Brain Connectivity Analysis:
from Unimodal to Multimodal

Sergey M. Plis

joint work with Rene Huster, Terran Lane, Vince Clark, Michael Weisend and Vince D. Calhoun
Definitions and Tools

1. Definitions and Tools
2. Unimodal Connectivity Analysis: EEG
3. Contrasting modalities
4. Data Sharing Fusion
5. Validation through Interventions
Introduction

- Neuroimaging studies brain function
- Advanced techniques produce immense amounts of data
- Each with their strength and weaknesses
- Our goal: causal relations among brain networks
Functional Neuroimaging (fMRI)

- functional Magnetic Resonance Imaging (fMRI)
- Blood Oxygenation Level Dependent (BOLD) response
- 4D data (3D volumes evolving in time)

- **Advantage**: Relatively well localized
- **Disadvantage**: Slow sampling rate
Definitions and Tools

Functional Neuroimaging (MEG)

- **Magneto-EncephaloGraphy (MEG)**
- Electromagnetic phenomenon
 - **Advantage**: Instant reflection of the underlying activity (ms resolution)
 - **Disadvantage**: Uncertain spatial localization
Common Underlying Phenomenon

- Inverse problem
- Functional connectivity

[Diagram showing MEG, fMRI, and neural activity]
Data Fusion: Source Analysis
Definitions and Tools

Single modality: **Connectivity Analysis**

- **MEG**
- **fMRI**
Connectivity Inference: Bayesian Networks

\[P_\theta(X) = \prod_{i=1}^{n} P(X_i | P_a(X_i); \theta) \]
Comparing the Results: **Graph Characterization**

- in-degree
- out-degree
- degree centrality
- maximum degree
- diameter
- density
- average path length

Outline

1. Definitions and Tools
2. Unimodal Connectivity Analysis: EEG
3. Contrasting modalities
4. Data Sharing Fusion
5. Validation through Interventions
Stop-Go task
What are the nodes?
Contrasted sliding graphs metrics\(^2\)

- Higher clustering coefficient for the stop task: network consolidates for processing?
- Shorter characteristic path-length for the stop task: network becomes more efficient?

Outline

1. Definitions and Tools
2. Unimodal Connectivity Analysis: EEG
3. Contrasting modalities
4. Data Sharing Fusion
5. Validation through Interventions
Comparison Pipeline

- collect modalities: same subjects same paradigm
- process modalities: place data in the same ROIs
- pre-process data: align sampling rates and quantize
- infer effective connectivity: Bayesian Nets
- compare results: aggregate metric

Comparison Pipeline

- collect modalities: same subjects same paradigm
- process modalities: place data in the same ROIs
 - pre-process data: align sampling rates and quantize
 - infer effective connectivity: Bayesian Nets
- compare results: aggregate metric

Contrasting modalities

Neuroimaging

Comparison Pipeline

- collect modalities: same subjects same paradigm
- process modalities: place data in the same ROIs
- pre-process data: align sampling rates and quantize
- infer effective connectivity: Bayesian Nets
- compare results: aggregate metric

Contrasting modalities

Neuroimaging

Comparison Pipeline

- collect modalities: same subjects same paradigm
- process modalities: place data in the same ROIs
- pre-process data: align sampling rates and quantize
- infer effective connectivity: Bayesian Nets
- compare results: aggregate metric

Contrasting modalities

Neuroimaging

Comparison Pipeline

- collect modalities: same subjects same paradigm
- process modalities: place data in the same ROIs
- pre-process data: align sampling rates and quantize
- infer effective connectivity: Bayesian Nets
- compare results: aggregate metric

Contrasting modalities

Processing

MEG

fMRI

novel

target
Resulting Connectivity

Contrasting modalities

Neuroimaging

marginal distributions of edges

highest scoring networks in transverse view
Comparing the Results
Graph Metrics Distributions

node-degree distribution
Comparing the Results
Graph Metrics Distributions

node-degree distribution
Outline

1. Definitions and Tools
2. Unimodal Connectivity Analysis: EEG
3. Contrasting modalities
4. Data Sharing Fusion
5. Validation through Interventions
Why do fusion in dynamical settings?

