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Goals

1) Convey rudiments of graphical causal models

2) Basic working knowledge of Tetrad IV



Tetrad: Complete Causal Modeling Tool
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1)
2)
3)

4)

Tetrad

Main website: http://www.phil.cmmu.edu/projects/tetrad/

Download: http://www.phil.cmu.edu/projects/tetrad/current.html

Data files: workshop.new.files.zip in

www.phil.cmu.edu/projects/tetrad _download/download/workshop/Data/

Download from Data directory:

e tw.txt
« Charity.txt
« Optional:
» estimation1.tet, estimation2.tet
« search1.tet, search2.tet, search3.tet



Outline

Motivation
Representing/Modeling Causal Systems
Estimation and Model fit

Causal Model Search



1)

2)

Statistical Causal Models: Goals

Policy, Law, and Science: How can we use data to answer
a) subjunctive questions (effects of future policy interventions), or

b) counterfactual questions (what would have happened had things

been done differently (law)?

c) scientific questions (what mechanisms run the world)

Rumsfeld Problem: Do we know what we do and don’t know: Can we
tell when there is or is not enough information in the data to answer

causal questions?



Causal Inference Requires More than Probability

Prediction from Observation # Prediction from Intervention

P(Lung Cancer 1960 = y | Tar-stained fingers 1950 = no)

+

P(Lung Cancer 1960 =y | Tar-stained fingers 1950__. = no)

set

In general: P(Y=y | X=x, Z=2z) # P(Y=y | X_..=X, Z=2)

set

Causal Prediction vs. Statistical Prediction:

Non-experimental data P(Y,X,2) —> P(Y=y| X=x, Z=z)

(observational study) / \
e

Background Knowledge Causal Structure ——> P(Y=y | X=X, Z=2)



Causal Search

Causal Search:

1. Find/compute all the causal models that are

indistinguishable given background knowledge and data

2. Represent features common to all such models

Multiple Regression is often the wrong tool for Causal Search:

Example: Foreign Investment & Democracy



Foreign Investment

Does Foreign Investment in 3™ World Countries
inhibit Democracy?

Timberlake, M. and Williams, K. (1984). Dependence, political
exclusion, and government repression: Some cross-national
evidence. American Sociological Review 49, 141-146.

N=72
PO degree of political exclusivity
CV lack of civil liberties
EN energy consumption per capita (economic development)

FI level of foreign investment



PO
fi
en

CVvV

Foreign Investment

Correlations

PO
1.0
-.175
-.480

0.868

fi

0.330
-.391

eI

1.0
1.0
-.430

1.

0

CVvV
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Case Study: Foreign Investment

Regression Results

po= .227*fi -.176%en + .880%cv

SE  (.058) (.059)  (.060)
t 3.941  -2.99 14.6

Interpretation: foreign investment increases
political repression
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Case Study: Foreign Investment

g —
En FI CV

217
176 88

PO

Regression

Alternatives

En

o— | FI
O

\

O @)

PO

Tetrad - FCI

CV

31 -23

En

—  FI

\ .86

PO

CV

Fit: df=2, x2=0.12,

p-value = .94

There is no model with testable constraints (df > 0)
that is not rejected by the data, in which Fl has a
positive effect on PO.
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Tetrad Demo

Load tw.txt data
Estimate regression
Search for alternatives

Estimate alternative
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Tetrad Hands-On

1. Load tw.txt data

2. Estimate regression
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Outline

2) Representing/Modeling Causal Systems

1)
2)

3)

Causal Graphs

Standard Parametric Models
1) Bayes Nets

2) Structural Equation Models
Other Parametric Models

1) Generalized SEMs

2) Time Lag models

15



Causal Graphs

Causal Graph G = {V,E}
Each edge X — Y represents a direct causal claim:
X is a direct cause of Y relative to V

Years of
>
Education INEOTE
Years of Skills and
SN —_—
Education Knowledge COIE




Not Cause Complete

Years of
Education

Causal Graphs

Skills and
Knowledge

Common Cause Complete

Years of
Education

Omitteed
Causes

\

Income

Omitteed

Skills and
Knowledge

om

s

L

Income
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Modeling Ideal Interventions

Interventions on the Effect

-experimental System

Sweaters Room
On Temperature
> .

