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Strategies for Discovering 
Mechanisms of Mind using fMRI: 



   The Numbers 

• 20 
• 50 
• 5024 
• 9205 
• 8388 
• 500 
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             fMRI and Mechanism 
 
 
 
 
 
 
 
From indirect signals of local changes in blood oxygenation in 
small (2 mm3) brain regions (voxels) during a cognitive task 

…Infer… 
 

The CAUSOME—the causal relations between those  
regions in performing that task. 
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Why? 
• By contrasting these mechanisms where there is a task 

with “resting state” mechanisms where there is no task, 
one could try to discover sets of causal relations specific 
to kinds of cognitive tasks. 

• Which one hopes would lead to 
•  A profound refinement of “real estate” neuropsychology 
•  An alignment of psychological descriptions with neural processes 
•  Identification of processing disturbances in neuroatypicals 
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  Typical Task Experiments 
•  These are data sets from Russ Poldrack’s Open fMRI 

project. 
 
• Experiment 1  Subjects inflate balloons, judging whether 

to keep inflating them (risk). 

• Experiment 3  Subjects judge nonsense words as rhyming 
or not. 

• Experiment 5: Subjects are given a stake and bets (real 
money) which they can accept or reject.  
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  Usual Procedure 
1.  Obtain BOLD time series from a large region of the 

brain (e.g., whole brain or cortex). 
2.  Cluster time series into “regions of interest” (ROIs) by 

anatomy, statistical clustering, or eyeballing. 
3.  Aggregate the BOLD measurements at a time for voxels 

within a cluster into a single measure (e.g., the average) 
4.  Apply a search procedure to estimate the causal 

relations among the clusters. 
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ROIs for 
Experiment 3: 
 
I 
LOCC, ROCC 
LIPL, RIPL 
LMTG, RMTG 
LACC, RACC 
LIFG, RIFG 
 
Not all visible 
in this image. 



Causal Search Output from Exp. 3 
• With IMaGES search procedure 
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Search Procedures 
• Guess 
•  Inverse covariance (partial correlation) 
• PC 
•  FCI 
• GES, IMaGES 
• Granger  
•  LiNGAM  
•  LISREL (GIMME) 
• Non-Gaussian scores 
•  Friston 
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Guess 
•  Look at the ROIs and the data and guess what the causal 

connections are. 
•  This method is in fact used! 
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Inverse covariance (partial correlation) 
• Calculate the covariance matrix of your data. 
•  Invert it (possibly with L1 penalty) 
•  Zero entries are X _||_ Y | Z where Z = all other variables. 
• Problem: X->Z<-Y 

•  X and Y are uncorrelated. 
•  But if you condition on Z, they’re correlated! 
•  So you think there’s an edge where there’s not! 
•  Marries parents! 

• Note that just thresholding the covariance matrix leads to 
extra edges too! 
•  X->Y->Z: X is correlated with Z, so you get the edge X—Z! 
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PC 
• Assume the true model is a directed acyclic graph (DAG) 
• Assume there are no unrecorded common causes and 

i.i.d. sampling: 
• Under these assumptions, the adjacency search finds 

correct adjacencies (undirected causal connections) in the 
large sample limit. 
•  This works well for fMRI. 
•  Scales up to high dimensional problems. 

• PC can process multiple subjects by using a multi-subject 
conditional independence test. 

•  The orientation search does not work so well for fMRI.  
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FCI 
•  Like PC but does not assume that there are no 

unmeasured common causes. 
•  There may be latent variables! 

• Uses the same adjacency search as PC. 
•  But the adjacencies are interpreted differently: not all of them 

represent direct causal paths 

• Does not scale up to high dimensions but a modification 
(RFCI: Really Fast Causal Inference) scales up better. 
How much better? 
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GES, IMaGES 
• GES (Meek; Chickering) is a Bayesian score search  
• Under essentially the same assumptions as PC, correct in 

the large sample limit. 
•  IMaGES is a multi-subject version of GES. 