- temporal resolution affects causality\(^4\)

- fusion helps to avoid temporal inverse problem\(^5\)

Why do fusion in dynamical settings?

- temporal resolution affects causality\(^4\)

- fusion helps to avoid temporal inverse problem\(^5\)

\[
P(R_{t0:TR}, M_{t0:TR}, B_{t0:TR}) = P(R_{t0}) P(B_{t0} | R_{t0}) P(B_{tTR} | R_{tTR}) \prod_{i=1}^{TR} P(R_{ti} | R_{ti-1}) \prod_{i=0}^{TR} P(M_{ti} | R_{ti})
\]

6 Murphy, K. PhD thesis (UC Berkeley, 2002).

- circles - hidden
- squares - observed
Dynamic Bayesian Networks transition model

\[P(\mathcal{R}_{t_0:t_{TR}}, \mathcal{M}_{t_0:t_{TR}}, \mathcal{B}_{t_0:t_{TR}}) = P(\mathcal{R}_{t_0}) P(\mathcal{B}_{t_0}|\mathcal{R}_{t_0}) P(\mathcal{B}_{t_{TR}}|\mathcal{R}_{t_{TR}}) \prod_{i=1}^{TR} P(\mathcal{R}_{t_i}|\mathcal{R}_{t_{i-1}}) \prod_{i=0}^{TR} P(\mathcal{M}_{t_i}|\mathcal{R}_{t_i}) \]

\[\mathcal{R}_t = k\mathcal{R}_{t-1} + \sigma_\mathcal{R}_\eta_t \]

- circles - hidden
- squares - observed

DATA SHARING FUSION

NEUROIMAGING
Data Sharing Fusion Neuroimaging

Dynamic Bayesian Networks MEG forward model\(^6\)

\[
P\left(\mathcal{R}_{t_0:t_{TR}}, \mathcal{M}_{t_0:t_{TR}}, \mathcal{B}_{t_0:t_{TR}}\right) = P\left(\mathcal{R}_{t_0}\right) P\left(\mathcal{B}_{t_0} | \mathcal{R}_{t_0}\right) P\left(\mathcal{B}_{t_{TR}} | \mathcal{R}_{t_{TR}}\right) \prod_{i=1}^{TR} P\left(\mathcal{R}_{t_i} | \mathcal{R}_{t_{i-1}}\right) \prod_{i=0}^{TR} P\left(\mathcal{M}_{t_i} | \mathcal{R}_{t_i}\right)
\]

\[
\mathcal{M}_t = \text{MFM}(\mathcal{R}_t) + \sigma \mathcal{M} \eta_t,
\]

- circles - hidden
- squares - observed
Dynamic Bayesian Networks

\[P(\mathcal{R}_{t_0:t_{TR}}, \mathcal{M}_{t_0:t_{TR}}, \mathcal{B}_{t_0:t_{TR}}) = P(\mathcal{R}_{t_0}) P(\mathcal{B}_{t_0} | \mathcal{R}_{t_0}) P(\mathcal{B}_{t_{TR}} | \mathcal{R}_{t_{TR}}) \prod_{i=1}^{TR} P(\mathcal{R}_{t_i} | \mathcal{R}_{t_{i-1}}) \prod_{i=0}^{TR} P(\mathcal{M}_{t_i} | \mathcal{R}_{t_i}) \]

\[\mathcal{B}_t = \text{HFM}(\mathcal{R}_t) + \sigma_B \eta_t \]

\[\mathcal{M}_t \]

\[\mathcal{R}_t \]

\[\mathcal{B}_t \]