° .)‘ :o‘>
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Modeling Ideal Interventions

Interventions on the Cause

-experimental System

Sweaters
On

4

19
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Interventions & Causal Graphs

Model an ideal intervention by adding an “intervention” variable
outside the original system as a direct cause of its target.

T graph Education |—| Income |—»| Taxes

Intervene on Income

“Hard” Intervention Education % Income |—| Taxes
1 /

“Soft” Intervention Education |— | Income |—»| Taxes
/

20



Tetrad Demo & Hands-On

Build and Save an acyclic causal graph:
1) with 3 measured variables, no latents

2) with 5 variables, and at least 1 latent

21



Parametric Models

‘A A\ untitledltet - Tetrad 4.3.10-6

- o

File Edit Logging Template Window Help
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Instantiated Models

A\ untitledltet - Tetrad 4.3.10-6

File Edit Logging Template Window Help
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Causal Bayes Networks

Smoking [0,1]

N

Yellow Fingers
[0,1]

P(S,YF, L) =P(S) P(YF | S) P(LC | S)

N

Lung Cancer
[0,1]

24

The Joint Distribution Factors

According to the Causal Graph,

P(V) =

x&l

H P(X | Direct causes(X))



Causal Bayes Networks

Smoking [0,1] The Joint Distribution Factors
./ \‘ According to the Causal Graph,
Yellow Fi ,
© Og&lingers Lun[%g?ncer P) = HP(X | Direct causes(X))
x&y

P(S) P(YF | S) P(LC | S) =1(6)

All variables binary [0,1]: 60=1{6,0,050,05 }

P(S =0) =6,

P(S=1)=1-6,
P(YF=0|S=0) =0, P(LC=0|S=0) =0,
P(YF=1]|S=0)=1-0, P(LC=1|S=0)=1-6,4
P(YF=0|S=1) =0, P(LC=0|S=1)=0;
P(YF=1]|S=1)=1-05 PLC=1]|S=1)=1-05
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Tetrad Demo & Hands-On

Attach a Bayes PM to your 3-variable graph

Define the Bayes PM (# and values of categories for each

variable)

Attach an IM to the Bayes PM
Fill in the Conditional Probability Tables.

26



Structural Equation Models

Education

Causal Graph / \

Income

Longevity

Structural Equations

For each variable X €V, an assignment equation:

X = fi(immediate-causes(X), &)

Exogenous Distribution: Joint distribution over the exogenous vars : P(g)

27



Linear Structural Equation Models

Causal Graph

Education

Y\

Income Longevity

Equations:
Education := €Education
Income := {3, Education + &;,.ome

Longevity := {3, Education + & ,ngeyity
Structural Equation Model:

V=BV+E

€ Education

Path diagram /

Education

Income Longevity
€Income 8Longevity

Exogenous Distribution:
P(
- Vi#j g L g; (pairwise independence)

Eed’ glncome’glncome )

- NO variance is zero

E.qg.

~ 2
(Sedl €Incomer EIncome ) N(OIZ )
- X2 diagonal,
- NO variance is zero
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Simulated Data

A\ untitled1.tet :
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Tetrad Demo & Hands-On

Attach a SEM PM to your 3-variable graph
Attach a SEM IM to the SEM PM
Change the coefficient values.

Simulate Data from both your SEM IM and your Bayes IM
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3) Estimation and Model fit

Outline

31



Estimation
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Estimation
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1)
2)

3)
4)
5)

Tetrad Demo and Hands-on

Select Template: “Estimate from Simulated Data”

Build the SEM shown below — all error standard deviations = 1.0 (go into

the Tabular Editor)
Generate simulated data N=1000

Estimate model.

1l

Save session [ £ m1 (SEM Instantiated Model) = IZI X[ Y]
. File Parameters Layout Graph1
11 b —
1 - DAG
as EStImate1 ' Graphical Editor | Tabular Editor T Implied Matrices T |> |'
Click parameter values to edit v
| [XBY
X1 %2 3 PM1
- / _ § SEM PM
0.5000 0.6000 0.7000 ] 'Y
1. X ¥
L K 4 XSy TGy
X3 X4 IM1 Estimator1
SEM IM | SEM Est
1 l | | H% X ¥
]
Save Cancel Data1
SEM Data




|5

I IM1 (SEM Instantiated Model) -

File Parameters Layout

Graphical Editor | Tabular Editor | Implied Matrices | Mod...

