Causal Model Search in Educational Research

Martina Rau¹ Richard Scheines²

¹ Department of Educational Psychology, UW Madison ² Department of Philosophy, CMU

1. INTRODUCTION

"Online" Educational Data

Data Pouring in From:

- Computer Tutors
- Online courses
- Virtual Labs

Pittsburgh Science of Learning Center

http://www.learnlab.org

- NSF center on learning science (1 of 6)
- Cognitive Tutors (Algebra, Physics, Geometry, etc.)
 - ~600,000 HS students
 - Recent independent evaluation (180 schools): twice as much algebra learned
- Datashop
 - ~500 publicly accessible datasets in standardized format
 - Analytic tools for analyzing these data

Online Course

CMU: The Open Learning Initiative www.cmu.edu/oli

- Since 2002
- 25 College courses
- Automatic data logging
- Dozens of research studies

EdX https://www.edx.org/

- MIT, Harvard, Berkeley, UT
- > \$ 50 million in start-up funding
- Data collection being made public
- Data mining being prioritized

Virtual Labs: Causality Lab

Virtual Labs: Chem Lab

- Number of engaged actions ⇒ 48% of the post-test variation
- # interactions with the virtual lab outweighed ALL other factors including gender and SAT score as the predictor of positive learning outcome.

Kinds of Data

1. Log data – time stamped events:

login, page request, glossary, quiz attempt, score request, video, etc

- 2. Assessment data -
 - Pre-test scores
 - Intermediate assessments (low stakes, high stakes)
 - Midterm score
 - Final exam scores
- 3. Problem Solving Data:
 - a) Unstructured Virtual Labs --> Customized Data
 - b) Structured Cognitive Tutors --> PSLC Data Shop

Log Data: Edx MOOC Example

User	Res	Time	Resp1	Resp2	Count1	Count2
9	video	2m 30s				
9	answer	10m 5s	correct	correct	1	1
10	book	4m 41s				
10	book	40s				
10	answer	20s	incorr.		1	
10	answer	15s	incorr.		2	
10	answer	1m 8s	incorr.	incorr.	3	1
10	answer	28s		correct		2
10	video	2m 10s				
10	answer	бs	correct		4	

Log Data: Fractions Tutor Example

		Duration	Student Response	Tutor Response	Problem			Attempt				
Student Id	Time	(sec)	Туре	Туре	Name	Step Name	KC Model	At Step	Outcome	Selection	Action	Input
	5/14/											2013-05-14
Student1	14:09	1	ATTEMPT		1					NtpDate	NtpTimeCheck	1 -0400
Student1	5/14/ 13 14·09	37	ΔΤΤΕΜΡΤ	RESULT	1	fract1_numM ultiply1 UpdateTextAr ea	equivMultipl vNum	1	Correct	fract1_num	UpdateTextAr	3
Studenti	5/14/		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			fract1_denom Multiply1 UpdateTextAr	equivMultipl			fract1_deno	UpdateTextAr	5
Student1	14:10	4	ATTEMPT	RESULT	1	ea	yDenom	1	Correct	mMultiply1	ea	3
Student1	5/14/ 13 14:10	4	ATTEMPT	RESULT	1	_root goToStep		1	Correct	root	goToStep	2
Student1	5/14/ 13 14:10	18	ATTEMPT	RESULT	1	fract3_num UpdateTextAr ea	equivNameN umFract	1	Correct	fract3_num 0	UpdateTextAr ea	1
Student1	5/14/ 13 14:10	3	ATTEMPT	RESULT	1	fract3_denom UpdateTextAr ea	equivNameD enomFract	1	Correct	fract3_deno m0	UpdateTextAr ea	3
	5/14/ 13 14:10	6	ATTEMPT	RESULT	1	fract4_num UpdateTextAr ea	equivNameN umFract		Correct	fract4_num 0	UpdateTextAr ea	3

"Online" Educational Data

Questions/Challenges:

- Raw Log Data \rightarrow Meaningful Variables
- Which curricular or tutorial interventions cause learning?
- Which (influencible) student behaviors facilitate learning?
- By what mechanisms do successful interventions cause learning?

Motivation

2. MODEL SEARCH: ONLINE COURSE BEHAVIORS

Causal and Statistical Reasoning

Student & Log Data

- Pre-test (%)
- Midterm1 (%)
- Gender
- Race
- Computer-comfort
- Final Exam (%)

- Logged in time
- Voluntary-exercise completion (%)
- Quiz Scores (avg. %)
- Print-requests (% of modules)
- 12 others

Interaction \rightarrow Learning

3. SEARCHING FOR MECHANISMS/MEDIATORS

What are the Mediators?

What are the Mediators?

Exp. Condition _||_ Post-Test | {Pre-test, Student Properties, Engagement, Correct Rep}

Exp. Condition <u>Post-Test</u> | {*Pre-test, Student Properties, Time, Correct Rep*}

Carnegie Mellon University

WISCONSIN

Fractions Tutor

N = 110 6th-grade students, 2.5h
[Rau et al., AIED 2009, best student paper]

N = 290 4th- and 5th-grade students, 5h [Rau et al., ICLS 2012]

Carnegie Mellon University

NSIN

UNIVERSITY OF WISCONS

Learning with Multiple Representations

- Multiple representations \Rightarrow Learning $\sqrt{}$
- Mechanisms?
- Standard in ITS (Intelligent Tutor Systems):
 - Error-rate
 - Hint-use
 - Time-spent

Model Search: Experiment 1

Model Search: Experiment 2

Carnegie Mellon University

 $\chi^2 = 6689$, df = 10, p = .74

Mediator Variables: Non-monotic?

