
Causal Model Search  
in  

Educational Research 

Mar$na	
  Rau1	
  

Richard	
  Scheines2	
  
 

1 Department of Educational Psychology, UW Madison 
 2 Department of Philosophy, CMU 



2	
  

1. INTRODUCTION 

2 
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“Online”Educational Data 

Data Pouring in From: 
"
§  Computer Tutors "
§  Online courses"
§  Virtual Labs"
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Pittsburgh Science of Learning Center 
http://www.learnlab.org 

•  NSF center on learning science (1 of 6) 
•  Cognitive Tutors (Algebra, Physics, Geometry, etc.) 

o  ~600,000 HS students 
o  Recent independent evaluation (180 schools): twice as much algebra learned 

•  Datashop 
o  ~500 publicly accessible datasets in standardized format 
o  Analytic tools for analyzing these data    
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CMU: The Open Learning 
Initiative 

www.cmu.edu/oli 
•  Since 2002 
•  25 College courses 
•  Automatic data logging 
•  Dozens of research studies 

 
 

Online Course 

 
EdX 

https://www.edx.org/  

•  MIT, Harvard, Berkeley, UT 
•  > $ 50 million in start-up funding 
•  Data collection being made public 
•  Data mining being prioritized 
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Virtual Labs: Causality Lab 
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Virtual Labs: Chem Lab  
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Virtual Labs: Chem Lab  

§  Number	
  of	
  engaged	
  ac6ons	
  ⇒	
  
	
  	
  	
  48%	
  of	
  the	
  post-­‐test	
  varia6on	
   	
  	
  
	
  

§  #	
  interac6ons	
  with	
  the	
  virtual	
  lab	
  
outweighed	
  ALL	
  other	
  factors	
  
including	
  gender	
  and	
  SAT	
  score	
  as	
  the	
  
predictor	
  of	
  posi6ve	
  learning	
  
outcome.	
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Kinds	
  of	
  Data	
  	
  

	
  1.  Log data – time stamped events: 

login, page request, glossary, quiz attempt, score request, video, etc  
 

2.  Assessment data -   
•  Pre-test scores 

•  Intermediate assessments (low stakes, high stakes) 

•  Midterm score 

•  Final exam scores 
 

3.  Problem Solving Data: 
a)  Unstructured Virtual Labs --> Customized Data  

b)  Structured Cognitive Tutors -->  PSLC Data Shop 



10	
  

Log Data: Edx MOOC Example 
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Log Data: Fractions Tutor Example 

Student	
  Id	
   Time	
  
Dura$on	
  
(sec)	
  

Student	
  
Response	
  
Type	
  

Tutor	
  
Response	
  
Type	
  

Problem	
  
Name	
   Step	
  Name	
   KC	
  Model	
  

ACempt	
  
At	
  Step	
   Outcome	
   Selec$on	
   Ac$on	
   Input	
  

Student1	
  

5/14/
13	
  

14:09	
   1	
  ATTEMPT	
   1	
   NtpDate	
   NtpTimeCheck	
  

2013-­‐05-­‐14	
  
10:09:23.55
1	
  -­‐0400	
  

Student1	
  

5/14/
13	
  

14:09	
   32	
  ATTEMPT	
   RESULT	
   1	
  

fract1_numM
ul6ply1	
  
UpdateTextAr
ea	
  

equivMul6pl
yNum	
   1	
  Correct	
  

fract1_num
Mul6ply1	
  

UpdateTextAr
ea	
   3	
  

Student1	
  

5/14/
13	
  

14:10	
   4	
  ATTEMPT	
   RESULT	
   1	
  

fract1_denom
Mul6ply1	
  
UpdateTextAr
ea	
  

equivMul6pl
yDenom	
   1	
  Correct	
  

fract1_deno
mMul6ply1	
  

UpdateTextAr
ea	
   3	
  

Student1	
  

5/14/
13	
  

14:10	
   4	
  ATTEMPT	
   RESULT	
   1	
  
_root	
  
goToStep	
   	
  	
   1	
  Correct	
   _root	
   goToStep	
   2	
  

Student1	
  

5/14/
13	
  

14:10	
   18	
  ATTEMPT	
   RESULT	
   1	
  

fract3_num	
  
UpdateTextAr
ea	
  

equivNameN
umFract	
   1	
  Correct	
  

fract3_num
0	
  

UpdateTextAr
ea	
   1	
  

Student1	
  

5/14/
13	
  

14:10	
   3	
  ATTEMPT	
   RESULT	
   1	
  

fract3_denom	
  
UpdateTextAr
ea	
  

equivNameD
enomFract	
   1	
  Correct	
  

fract3_deno
m0	
  

UpdateTextAr
ea	
   3	
  

5/14/
13	
  

14:10	
   6	
  ATTEMPT	
   RESULT	
   1	
  

fract4_num	
  
UpdateTextAr
ea	
  

equivNameN
umFract	
   1	
  Correct	
  

fract4_num
0	
  

UpdateTextAr
ea	
   3	
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“Online”Educational Data 

Questions/Challenges: 
"
§  Raw Log Data à Meaningful Variables"

§  Which curricular or tutorial interventions cause learning?"