Click parameter values to edit

-

0.5000 0.6000 0.7000

0.0000

5

Estimation

I Estimator1 (SEM Estimator) -

File Parameters Layout
Graphical Editor | Tabular Editor | Implied Matrices | Mod...

Click parameter values to edit

-

0.4788 0.6252 0.8874

MW

< Il [ 0]

Choose Optimizer: |Regression |v|| Estimate Again

| save || cancel |
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Coefficient inference vs. Model Fit

Coefficient Inference: Null: coefficient = 0

p-value = p(Estimated value By xs = 4788 | By1s xa = o & rest of model correct)

Reject null (coefficient is “significant”) when p-value < o, a usually = .05

"ﬁ =] M1 (SEM Instantiated Model) i = B
atiol
——| File Parameters Layout
rison|| Graphical Editor | Tabular Editor | Implied Matrices | . |»
—|| Click parameter values to edit
sitric =
el
ated ‘ X1 ‘ ’ X2 ‘ =
el / -
— 0.6000 0.7000
F X K K
- ‘ X3 ’ ‘ X4
ation| N ~|
—| [«] i [ [»]
ator

’ Save H Cancel J

—

|
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DAG
|

Y
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PM1

SEMPM -
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IM1
SEM IM

XY
Data1
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s

.

Tx ¥
S
Estimator1
SEM Est

File Parameters Layout

" Graphical Editor

" Tabular Editor t Implied Matrices Model Statistics I

Null hypothesis for T and P is that the parameter is zero

From To Type Value SE T B
X1 X3 Edge Coef.|0.4788 0.0334 14.3388  [0.0000 I
XZ X& EdQe Coer.|U.68/4 0.0303 227157 _|0.0000
X2 X3 Edge Coef.|0.6252 0.0316 19.7897 (0.0000
X1 X1 Std. Dev. |0.9769 0.0427 223513 |0.0000
X2 X2 Std. Dev. |1.0326 0.0477 22.3510 |0.0000
X3 X3 Std. Dev. |1.0302 0.0475 223510 |0.0000
X4 X4 Std. Dev. |0.9877 0.0436 223513 |0.0000
X1 X1 Mean -0.0320 0.0309 -1.0375 0.2998
X2 X2 Mean -0.0233 0.0326 -0.7143 0.4752
X3 X3 Mean 0.0070 0.0415 0.1696 0.8654
X4 X4 Mean 0.0365 0.0384 0.9486 0.3431

Choose Optimizer: ‘Regression ‘v< ’ Estimate Again

I Save ” Cancel l




Coefficient inference vs. Model Fit

Coefficient Inference: Null: coefficient = 0

p-value = p(Estimated value ﬁXH)@

4788 | Bx1> x3 = 0 & rest of model correct)

Reject null (coefficient is “significant”) when p-value < < a, o usually = .05,

Model fit: Null: Model is correctly specified (constraints true in population)

p-value = p(f(Deviation(Z,,,S))

)

ht_ 57 1M1 (SEM Instantiated Model) [z
atio
——|| File Parameters Layout
ison|| Graphical Editor | Tabular Editor | Implied Matrices | . |»
——|| Click parameter values to edit
stric 1=
el
o x1 X2 =
2l -

% / N

0.5000 0.6000 0.7000
= \ I L\
| X3 X4
ation| ~|
—| [« i [ [»]
itor

l Save H Cancel ‘
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DAG
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PM1

SEM PM -

(XFS[Y]

IM1
SEM IM

X Y
MERNCED)
Data1
SEM Data

X Y 15

Eit= 1]

Estimator1
SEM Est

2 5.7137 | Model correctly specified)

] Estimator1 (SEM Estimator) e e

File Parameters Layout

[ Graphical Editor f Tabular Editor [ Implied Matrices | Model Statistics

Degrees of Freedom =3
Chi Square =5.7137

P Value = 0.1264

BIC Score =-15.0095

The above chi square test assumes that the maximum likelihood function over the measured
variables has been minimized. Under that assumption, the null hypothesis for the testis that the
population covariance matrix over all of the measured variables is equal to the estimated covariance
matrix over all of the measured variables written as a function of the free model parameters—that is,
the unfixed parameters for each directed edge (the linear coefficient for that edge), each exogenous
variable (the variance for the error term for that variable), and each bidirected edge (the covariance for
the exogenous variables it connects). The model is explained in Bollen, Structural Equations with
Latent Variable, 110. Degrees of freedom are calculated as m (m + 1)/ 2 - d, where d is the number of
linear coefficients, variance terms, and error covariance terms that are not fixed in the model. For latent
models, the degrees of freedom are termed ‘estimated’ since extra contraints (e.g. pentad constraints)
are not taken into account.

