibratio $p: x$-My is called on- small if for any Pullback Diagram

w/ $B u$-sMaLL THE OBY. A is u SMALL WiLe na intwonce all operations of MeTT/HOTT in Pheticultr nor all OEP PROD EXIST.

Tribe Axioms

Universality of sums
For any finite set J and any family $\left(A_{j}\right)_{j \in J}$ of objects of \mathbf{E} the sum

$$
A:=\coprod_{j \in J} A_{j}
$$

exists and the pullback functor

$$
\mathbf{E}(A) \rightarrow \prod_{j \in J} \mathbf{E}\left(A_{j}\right)
$$

is an equivalence of tribes.

Tribe Axioms

Internal hom

The category \mathbf{E} admits an internal hom, i.e. for any object A of \mathbf{E} the functor $A \times(-)$ admits a right adjoint $\operatorname{Fun}(A,-)$.

LET A \qquad \therefore Br a wnmitative soulart.

Then ais chlled a homprory pullback if for any aldoreration

$$
x \simeq x \rightarrow y
$$

The mar $A-B x y y^{\prime}$ is an equivalence
A MP $A \rightarrow B$ is a Hohoropy MoNotorpptism if
$A=1$ is a Horotiopy puliback $11 \quad 1$
$A \sim B$

More generaily : $A-B$ is n-Trunctied if
For any frbrant replacement $A \rightarrow$ s
THE MAP

$$
A^{\prime} \longrightarrow A^{\prime} \times A^{\prime}
$$

is $(n-1)$ - TRUNCAED.

AN OBS. A is n-TRMDCARED if $A \rightarrow 1$ is n-TRnnctred

Interval axioms

Existence of an interval
There is an object \mathbb{I} equipped with two maps

$$
\partial_{i}: 1 \rightarrow \mathbb{I}, \quad i=0,1
$$

such that

1. the diagonal $\mathbb{I} \rightarrow \mathbb{I} \times \mathbb{I}$ is both an isofibration and a monomorphism
2. the map $i=\left(\partial_{1}, \partial_{0}\right): 1 \sqcup 1 \rightarrow \mathbb{I}$ is an isofibration and a monormorphism
3. dependent products along i exist.
4. the interval \mathbb{I} is 0 -truncated.

A RGGt DEFORMATION RETRACT iA A MAP

$$
B: A \longrightarrow B
$$

TOEETHER U/ MARS P: B—A AND $H: I \times B \rightarrow B$

$$
\text { s.r. } \quad \cdot \rho \delta=1_{A}
$$

commirts
i.e. $\quad H: \Lambda_{B} \Rightarrow s p$

conmurts

DOAKy DEFINE LEFT DEFORMATION RETRAGT

BEf: w:l-A is FINAL (NITIAL)
if ir is a RIGKT (LEFR) DEFORMAT Ion Rerrata

IDEA: WANT ADS BUT CAN ONLY DIFINE Funcy FATAFAL RGHE/LEFT ADJoINTS.

Interval axioms

Connections
The map

$$
\partial_{0}: 1 \rightarrow \mathbb{I}
$$

is a right deformation retract and the map

$$
\partial_{1}: 1 \rightarrow \mathbb{I}
$$

is a left deformation retract.

THIS APPLES: I HAS FINAL AND INITIAL OBJEOS

- I ADMITS connections
max: II $x \pi \rightarrow \pi$
min: IXI \rightarrow I

THE polo

To HAVE A RGHT AOY ix $\varepsilon_{x} \varepsilon \rightarrow \varepsilon / \frac{\pi}{\pi}$ which is A MORPMISR of TRPRES
Thus FOR $A B$ OBS OF Z WE GET AN (JOFFIBRETIDO
$i_{*}(A, B)$ DEane $A+B=I_{n}(A, B)$

II
CRIED THE JOIN OF AND 13
ir a chreacterited By

- $(A, B) \mapsto A+B$ y a runction
- $1+1=I$
- arb is an istipration

$$
\frac{1}{I}
$$

- have canonical puubacles

$$
\begin{aligned}
& A-A+B=1 B \\
& 1-1 \\
& \delta_{1}=\frac{1}{\delta_{0}} 1
\end{aligned}
$$

$\therefore A$ MAP $x \rightarrow A \times B$ yo DETERMIWED By

THIS CORRESPONDS TO

Interval axioms

Simplicial structure
There is an isomorphism

$$
a: 1 * \mathbb{I} \xlongequal{\cong} \mathbb{I} * 1
$$

such that the square below commutes

Moreover, these isomorphisms satisfy the Pentagon axiom.

Explanation:
given off. A, B, have a commit ative diagram

THE induced MAP $a_{A, B, C}$ is AN isomo RPRISM,

NE OBTAIN TKE TOLLONONG DIAGRAM

$$
\begin{aligned}
& (1+1) \times(1+1) \\
& \text { a II } * \text { I } \\
& (\bar{I}+1)+1 \\
& 1 \times(1 * I) \\
& a+1 \\
& \vartheta \\
& (1+\pi) \times 1< \\
& r a_{1,1} \pi \\
& 1+\cdots \\
& 1 \times(\pi, 1)
\end{aligned}
$$

AND THE SIMPL STRMCTURE $A x$ OINS ASDERTS THAT THIS COMMUTES

Note: This imples thar a aibic satisfy malanes peniagon. 1.E. The fan Defines a Monoidl prodnct on ε.