Tranforming/Defining Variables

Transforming Variables: No help

- Result: raw variables no worse, perhaps better
- Models using the raw variables explained slightly more variance than models with the transformed variables

[Rau & Scheines, EDM 2012]

Experiments 1&2 Conclusions

- Multiple representations increase learning
- Standard Variables: *Time*, *Error*, and *Hints* do *not* seem to be mechanisms through which multiple representations *increase* learning

4. INFORMED MEDIATORS

Motivation

- Learning processes [Koedinger et al., 2012]:
 - Understanding: sense-making processes

• Fluency: fluency-building processes

Fractions Tutor: Sense-making

Fractions Tutor: Fluency-building

Background: Experiment 3

Carnegie Mellon University

WISCONSIN

Mediator hypotheses

- How do sense-making processes and fluencybuilding processes interact?
 - Understanding hypothesis:

Mediation hypothesis

Mediation Hypotheses

- How do sense-making processes and fluencybuilding processes interact?
 - Understanding hypothesis:

• Fluency hypothesis:

Mediation Hypotheses

Variable identification

- Search among large number of potential variables [Rau et al., EDM 2012]
- Based on knowledge component model

Knowledge Component Model

Variable identification

- Search among large number of potential variables [Rau et al., EDM 2012]
- Based on knowledge component model
 - Significant predictors of posttest performance
 - Significant differences between conditions

Madarstanpling hypothesis

Understanding hypothesis

Fluency hypothesis

Fluency hypothesis

Possible alternative models

Model Search Results: Understanding model

Model Search Results: Understanding model

Model Search Results: Fluency model

Model Search Results: Fluency model

Mediation hypothesis

Taking Stock

- Results are in line with understanding hypothesis, but not with fluency hypothesis
 - Sense-making support reduces errors students make on fluency-building problems

[Rau, Scheines et al., EDM 2013, best paper]

Limitations

- Bound to fixed sequence: sense fluency
- Different results possible with sequence fluency sense
- Makes testable predictions:
 - Sense-making support should be provided *before* fluency-building support

Experiment 4: Results

- Which process should instruction support first?
 - Understanding hypothesis:

Fluency hypothesis:

[Rau et al., AIED 2013]

Experiment 4: Model Search Results

Fluency-building errors

Experiment 4: Model Search Results

Sense-making errors

5. CONCLUSION

Carnegie Mellon University

Conclusion

- Both sense-making processes and fluency-building processes need to be supported
- Sense-making enhances fluencybuilding
- Sense-making support should be provided before fluency-building support
- Closing the loop!

1. Experiment 3	3
-----------------	---

2. Causal path analysis

3. Experiment 4

Conclusion

- Overall measures of problem-solving behaviors were not successful at establishing mediation
- Informed mediators explained interaction between different learning processes
- Model search helped identify plausible models for our hypotheses
- Results from mediation analysis made testable predictions
- Results from follow-up experiment were in line with these predictions

Thanks!

REESE-21851-1-1121307, IES R305A120734, Pittsburgh Science of Learning Center, funded by the National Science Foundation (award number SBE-0354420), IES Program for Interdisciplinary Education Research

Vincent Aleven Nikol Rummel, Richard Scheines, Ken Koedinger, and Brian Junker

Jay Raspat, Michael Ringenberg, Stacie Rohrbach, Zelha Tunc-Pekkan, Laurens Feenstra, Cathy Kramer, Mitch Nathan, Peg Smith, Cassandra Studer, Jenny Olson, Dan Belenky, Ryan Baker, Neil Heffernan, Shaaron Ainsworth, Janice Gobert, David Pritchard, David Klahr, Sharon Carver, Howard Seltman, Jack Mostow, Anna Fisher, Audrey Russo, Michael Bett, Gail Kusbit, Jo Bodnar, Queenie Kravitz, Jo Bodnar, Lisa Vento, Mark Penney, Katelyn Sittler, Laura Butler, Anthony DeMauro, Adriana Joazeiro, Julika Lomas, Corinne Rockoff, Shawn Snyder, Orly Stampfer, Cassandra Studer, Angela Wagner, Jonathan Sewall, Alida Skogsholm, Brett Leber, Octav Popescu, Cindy Tipper, John Stamper, Kyle Cunningham, Jessica Kalka, Mike Komisin, Antonia Becher, Laura Pacilio, Lyubov Zeylikman, Lisa Kwon, Angela McCarthy, Lavender Yi, Siyan Zhao, Eiji Hayashi, Iris Howley, Sunyoung Kim, Yanjin Long, Gabi Marcu, Jenn Marlow, Bryan Matlen, Rony Patel, Kelly Rivers

Students and teachers who have participated in my research

BACKUP SLIDES

Sense-only condition

Fluency-only condition

Sense + fluency condition

Fluency-only vs. sense + fluency

Carnegie Mellon University

WISCONSIN

Sense-only vs. sense + fluency

Carnegie Mellon University

WISCONSIN