Choose Optimizer: ’Regression ’v‘ ’ Estimate Again

| Save \ Cancel ‘



Tetrad Demo and Hands-on

Create two DAGs with the same variables — each with one edge
flipped, and attach a SEM PM to each new graph (copy and paste
by selecting nodes, Ctl-C to copy, and then Ctl-V to paste)

Estimate each new model on the data produced by original graph

Check p-values of: o0 B B
Graph1 Graph2 Graph3

a) Edge coefficients l l i

b) Model fit [XJSY] XS] XISY]
PM1 PM2 PM3

Save session as: ¢ i ¢

£\
“ o ” E’ [ﬁi X5 f@ X5y XI5y
SeSSIOn2 Sé'l'\ﬂ/I1M Estimt :] E t’mi] [;] L Estimai]org
4 S ' s



Charitable Giving

What influences giving? Sympathy? Impact?

"The Donor is in the Details", Organizational Behavior and
Human Decision Processes, Issue 1, 15-23, with G.

Loewenstein, R. Scheines.

TangibilityCondition
Imaginability
Sympathy

Impact
AmountDonated

[1,0]
[1..7]
[1..7]
[1..7]
[0..5]

N =94

Randomly assigned experimental condition
How concrete scenario |

How much sympathy for target

How much impact will my donation have
How much actually donated

39



X ¥
BRI &= -

Estimator1
No model

Theoretical Hypothesis

XY

Graph1
DAG

(XI{Y]

- PM

No model

Graph1 (Directed Acyclic Graph) :

File Edit Graph Layout

+

ey

TangibilityCondition }—F{ Imaginability

‘ AmountDonated

Double click variable to change name.
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1)
2)
3)
4)

Tetrad Demo and Hands-on

Load charity.txt (tabular — not covariance data)
Build graph of theoretical hypothesis
Build SEM PM from graph

Estimate PM, check results

B Graph1 (Directed Acyclic Graph) = @
—b File Edit Graph Layout
4,.
Data1 Graph1
Data DAG +
; ‘|[ + J’{“‘?
' Impact
| P
|Iv +
(X[5{Y] +HL(L
|
| - PM e e, AT
TangibilityCondition —¥# Imaginability
V P No model .
— — 3
- i .
Estimator1 AN
No model ‘ P
Sympathy
Double click variable to change name.
| Save I \ Cancel




10 Minute
Break
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Outline

4) Model Search
1) Bridge Principles (Causal Graphs < Probability Constraints):

a) Markov assumption
b) Faithfulness assumption
c) D-separation

2) Equivalence classes

3) Search

43



Constraint Based Search

Equivalence Class of
Causal Graphs

Xz—_}

X |[¢—

;:g<< X,
—[ X

Causal Markov Axiom
(D-separation)

™~

X,

—

Discovery Algorithm

—

Background Knowledge

e.g., X, priorin time to X,

Statistical
Inference

v
Statistical
Constraints

X, || X 1%

X _|l_ X, means: P(X,, X,) = P(X,)P(X,)

X1 _lIXz | X3 means: P(Xy, X5 | X3) = P(Xy | X3)P(X; | X3)
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Equivalence Class of

Causal Graphs

X

X,

Equivalence Class of
Causal Graphs

X

X|

Model Score

v

Equivalence Class of
Causal Graphs

Rm—

45

Score Based Search

Background Knowledge

e.g., X, priorin time to X,




Independence Equivalence Classes:
Patterns & PAGs

Patterns (Verma and Pearl, 1990): graphical
representation of d-separation equivalence among models

with no latent common causes

PAGs: (Richardson 1994) graphical representation of a d-
separation equivalence class that includes models with
latent common causes and sample selection bias that are
d-separation equivalent over a set of measured variables X

46



Patterns

Possible Edges
X X2
X1 - X2
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Patterns: What the Edges Mean

X4 and X, are not adjacent in any

2y X2 | member of the equivalence class
X4 — X5 (X4 is a cause of X»)

X [ X2 | n every member of the
equivalence class.
X1 — X, in some members of th

X, X, 1 >IN some members of the

equivalence class, and X, — X4 in
others.