- circles - hidden
- squares - observed

Dynamic Bayesian Networks inference6

\[
P(\mathcal{R}_{t_0:t_{TR}}, \mathcal{M}_{t_0:t_{TR}}, \mathcal{B}_{t_0:t_{TR}}) = P(\mathcal{R}_{t_0}) P(\mathcal{B}_{t_0}|\mathcal{R}_{t_0}) P(\mathcal{B}_{t_{TR}}|\mathcal{R}_{t_{TR}}) \prod_{i=0}^{TR} P\left(\mathcal{R}_{t_i}|\mathcal{R}_{t_{i-1}}\right) \prod_{i=1}^{TR} P\left(\mathcal{M}_{t_i}|\mathcal{R}_{t_i}\right)
\]

Particle Filtering

\textbf{circles} - hidden
\textbf{squares} - observed

Demonstration

fMRI only MEG only fMRI+MEG

Comparison: fMRI vs. fMRI+MEG

- from sparse to constant activity
- 1000 runs per point

\[\mathcal{E} = \sum_{i=1}^{1000} \frac{\| T_i - M_i \|_2}{\| T_i \|_2} \]

- Event Related studies
- fusion yields:
 - lower errors
 - stabler estimates
Comparison: fMRI vs. fMRI+MEG

- from sparse to constant activity
- 1000 runs per point

\[\mathcal{E} = \sum_{i=1}^{1000} \frac{\| T_i - M_i \|_2}{\| T_i \|_2} \]

- Event Related studies
 - fusion yields:
 - lower errors
 - stabler estimates
Comparison: fMRI vs. fMRI+MEG

- from sparse to constant activity
- 1000 runs per point

\[\mathcal{E} = \sum_{i=1}^{1000} \frac{\| T_i - M_i \|_2}{\| T_i \|_2} \]

- Event Related studies
 - fusion yields:
 - lower errors
 - stabler estimates
Comparison: fMRI vs. fMRI+MEG

- from sparse to constant activity
- 1000 runs per point

\[\mathcal{E} = \sum_{i=1}^{1000} \frac{\| T_i - M_i \|_2}{\| T_i \|_2} \]

- Event Related studies

fusion yields:
- lower errors
- stabler estimates
Speed up and stability

BOLD (% of change)

![Graph showing BOLD estimate variance vs. number of particles]

- X-axis: Number of particles
- Y-axis: BOLD estimate average variance
- Data points for FMRI
Speed up and stability

BOLD (% of change) neural activity (a.u.)

fusion yields: ○ lower variance and ○ faster computation
Real data

- same paradigm for fMRI and MEG
- 120 trials of an 8 Hz checkerboard reversal

MEG
- 1200 Hz
- averaged

fMRI
- interpolated to 1200 Hz
- averaged
Real data results

fMRI only
Real data results

fMRI only

MEG only
Real data results

fMRI only

MEG only

fMRI+MEG

BOLD response (arbitrary units)

neural activity (arbitrary units)

0 1 2 3 4 5
0 1 2 3 4 5

time (seconds)

time (seconds)
Outline

1. Definitions and Tools
2. Unimodal Connectivity Analysis: EEG
3. Contrasting modalities
4. Data Sharing Fusion
5. Validation through Interventions
Does inferred connectivity reflect brain function?

- Manipulation principle: learn by breaking parts of the system!
- How to alter brain function without subjects complaining too loud?
- Transcranial Direct Current Stimulation (tDCS): a noninvasive low current technique affecting firing thresholds of cortical neurons.
Does inferred connectivity reflect brain function?

- **Manipulation principle**: learn by breaking parts of the system!
- **How to alter brain function without subjects complaining too loud?**
- **Transcranial Direct Current Stimulation (tDCS)**: a noninvasive low current technique affecting firing thresholds of cortical neurons.
Does inferred connectivity reflect brain function?