§  Which (influencible) student behaviors facilitate learning?"

§  By what mechanisms do successful interventions cause 
learning?"
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Motivation 

§ Open questions"§  Hypotheses"

1. Experiment i"3. Experiment i++"

2. Causal Model Search"

Closing the 
loop"
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2. MODEL SEARCH:  
ONLINE COURSE BEHAVIORS 

14 
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Causal and Statistical Reasoning 
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Student & Log Data 

§  Pre-test (%) 

§  Midterm1 (%) 

§  Gender 

§  Race 

§  Computer-comfort 

§  Final Exam (%) 

§  Logged in time 

§  Voluntary-exercise completion (%) 

§  Quiz Scores (avg. %) 

§  Print-requests (% of modules) 

§  12 others 
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CS	
  -­‐	
  Pedagogy	
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Interaction  Learning 

 

.302 
 

-.41 
 

.75 

.353 

.323 

pretest 

Print 
requests 

voluntary 
interactive 
exercises 

quiz 

final 

Year 1 

 

-.08 
 

-.16 
 

.41 
.25 

pretest 

Print 
requests Voluntary 

Interactive 
exercises 

final 

Year 2 
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3. SEARCHING FOR 
MECHANISMS/MEDIATORS 
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What are the Mediators? 

Experimental 

Condition    

Pre-test 

    

Post-Test 

Student Behavior/
Understanding 

Student 
Properties 

UnMeasured 
Student 

Properties 
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What are the Mediators? 

Experimental 

Condition    
Pre-test 

    

Post-Test 

Engagement 

Student 
Properties 

Correct  
Representation 

Time 

Exp. Condition _||_ Post-Test | {Pre-test, Student Properties, Engagement, Correct Rep} 

Exp. Condition _||_ Post-Test | {Pre-test, Student Properties, Time, Correct Rep} 
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Fractions Tutor 
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Experiment 1 

Single graphical 
representation 

Multiple graphical 
representations 

No self-explanation 
prompts 

 
 
 
 

 
 
 

Self-explanation 
prompts 

 
 
 
 
 

 
 
 
 

N = 110 6th-grade students, 2.5h 
[Rau et al., AIED 2009, best student paper] 



23	
  

Experiment 2 

N = 290 4th- and 5th-grade students, 5h 
[Rau et al., ICLS 2012] 

Single graphical 
representation 

Multiple graphical 
representations 

Self-explanation 
prompts 
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Learning with Multiple Representations 

§  Multiple representations ⇒ Learning"
§  Mechanisms?  "
§  Standard in ITS (Intelligent Tutor Systems):"

•  Error-rate!
•  Hint-use!
•  Time-spent!

√ 
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Model Search: Experiment 1 

χ²	
  =	
  22.11,	
  df	
  =	
  19,	
  p	
  =	
  .29	
  

No	
  media6on	
  of	
  
mul6ple	
  
representa6ons	
  on	
  
learning	
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Model Search: Experiment 2 

χ²	
  =	
  6.89,	
  df	
  =	
  10,	
  p	
  =	
  .74	
  

Error-­‐rate	
  
mediates	
  nega6ve	
  

effect	
  

Posi6ve	
  direct	
  
effects	
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Mediator Variables: Non-monotic? 

amount 

learning gains 

6me-­‐spent	
  
error-­‐rate	
  
hint-­‐use	
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Tranforming/Defining Variables 

Raw data  
(non-monotonic) Transformation 

Transformed Var. 
(monotonic) 

Raw measures of 
error-rate, hint-
use, time-spent,  

Identification of 
‘optimal level’ of 
error-rate, hint-
use, time-spent 

transformation: 
distance (squared 
distrance) from 
optimum 
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Transforming Variables: No help 

§  Result: raw variables no worse, perhaps better "
§  Models using the raw variables  

explained slightly more variance than models 
with the transformed variables"
[Rau & Scheines, EDM 2012]"
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Experiments 1&2 Conclusions 