•  Average the BIC scores! 
•  Penalty term to counteract the effects of Indirect measurement 

creating spurious associations of measured variables. 
•  Works well for fMRI (Ramsey et al., 2010, 2011) 

• Scales up so-so. 
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Granger Causality 
• Asks, which variables can I condition on to best predict 

future states of variables given current and past states of 
variables? 

• Regress Yt on (Xit-, Yt-}. Take significant X predictors to 
be causes of Y. 

•  The lags are critically important for this method. In 
particular, it is important that the lags be uniform across 
the data set, a condition which doesn’t hold well for fMRI 
data. (Though work has been done to adjust for this.) 
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LiNGAM 
•  “Linear Non-Gaussian Acyclic Model” 
• Runs Independent Components Analysis (ICA) 
• Associates ICA output with variables by reordering the 

matrix into a lower triangle. 
•  Infers causal connections *and* directions in one fell 

swoop. 
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LISREL (GIMME) 
• Will defer; Kathleen Gates will talk about this. 
• Basically, models the causal structure over ROIs as a 

linear, Gaussian system. 
• Amazingly effective for the case of non-stationary 

connections—that is when the coefficient for X->Y 
changes over time. 
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Orientation Using Non-Gaussian Scores 
• Given adjacencies, non-Gaussian scoring can be effective 

at orienting edges. 
• Hyvärinen and Smith (2013): Estimate direction between 

X, Y from signs of skews, e.g.. X2Y – Y2X 
• Other methods due to Ramsey et al.: 
• R1, R2 assume sums of independent variables are closer 

to Gaussian than the summands. 
• R3 uses an information theoretic measure based on a 

non-Gaussianity score. 
• R4 adapts an independent components method for cyclic 

graphs (Lacerda, et al., 2008). 
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Friston Method 
•  In the context of the Dynamical Causal Modeling 

paradigm, K. Friston proposes a method that scores a 
series of models and reports the model with the best 
score. 

•  This is possible due to a very fast scoring procedure. 
• However, the number of possible models over a set of 

variables increases super-exponentially. 
• So only models over a very few number of variables can 

be considered. 
• Problem: Exhaustive search versus Search. 
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 Testing Search Methods 
• Simulate 
• Simulate 
• Simulate 
•  Torture animals and measure humans. 
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      One Torture Test  
• (Dawson et al., 2013) Compared causal relations 
between  visual cortex regions  of macaque 
monkeys with causal relations between 
analogous areas in the human cortex estimated 
by several search methods from fMRI. 
• Only adjacencies identified. 
• PC most accurate. 
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Lots of Simulation Data 
•  (Smith, et al., 2011)  tested identifications of simple 

graphical causal relations from simulated fMRI in 28 
conditions. 

• Smith et al. tested 35 search methods. None succeeded 
in identifying causal directions accurately. 

•  Their code (Smith and Woolrich mainly), based on the 
best available biophysical model of the generation of the 
BOLD signal, can be used to simulate data from much 
more complex, higher-dimensional models. 

22 



Smith Study Conclusions 
•  “Bayes net methods” effective at finding adjacencies—PC, 

GES, FCI, etc. 

•  Inverse covariance methods effective at finding adjacencies  
(because there were only a few unshielded colliders in the Smith 
models) 

•  Granger methods, in all versions tested, ineffective at finding 
adjacencies (but still frequently used). 

•  LiNGAM ineffective at finding adjacencies. 
 
•  No methods effective at finding orientations. 

•  (Non-Gaussian methods other than LiNGAM not tested.) 
•  (Except maybe Patel.) 
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    20 
• Maximum number of variables (Regions of Interest) in any 

published attempt to infer causal mechanisms from 
empirical fMRI data. 
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    50 
•  The number of simulated graphs in the largest model in 

the Smith study. 
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5,024 

5054 = The number of 6mm3 voxels in 
the cortex. 
 