48



Patterns

Pattern
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Tetrad Demo
and Hands On

XY/

Graph1
DAG

XJSY]
PM1
SEM PM

y

XY 1
B8 o
Estimator4

SEM Est

XY

BEley

Estimator1
SEM Est

x ¥ [y
b E P a0
Search1
GES

XY/

Graph2

XY/

Graph3




Tetrad Demo and Hands-on

Go to “session2”

Add Search node (from Data1)
- Choose and execute one of the

“Pattern searches”

Add a “Graph Manipulation” node to search

result: “choose Dag in Pattern”
Add a PM to GraphManip
Estimate the PM on the data

Compare model-fit to model fit for true mode

XY
Data1
SEM Data
A
XY XY
5 Y= X
Search1
GES
e 15 v
oo "X Y
_’
Estimator4 X Y
SEM Est GraphManip1

Dag in Pattern

Y
X 5y

PM4
SEM PM



Graphical Characterization of
Model Equivalence

Why do some changes to the true model result in an equivalent model,

but some do not?

XY XY XY
Graph1 Graph2 Graph3
DAG EIG DAG
XS Y] X[5Y] X[5Y]
PM1 PM2 PM3
SEMPM | SEM PM SEM PM

A
X[S{Y] 5 G 2
M1 Estimator1 Estimator2 . Estimator3

SEM IM SEM Est 7| SEMEst SEM Est

b

‘\

|

;

Data1
SEM Data



d-separation/Independence Equivalence

D-separation Equivalence Theorem (Verma and Pearl, 1988)

Two acyclic graphs over the same set of variables are

d-separation equivalent iff they have:
the same adjacencies

the same unshielded colliders
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Colliders

X

\\

v

Y: Collider Y: Non-Collider
- X z| [x Z
N N
b
Shielded Unshielded
X >/ X Z
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Constraint Based Search

Equivalence Class of
Causal Graphs

Xz—_}

X |[¢—

;:g<< X,
—[ X

Causal Markov Axiom
(D-separation)

™~

X,

—

Discovery Algorithm

—

Background Knowledge

e.g., X, priorin time to X,

Statistical
Inference

v
Statistical
Constraints

X, || X 1%

X _|l_ X, means: P(X,, X,) = P(X,)P(X,)

X1 _lIXz | X3 means: P(Xy, X5 | X3) = P(Xy | X3)P(X; | X3)
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1)
2)
3)
4)

Backround Knowledge
Tetrad Demo and Hands-on

Create new session
Select “Search from Simulated Data” from Template menu
Build graph below, PM, IM, and generate sample data N=1,000.

Execute PC search, a = .05

B Graph1 (Directed Acyclic Graph) = IZ

File Edit Graph Layout X Y]
. sl Graph1
+ ++{ﬂ‘? DAG
XM -4 X3 , *
- = PM1
+( L ' | SEM PM
2 — x4
XI—[Y]
n R
../f |M1
)’ SEM IM
X5
< i ] ] X ¥ e
Double click variable to change name. P (v]=(x]
Data1 Search1
| Save I { Cancel ‘ SEM Data PC
Updater [
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1)
2)
3)
4)

Backround Knowledge
Tetrad Demo and Hands-on

Add “Knowledge” node — as below

Create “Tiers” as shown below.

Execute PC search again, o = .05

Compare results (Search2) to previous search (Search1)

B Knowledge1 (Tiers and Edges)

= X

[ Tiers [ Other Groups [ Edges [ Text [

Not in tier: #Tiers= 45
Tier 1 [] Forbi2]
Tier 2 [] Forbi=
(x2]

Tier 3 []Forbi |
<] Il Dl

Use shift key to select multiple items.

| Save H

Cancel

X ¥ [x][Y] ——
[l —~
EEEHP a0 -

Knowledge1
Tiers-Edges T

X[ Y]
Graph1
DAG
X[5Y]
PM1
SEM PM
X[SY]
IM1
SEM IM
XX [x][Y]
o BT E50
Data1 Search1
SEM Data | PC
. 4
T— X Y | [x]-+[Y]
; N -D 5
Search2
No model
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Backround Knowledge