§  Multiple representations increase learning  
"

§  Standard Variables:  Time, Error, and Hints 
do not seem to be mechanisms through which multiple 
representations increase learning "
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4. INFORMED MEDIATORS 
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Motivation 

§  Learning processes [Koedinger et al., 2012]:"
•  Understanding: sense-making processes"

•  Fluency: fluency-building processes"

a " " "= 1 x a"
a + a " " "= 2 x a"
a + a + a " "= 3 x a"
… " " "…"

2 x 3 = 6"
5 x 5 = 25"
4 x 7 = 28"
…"
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Fractions Tutor: Sense-making 

How do these 
representations relate?"
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Fractions Tutor: Fluency-building 

Which representations 
are equivalent? "



35	
  

Sense-making problems!
no" yes"

Fluency-
building 
problems!

no"
"
"
"

MGR	
  

yes"
"

Mix	
  

Control!
!

!
!
!
!

NL	
  

Background: Experiment 3 

[Rau et al., ITS 2012]"§  N = 599 4th-/5th-graders!
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Mediator hypotheses 

§  How do sense-making processes and fluency-
building processes interact?"
•  Understanding hypothesis:"

Sense-making support" Fluency-building support"
enables 
benefit?"
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Mediation hypothesis 

post"

delayed"

Performance on  
sense-problems"

sense + fluency 
(vs. fluency-only)"
(vs. sense-only)"

Performance on 
fluency-problems"

Mediators"
pre"
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Mediation Hypotheses 

§  How do sense-making processes and fluency-
building processes interact?"
•  Understanding hypothesis:"

•  Fluency hypothesis:"

Sense-making support" Fluency-building support"
enables 
benefit?"

Sense-making support" Fluency-building support"
enables 
benefit?"



39	
  

Mediation Hypotheses 

Mediators"

post"

delayed"

Performance on  
sense-problems"

sense + fluency "
(vs. fluency-only)"
(vs. sense-only)"

Performance on 
fluency-problems"

Mediators"

pre"
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§  Search among large number of potential variables 
[Rau et al., EDM 2012]"

§  Based on knowledge component model"

Variable identification 
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Knowledge Component Model 
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§  Search among large number of potential variables 
[Rau et al., EDM 2012]"

§  Based on knowledge component model"
•  Significant predictors of posttest performance"
•  Significant differences between conditions"

Variable identification 
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Understanding hypothesis Mediation hypothesis 

Mediators"

post"

delayed"

Performance on  
sense-problems"

sense + fluency 
(vs. fluency-only)"
(vs. sense-only)"

Performance on 
fluency-problems"nameCircleMixError"

equivalenceError"

improperMixError"

pre"
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Understanding hypothesis 

post"

delayed"

equivalenceError"

improperMixError"

pre"sense + fluency 
(vs. fluency-only)"
(vs. sense-only)"

χ² = 30.88, df = 9, p < .0001; N = 131"

nameCircleMixError"
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Fluency hypothesis 

Mediators"

post"

delayed"

Performance on  
sense-problems"

sense + fluency "
(vs. fluency-only)"
(vs. sense-only)"

Performance on 
fluency-problems"

SE-Error"

place1Error"

Mediators"

pre"
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Fluency hypothesis 

post"

delayed"

pre"

SE-Error"

place1Error"

χ² = 49.14, df = 6, p < .0001; N = 117"

sense + fluency "
(vs. fluency-only)"
(vs. sense-only)"
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Possible alternative models 

delayed"

pre"

nameCircleMixError"

post"improperMixError"

equivalenceError"

Possibilities:  > 220"

sense + fluency 
(vs. fluency-only)"
(vs. sense-only)"
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Model Search Results: Understanding model 

χ2 = 16.10, df = 6, p = .013; N = 131"

post"

delayed"

sense + fluency 
(vs. fluency-only)" pre"

6.571"

-15.695"

-15.275"

-13.308"

.453"

.327"

-.003"
-.002"

.603"

.117"

-.002"
-.001"

-.002"

-.005"

.484"

equivalenceError"

nameCircleMixError"

improperMixError"



49	
  

Model Search Results: Understanding model 

χ2 = 16.10, df = 6, p = .013; N = 131"

post"

delayed"

sense + fluency 
(vs. fluency-only)" pre"

6.571"

-15.695"

-15.275"

-13.308"

.453"

.327"

-.003"

.603"

.117"

-.002"
-.001"

-.002"

-.005"

.484"

equivalenceError"

nameCircleMixError"

improperMixError"

-.002"
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Model Search Results: Fluency model 