9 = The number of variables in the 
graphical causal models estimated by 
Poldrack for the pseudorhyme 
experiment.  
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9205 
•  The number of directed edges found for one single 

subject data set from experiment 1 
• Alpha = 0.01 
• Calculate covariance matrix C over 5054 voxels 
• Run PC adjacency search over C 
• Orient using R3 
• Side note: GES/IMaGES is not currently scalable to 5054 

variables; I’ve scaled it up to about 800 variables… 
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8388 
•  The number of directed edges found for one single 

subject dataset from experiment 3 
• Alpha = 0.05 
• Calculate covariance matrix C over 5054 voxels 
• Run PC adjacency search over C 
• Orient using R3. 
• Many missing (unrecorded) voxels, maybe should run 

RFCI…future work…can RFCI be scaled up that far? 
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500 

• Why Trust The Estimates? 
 
• Point 1: Simulation with 500 variables with Smith code 

yields 90% precision; 50% recall 
• Point 2: In experiment 3, PC + R3 identifies the stimulus 

variable as a cause, not an effect, of neural variables. 
• Point 3: In experiment 3, PC + R3 agrees with experts’ 

opinion of directions of influence. 
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Details for 500 variable simulation. 
	
  	
   	
  	
   R1	
   R3	
   EB	
   Tanh	
   Skew	
   Rskew	
   Patel	
   SkewE	
   RSkewE	
  

Average	
   AP	
   0.94	
   0.94	
   0.94	
   0.94	
   0.94	
   0.94	
   0.94	
   0.94	
   0.94	
  

	
  	
   AR	
   0.49	
   0.49	
   0.49	
   0.49	
   0.49	
   0.49	
   0.49	
   0.49	
   0.49	
  

	
  	
   PTPA	
   0.76	
   0.94	
   0.75	
   0.7	
   0.96	
   0.97	
   0.72	
   0.9	
   0.9	
  

Group	
   AP	
   0.98	
   0.98	
   0.98	
   0.98	
   0.98	
   0.98	
   0.98	
   0.98	
   0.98	
  

	
  	
   AR	
   1	
   1	
   1	
   1	
   1	
   1	
   1	
   1	
   1	
  

	
  	
   PTPA	
   0.99	
   1	
   0.77	
   0.77	
   1	
   1	
   0.76	
   0.94	
   0.95	
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AP = Adjacency precision (# true positive adjacencies / (# true positive adjacencies + # false positive 
adjacencies)), AR = adjacency recall (# true positive adjacencies / (# true positive adjacencies  + # 
false negative adjacencies)), PTPA = Precision for true positive adjacencies (# true positive 
orientations / # true positive adjacencies), averaged over 5 individual subjects and for the 5 subject 
analyzed groupwise, for the 500 variable, 621 edges simulation described in the text. For the individual 
subject case 6% of the estimated edges were false positives and for the group case 2% of the 
estimated edges were false positives.  



  How Is It Possible? 
• PC for adjacencies 
• Non-Gaussian scores for directions 
 
Programming challenges: 
• Scaling up to 5054 variables. 

•  Seems doable for PC, non-Gaussian orientation. 
•  RFCI? 
•  GES? 
•  Others? 

•  This is not the limit of aspiration—we want to do 40,000 or 
more voxels!  
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Why the Low Recall for Single Subject? 
• With PC there’s a tradeoff between computational 

complexity and information retrieved. 
• Choice is to find the largest effects only or to have the 

computer never return. 
•  For PC, a choice of alpha level. 
•  Higher alpha levels imply more false positive edges! 
•  Also, small sample size, 160. 
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  What Are the Problems? 
• Stability of PC under resampling 
• Disagreements in estimates from different non-Gaussian 

scoring procedures 
• Disagreements in estimates between subjects 
• Use of multiple subject data simultaneously 
• And: 

•  Feedback relations (addressed by one non-Gaussian method, R4) 
•  Cancellation of correlations by positive and negative influences 
•  Latent variables 
•  Non-stationary time series (see GIMME!) 
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What Are the Potential Clinical 
Applications? 
• Catherine Hanson will talk about some of that, I hope. 
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Thanks to many people… 
• Steve Hanson 
• Catherine Hanson 
• Russ Poldrack 
• Stephen Smith 
• Patrick Hoyer 
• Aapo Hyvärinen 
• Cosma Shalizi 
• Peter Spirtes 
• Richard Scheines 
• Marloes Matuis 
• Kathleen Gates 
•   and many more! Sorry if I didn’t list you! 
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