Direct and Indirect Consequences

8

] knowledg.. @ X [=

File Edges | Text
Other Groups
Paf Tiers

Not in tier:# Tiers =|

Tier 1

B3]

Tier 2

[(x2] [xa]

Tier 3

[xs]

-

s

4]

Hle Edit Graph Layout
=l
an
€™ ‘ X1 }’4—{ X3 ‘
% True Graph
+(L'D) ’ X2 ’—ﬁ X4 ‘
Y 4
X5 ‘
<] I ] D
Douhle dlick variahle ke s
. ' : g X = % =z |
ph Layout )jendence Graph Layout
1 Pattern l Pattern

[»

0.0500

= e I ———

Prevent Cycles

"' 2 that some
R ay take a
‘ X5 ‘ complete. ‘ X5

/

[«]

PC Output PC Output

Background Knowledge No Background Knowledge
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Backround Knowledge
Direct and Indirect Consequences

File Edit Graph Layout I‘
Q,@ X1 - X3 a
X True Graph
-
+ g,‘;‘ 2 x4 J‘
X—Y]
¥
X5
Direct Consequence e o=
g X g |
Of Background Knowledge en Layout Savence Orh Lavost
g de g J Pattern [ Pattern
Not in tier:# Tiers = = ’&O?J X1 : X3
@@ - Calc Stats X2 ' X4
O ! Prevent Cycles !
Tier 2 |
[x2] [xa] P
complete. X5
Tier 3 =
(5] > .
: PC Output PC Output
Indirect Consequence P P

Of Background Knowledge Background Knowledge No Background Knowledge
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Independence Equivalence Classes:
Patterns & PAGs

Patterns (Verma and Pearl, 1990): graphical
representation of d-separation equivalence among models

with no latent common causes

PAGs: (Richardson 1994) graphical representation of a d-
separation equivalence class that includes models with
latent common causes and sample selection bias that are
d-separation equivalent over a set of measured variables X
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M1

[\

Interesting Cases

(L)

>

Z1

X1

Y1

M3

X2

Y2

M2
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PAGs: Partial Ancestral Graphs

X, X,
PAG \ /0
X3
Repre\sents
X, X, X, X5
NS N
— S )
etc
X, =
T_ s =
— @ X
X, — (D
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PAGs: Partial Ancestral Graphs

Z, 7z,
G
PAG \ 7
\
Represents
|
Zl Z2 Zl AZZ/®
X3 ~— v X5 |— v
etc.
D _/22 7 AZ/@
o ®\@\.
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PAGs: Partial Ancestral Graphs

What PAG edges mean.

o—»

11

X, and X, are not adjacent
X, 18 not an ancestor of X,

No set d-separates X, and X,

X 18 a cause of X,

There is a latent common
cause of X; and X,
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(0))

Tetrad Demo and Hands-on

Create new session

Select “Search from Simulated Data” from Template menu

Build graph below, SEM PM, IM, and generate sample data N=1,000.

Execute PC search, a = .05
Execute FCI search, o = .05

Estimate multiple regression,
Y as response,
Z1, X, Z2 as Predictors

X ¥ [Z]‘-o
Co i b
Regression1
Mult Lin Reg

XY

Graph1
DAG

(X]S]Y]
PM1
SEM PM

X[/

M1
SEM IM

XY
Data1
SEM Data |

E Graph1 (Directed Acyclic Graph)

File Edit Graph Layout

4
€M

+

+! I;'Jbl:,'

[X]—{Y]

Double click variable to change name.

L]

Came J[_cone

XN [x]-[Y]

MR

Search1
PC

XY X|=$|Y
B
oo S [v]={x]

Search2
FCl




Search Methods

Constraint Based Searches
PC, FCI
Very fast — capable of handling >5,000 variables
Pointwise, but not uniformly consistent

Scoring Searches
Scores: BIC, AIC, etc.
Search: Hill Climb, Genetic Alg., Simulated Annealing
Difficult to extend to latent variable models
Meek and Chickering Greedy Equivalence Class (GES)
Slower than constraint based searches — but now capable of 1,000 vars
Pointwise, but not uniformly consistent

Latent Variable Psychometric Model Search
BPC, MIMbuild, etc.