χ2 = 8.32, df = 5, p = .14; N = 117"

place1Error"
post"

delayed"

pre"

.116"

.166"

-.012"

-.003"

-.005"

.395"

.446"

-15.423"

.482"

SE-Error"

5.662"

sense + fluency 
(vs. sense-only)"
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Model Search Results: Fluency model 

χ2 = 8.32, df = 5, p = .14; N = 117"

place1Error"
post"

delayed"

pre"

.116"

.166"

-.012"

-.003"

-.005"

.395"

.446"

-15.423"

.482"

SE-Error"

5.662"

sense + fluency 
(vs. sense-only)"
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Mediation hypothesis 

Mediators"

post"

delayed"

Performance on  
sense-problems"

sense + fluency 
(vs. fluency-only)"
(vs. sense-only)"

Performance on 
fluency-problems"

ü 	
  	
  

× 	
  	
  

pre"
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Taking Stock 

§  Results are in line with understanding hypothesis, 
but not with fluency hypothesis"
•  Sense-making support reduces errors students make on 

fluency-building problems"
[Rau, Scheines et al., EDM 2013, best paper]"

§  Limitations"
•  Bound to fixed sequence: sense – fluency "
•  Different results possible with sequence fluency – sense "

§  Makes testable predictions:"
•  Sense-making support should be provided before 

fluency-building support"



54	
  

Experiment 4: Results 

§  Which process should instruction support first?"
•  Understanding hypothesis:"

 
"

•  Fluency hypothesis:"

[Rau et al., AIED 2013]"

Sense-making support" Fluency-building support"

Sense-making support"Fluency-building support"

enables 
benefit"

reduces 
benefit"
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Experiment 4: Model Search Results 
Fluency-building errors"

χ² = 4.58, df = 4, p = .33"
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Experiment 4: Model Search Results 
Sense-making errors"

χ² = 3.38, df = 3, p = .38"
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5.	
  CONCLUSION	
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Conclusion 

§  Both sense-making processes and 
fluency-building processes need to 
be supported"

§  Sense-making enhances fluency-
building"

§  Sense-making support should be 
provided before fluency-building 
support"

§  Closing the loop!"

1. Experiment 3"

3. Experiment 4"

2. Causal path 
analysis"
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Conclusion 

§  Overall measures of problem-solving behaviors 
were not successful at establishing mediation"

§  Informed mediators explained interaction 
between different learning processes"

§  Model search helped identify plausible models 
for our hypotheses"

§  Results from mediation analysis made testable 
predictions"

§  Results from follow-up experiment were in line 
with these predictions"
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BACKUP	
  SLIDES	
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Sense-only condition 

Topic	
  1	
  

Topic	
  2	
  

Topic	
  3	
  

…
	
  

Tutor,	
  
~10h	
  

Pretest 

Posttest & Survey 

Delayed posttest 

~30	
  min	
  

~35	
  min	
  

~30	
  min	
  
…
	
  

Regular tutor 
problems 

Sense- 
making 

problems 
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Fluency-only condition 

Topic	
  1	
  

Topic	
  2	
  

Topic	
  3	
  

…
	
  

Tutor,	
  
~10h	
  

Pretest 

Posttest & Survey 

Delayed posttest 

~30	
  min	
  

~35	
  min	
  

~30	
  min	
  
…
	
  

Regular tutor 
problems 

Fluency- 
building 

problems 
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Sense + fluency condition 

Topic	
  1	
  

Topic	
  2	
  

Topic	
  3	
  

…
	
  

Tutor,	
  
~10h	
  

Pretest 

Posttest & Survey 

Delayed posttest 

~30	
  min	
  

~35	
  min	
  

~30	
  min	
  
…
	
  

Regular tutor 
problems 

Sense- 
making 

problems 

Fluency- 
building 

problems 
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Fluency-only vs. sense + fluency 

Topic	
  1	
  

Topic	
  2	
  

Topic	
  3	
  

…
	
  

Fluency- 
building 

problems 

Topic	
  1	
  

Topic	
  2	
  

Topic	
  3	
  

…
	
  

Sense- 
making 

problems 

Fluency- 
building 

problems 

Fluency-
only"

Sense + 
fluency"
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Sense-only vs. sense + fluency 

Topic	
  1	
  

Topic	
  2	
  

Topic	
  3	
  

…
	
  

Topic	
  1	
  

Topic	
  2	
  

Topic	
  3	
  

…
	
  

Sense- 
making 

problems 

Fluency- 
building 

problems 

Sense-
only"

Sense + 
fluency"

Sense- 
making 

problems 