Morzover: 1 is A mono io wroso tho The foin.

SIMPliles in e: $\quad \Delta_{\text {II }}^{n}$

$$
\begin{aligned}
& \text { - } \Delta_{I}^{-1}=\rho \\
& \text { WAVE } \phi \rightarrow \Delta_{I}^{\circ} \\
& \text { - } \Delta_{\text {II }}^{0}=1 \\
& \cdot \Delta_{\pi}^{1}=\Delta_{\pi}^{0} \times \Delta_{I}^{6}-\Delta_{I}^{6} \\
& \therefore \Delta_{I}^{n+1}=\Delta_{I}^{0} * \Delta_{I}^{n} \\
& \text { Turning } \Delta_{\text {I }}^{0} \text { indo a monoid }
\end{aligned}
$$

In phrtimar $I \cong \Delta_{\text {II }}^{1}$

WE OBTAN

$$
\begin{aligned}
& \Delta \longrightarrow \varepsilon \\
& {[n] \longmapsto \Delta_{\text {II }}^{4}}
\end{aligned}
$$

AND in PARTIMLAR SIMPLINAL HAPS IN \mathcal{E}

Category axioms

Segal map

For each isofibration $p: X \rightarrow Y$ and $0 \leq i \leq n$ the maps induced by ∂_{i}^{n}

$$
\operatorname{Fun}\left(\Delta^{n}, X\right) \rightarrow \operatorname{Fun}\left(\Delta^{n}, Y\right) \times_{\text {Fun }\left(\Delta^{n-1}, Y\right)} \operatorname{Fun}\left(\Delta^{n-1}, X\right)
$$

is an isofibration. Furthermore, the Segal map

$$
\operatorname{Fun}\left(\Delta^{n}, X\right) \rightarrow \operatorname{Fun}\left(\Delta^{1}, X\right) \times_{x} \cdots \times_{X} \operatorname{Fun}\left(\Delta^{1}, X\right)
$$

is a trivial fibration.

WE OBTAID THE USUAL COMPOOTTION. PPERATION BY CHOODING PECRINNS

$$
\begin{aligned}
& \text { Fun }\left(s^{2}, x\right) \xrightarrow{\delta_{A}^{2}} \text { Fun }\left(S^{\wedge}, x\right) \\
& \left.\sim\right|_{x} \\
& \operatorname{Fun}\left(\Delta_{1}^{\wedge}, x\right) \times \operatorname{Fun}_{x}\left(\Delta_{1}^{1}, x\right)
\end{aligned}
$$

This allows us to DIfine thrutopy categomes:
LIT $X(a, b)-X^{s^{1}}$ DEFINE LoX 1 ob $S^{0}-K$

- mav komorory clusses

$$
s \rightarrow X(a, b)
$$

DF: $[A, B]=h_{0} F_{m}(A, B)$
Ger \& 2 -Car feom ε

Dif: x i a GRPP if $x \rightarrow F \min \left(A^{\wedge} x\right)$ INDUCED By $\Delta^{\wedge} \rightarrow \Delta^{0}$ is An equivalence.

Denore $g_{r}(\varepsilon) \subseteq \varepsilon$ The Fwle SUBCAF ON Gloupsids.

Category axioms

Maximal groupoid
The inclusion $\operatorname{gr}(\mathbf{E}) \hookrightarrow \mathbf{E}$ has a right adjoint

$$
(-)^{\simeq}: \mathbf{E} \rightarrow g r(\mathbf{E})
$$

which is a morphism of tribes. Furthermore, we demand that we have an equivalence

$$
\partial \Delta^{1} \rightarrow\left(\Delta^{1}\right)^{\simeq}
$$

NON WNSIDER

$$
\prod_{\sim}^{\sim}
$$

$$
\begin{aligned}
& K \xrightarrow{ } \\
& \text { Islnu }(x) \longrightarrow \operatorname{Fun}\left(B^{2}, x\right) x \quad \operatorname{Fun}\left(A^{2}, x\right) \\
& \text { Funl } \Delta^{\wedge}, X \text {) } \\
& 1^{\circ} \\
& 1 x+x \longrightarrow F \text { Fim }\left(\Delta^{\prime}, X\right) \times \operatorname{Fmm}\left(\Delta^{n}, X\right)
\end{aligned}
$$

Category axioms

Uniqueness of inverses
For any object C the canonical functor $C \rightarrow \operatorname{Is} \operatorname{lnv}(C)$ is an equivalence.

THis implies that Isluv(c) io (uT to equivalence I A PATH OBJECT.

8 WE RAVE

$$
\cos ^{c}
$$

 an equivalence , IE \Leftrightarrow MAPS HAVE iNVERSES -

Category axioms

Full subtype former
Given an object C and a homotopy monomorphism of groupoids

$$
j: X \hookrightarrow C^{\simeq}
$$

then there exists a functor

$$
C_{X} \hookrightarrow C
$$

such that when restricted to maximal groupoids we obtain the original map

$$
j: X=\left(C_{X}\right)^{\simeq} \rightarrow C \simeq
$$

and such that the map

$$
\operatorname{Fun}\left(A, C_{X}\right) \rightarrow \operatorname{Fun}(A, C) \times_{\operatorname{Fun}(A \simeq, C \simeq)} \operatorname{Fun}\left(A^{\simeq}, X\right)
$$

is an equivalence.