Linear non-Gaussian models (Lingam)
Models with cycles

1"
And morelll -



1)
2)
3)
4)

Tetrad Demo and Hands-on

Load charity.txt (tabular — not covariance data)
Build graph of theoretical hypothesis
Build SEM PM from graph

Estimate PM, check results

B Graph1 (Directed Acyclic Graph) = @
—b File Edit Graph Layout
4,.
Data1 Graph1
Data DAG +
; ‘|[ + J’{“‘?
' Impact
| P
|Iv +
(X[5{Y] +HL(L
|
| - PM e e, AT
TangibilityCondition —¥# Imaginability
V P No model .
— — 3
- i .
Estimator1 AN
No model ‘ P
Sympathy
Double click variable to change name.
| Save I \ Cancel




1)
2)
3)
4)

Tetrad Demo and Hands-on

Create background knowledge: Tangibility exogenous (uncaused)
Search for models
Estimate one model from the output of search

Check model fit, check parameter estimates, esp. their sign

B Graph1 (Directed Acyclic Graph) = E
X[ Y] File Edit Graph Layout
4-._
Data1 Graph1 .
Data DAG
f ‘|[ 4."{@7
| r Impact
! l P
I‘I || + E ".‘\
| %
['I v v 3
8 \ Lv T \ ™~
X %(Y] +LL A
I . PM . . PR
V TangibilityCondition —¥# Imaginability AmountDonated
" No model
X—Y .
X ¥ = L . ’,'
BT wtim N
Estimator1
No model '\
Sympathy
Double click variable to change name.
I Save l \ Cancel

Vv



Thank Youl!
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Additional
Slides
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Constraint-based Search

1) Adjacency
2) Orientation
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Constraint-based Search: Adjacency

1. X and Y are adjacent if they are dependent
conditional on all subsets that don’t include
them

2. X and Y are not adjacent if they are independent
conditional on any subset that doesn’t include
them




Search: Orientation

Patterns
Y Unshielded

X — Y — ~Z

X #L Z\|Y X . Z|Y
Collider Non-Collider

X — Y «— <2




Search: Orientation
PAGs

Y Unshielded

Xo—oYo—o0/Z

X \Hk Z|Y _Z1Y
Collider Non-Collider

XO—— Y «—0/Z



Search: Orientation

Away from Collider

Test Conditions , ,
1) X - X adjacent, and into X..

2) X, - X, adjacent

X X3 3) X, - X, not adjacent




Causal Independcies

Graph
| X111l X2
X3— & X4 X1 1l xX4] {X3}
X2 X2 1l X4| {X3}
Begin with: ‘\ <3 x4
//
X2
From X1
~ L —
X1 1l x2 /X3 X4
)
From X1
X1 1l X4| {X3 X3 X4
| {x3} e
X2
From
X1
X2 1l X4| {X3} N
/X3 X4

X2



After Orientation
Phase

X1 || X2

X1 || X4 | X3
X2 || X4 | X3

Search: Orientation

Pattern PAG
Xl \ XIO\O
x — X, o
X, X, O,
T X o oX
)(3 )(4 s o
Z X O
X2 /' 2
X
1 O
Sa
X, ~ X, X,
X X —
s —» X, X2O
x —



Bridge Principles:
Acyclic Causal Graph over V = Constraints on P(V)

Weak Causal Markov Assumption

V,,V, causally disconnected = V, ||_V,

V,,V, causally disconnected <
i. V, not a cause of V,, and
ii. V, not a cause of V,, and

iiil. No common cause Z of V, and V,

Vi_ll_V, < P(V,V,) =PV )P(V,)
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Bridge Principles:
Acyclic Causal Graph over V = Constraints on P(V)

Weak Causal Markov Assumption Determinism

V,,V, causally disconnected = V., ||_V, (Structural Equations)

)

If G is a causal graph, and P a probability distribution over the variables in

Causal Markov Axiom

G, then in <G,P> satisfy the Markov Axiom iff:

every variable V is independent of its non-effects,

conditional on its immediate causes.
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Bridge Principles:
Acyclic Causal Graph over V = Constraints on P(V)

Causal Markov Axiom Acyclicity

Vo

d-separation criterion

Z\

Causal Graph Independence Oracle

z =l x >y, Z_|I_Y, X Z_|I_Y, |X
. Z Yy IXY,  Z_LY, XY,

Y, Yo LY X YL Y, [XZ
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Faithfulness

Constraints on a probability distribution P generated by a
causal structure G hold for all parameterizations of G.