- Manipulation principle: learn by breaking parts of the system!
- How to alter brain function without subjects complaining too loud?
- **Transcranial Direct Current Stimulation (tDCS):** a noninvasive low current technique affecting firing thresholds of cortical neurons.
Preliminary Results
Preliminary Results

distribution of edges in likely graphs (right hand stimulation)

- run1
- run2
- run3
- run4
- run5

- sham
- full

- probability (logscale)
- # of children
Summary

- **Goal:** Combine modalities to infer function-induced networks

- **Results so far:**
 - Demonstrated useful results of sliding window treatment
 - Demonstrated pitfalls of single-modality connectivity estimation\(^8\)
 - Demonstrated fMRI+MEG fusion in the DBN framework\(^9\)

- **Future work:**
 - Causal structure fusion
 - Whole brain DBN fusion framework
 - tDCS-based analysis framework for validation

Summary

- **Goal**: Combine modalities to infer function-induced networks

- **Results so far**:
 - Demonstrated useful results of sliding window treatment
 - Demonstrated pitfalls of single-modality connectivity estimation
 - Demonstrated fMRI+MEG fusion in the DBN framework

- **Future work**:
 - Causal structure fusion
 - Whole brain DBN fusion framework
 - tDCS-based analysis framework for validation

Summary

- **Goal:** Combine modalities to infer function-induced networks

- **Results so far:**
 - Demonstrated useful results of sliding window treatment
 - Demonstrated pitfalls of single-modality connectivity estimation
 - Demonstrated fMRI+MEG fusion in the DBN framework

- **Future work:**
 - Causal structure fusion
 - Whole brain DBN fusion framework
 - tDCS-based analysis framework for validation

Summary

- **Goal:** Combine modalities to infer function-induced networks
- **Results so far:**
 - Demonstrated useful results of sliding window treatment
 - Demonstrated pitfalls of single-modality connectivity estimation
 - Demonstrated fMRI+MEG fusion in the DBN framework
- **Future work:**
 - Causal structure fusion
 - Whole brain DBN fusion framework
 - tDCS-based analysis framework for validation

Summary

- **Goal:** Combine modalities to infer function-induced networks
- **Results so far:**
 - Demonstrated useful results of sliding window treatment
 - Demonstrated pitfalls of single-modality connectivity estimation\(^8\)
 - Demonstrated fMRI+MEG fusion in the DBN framework\(^9\)
- **Future work:**
 - Causal structure fusion
 - Whole brain DBN fusion framework
 - tDCS-based analysis framework for validation

Summary

- **Goal:** Combine modalities to infer function-induced networks
- **Results so far:**
 - Demonstrated useful results of sliding window treatment
 - Demonstrated pitfalls of single-modality connectivity estimation\(^8\)
 - Demonstrated fMRI+MEG fusion in the DBN framework\(^9\)
- **Future work:**
 - Causal structure fusion
 - Whole brain DBN fusion framework
 - tDCS-based analysis framework for validation

Summary

- **Goal**: Combine modalities to infer function-induced networks
- **Results so far**:
 - Demonstrated useful results of sliding window treatment
 - Demonstrated pitfalls of single-modality connectivity estimation \(^8\)
 - Demonstrated fMRI+MEG fusion in the DBN framework \(^9\)
- **Future work**:
 - **Causal structure fusion**
 - Whole brain DBN fusion framework
 - tDCS-based analysis framework for validation

Validation through Interventions

Summary

- **Goal:** Combine modalities to infer function-induced networks
- **Results so far:**
 - Demonstrated useful results of sliding window treatment
 - Demonstrated pitfalls of single-modality connectivity estimation
 - Demonstrated fMRI+MEG fusion in the DBN framework
- **Future work:**
 - Causal structure fusion
 - Whole brain DBN fusion framework
 - tDCS-based analysis framework for validation

Summary

- **Goal:** Combine modalities to infer function-induced networks
- **Results so far:**
 - Demonstrated useful results of sliding window treatment
 - Demonstrated pitfalls of single-modality connectivity estimation\(^8\)
 - Demonstrated fMRI+MEG fusion in the DBN framework\(^9\)
- **Future work:**
 - Causal structure fusion
 - Whole brain DBN fusion framework
 - tDCS-based analysis framework for validation

Thank you!