Tax Rate
w
Py Economy
Tax %
Revenues

Revenues := ,Rate + ,Economy + ¢g,,

Economy := f;Rate + &g,

Faithfulness:

B1 # -B3f
Bo # -B3f;
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Colliders

X

\\

v

Y: Collider Y: Non-Collider
- X z| [x Z
N N
b
Shielded Unshielded
X >/ X Z
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Colliders induce Non-Colliders screen-off

Association Association
Gas Battery Exp Symptoms
[y,n] [live, dead] [y,n] [live, dead]
Car Starts Infection
[y.n] [y.n]
Gas || Battery Exp]‘}§ Symptoms

Gas )\ Battery | Car starts = no Exp || Symptoms | Infection



D-separation

X is d-separated from Y by Z in G iff
Every undirected path between X and Y in G is inactive relative to Z

An undirected path is inactive relative to Z iff
any node on the path is inactive relative to Z

A node N (on a path) is inactive A node N (on a path) is active
relative to Z iff relative to Z iff
a) N is a non-collider in Z, or a) N is a non-collider not in Z, or
b) N is a collider that is not in Z, b) N is a collider that is in Z,
and has no descendant in Z or has a descendant in Z

Undirected Paths between X, Y:

/V\

X—’Zl1<—W—' Y 1) X-->2Z, <--W -->Y
Z, 2) X<--V->Y
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D-separation

X is d-separated from Y by Z in G iff
Every undirected path between Xand Y in G is

An undirected path is inactive relative to Z iff
any node on the path is inactive relative to Z

A node N is inactive relative to Z iff

inactive relative to Z

a) N is a non-collider in Z, or

b) N is a collider that is not in Z,
and has no descendant in Z

Undirected Paths between X | Y:

1) X-->2Z, <=W-->Y

/V\ 2) X<--V->Y
X— Zf < W > Y
Z, X d-sep Y relativeto Z = ? No
X d-sep Y relative to Z = {V} ? Yes

X d-sep Y relativetoZ ={V,Z,}? No

Xd-sep YrelativetoZ= {W,Z,}? Yes
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D-separation

X; and X, d-sep by X,?

X
— " Yes: X5 |l X, | X,

X; and X, d-sep by X,?

~ No: X5 W X; | X,
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Statistical Control # Experimental Control

(D

Y

X

*

—

X3

(D

—

Statistically control for X,

X3 X [ X,

Experimentally control for X,

X5 || X | Xy(set)
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Statistical Control # Experimental Control

Exp. Condition ——> Behavior Learning Gain

Exp. Cond S Learning Gain Exp = Learning

Exp = Learning is

Exp. Cond || Learning Gain | Behavior, Disposition i by Belaion

Exp = Learning is

Exp. Cond || Learning Gain | Behavior set Mediated by Behavior

Exp = Learning is not
Mediated by Behavior

or

Unmeasured Confounder

Exp. Cond M\ Learning Gain | Behavior observed
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Regression
&
Causal Inference
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Regression & Causal Inference

Typical (non-experimental) strategy:
1. Establish a prima facie case (X associated with Y)

Z

But, omitted variable bias &’ \

X Y

2. So, identifiy and measure potential confounders Z:

a) priorto X,
b) associated with X,
c) associated with' Y

3. Statistically adjust for Z (multiple regression)
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Regression & Causal Inference

Strategy threatened by measurement error — ignore this
for now

Multiple regression is provably unreliable

for causal inference unless:

« XpriortoY

« X, Z,andY are causally sufficient (no confounding)
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Regression

Truth Y: outcome
X, Z, Explanatory Alternative?
Z | —»X
Bx =0
B, #0
Y

Jz X By # 0
T B, #0
\E

T
"
Z, — X ZzT/ By # 0

Bz1 70
Bz2 # 0




Better Methods Exist

Causal Model Search (since 1988):
* Provably Reliable

* Provably Rumsfeld

Tetrad Demo
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