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Assumptions

causal Markov: permits inference from probabilistic
dependence to causal connection

causal faithfulness: permits inference from probabilistic
independence to causal separation

causal sufficiency: there are no unmeasured common
causes

acylicity: no variable is an (indirect) cause of itself
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Limitations

For linear Gaussian and for multinomial causal
relations, an algorithm that identifies the Markov equivalence

class of the true model is complete.
(Pearl & Geiger 1988, Meek 1995)
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Moving forward

|. Weaken the assumptions (and increase the equivalence
class)
a. allow for unmeasured common causes
b. allow for cycles
c. all of the above

2. Exclude the limitations (and reduce the equivalence
class)
a. restrict to non-Gaussian error distributions
b. restrict to non-linear causal relations

3. Include for more general data collection set-ups
(and see how assumptions can be adjusted and what
equivalence class results)
a. experimental evidence
b. multiple (overlapping) data sets
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Linear non-Gaussian method (LINGaM) stz ecal, 200

® | inear causal relations:

® Assumptions:
- causal Markov
- causal sufficiency
- acyclicity

p If €; ~ non-Gaussian, then the true graph is uniquely
identifiable from the joint distribution.

- (faithfulness not required!)



Two variable case

€ €y

True model

12



Two variable case

€z €y
y = Bx + €, é)% r 1 €,

True model

12



Two variable case

True model €, €

Y
y = Bx + €, é)% r 1 €,
€x €y

Backwards model
PO+ b0

12



Two variable case

True model €, €

Y
y = Bx + €, é)% r 1 €,
€x €y

Backwards model
xr = 0y + €, é}_@g y L €,

12



Two variable case

True model

y:5$+€y

Backwards model

xr = 0y + €,

€, = x— 0y

= = —0(Br+¢,)
= (1 —-08)z — ¢,

é; ’Cl;y
€z €y

o

12

:Ijil_ey

~

y 1L e,



Two variable case

True model €x €y
Y=+ O v L e

Backwards model
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Why Normals are unusual
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Why Normals are unusual
€ €
Forwards model y = Bz + €, Gg J
~ ! @5
For backwards model €3 — (1 — 95)33 — 19€y

Theorem 1 (Darmois-Skitovich) Let X1,..., X, be independent,
non-degenerate random variables. If for two linear combinations

L = a1 Xi+...4+a,X,, az#()
lo = b1 X91+...+0,X,, bz#()

are independent, then each X; 1s normally distributed.
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Limitations

For linear Gaussian and for multinomial causal
relations, an algorithm that identifies the Markov equivalence

class of the true model is complete.
(Pearl & Geiger 1988, Meek 1995)
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Bivariate Linear Gaussian case

True model L = €y

Y =T+ €

€z, €y ~ Indep. Gaussian

(graphics from Hoyer et al. 2009)
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Bivariate Linear Gaussian case

True model L = €y
Y =T+ €
b
p(y | )
5 0 ; 5 0 ;
X Y
Forwards

(true) model
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€z, €y ~ Indep. Gaussian
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(graphics from Hoyer et al. 2009)
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Continuous additive noise models

z; = fj(pa(z;)) + €

° [f fj () is linear, then non-Gaussian errors are required for
identifiability

B What if the errors are Gaussian, but fj () is non-linear?

B More generally, under what circumstances is the graphical
structure identifiable!?
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Bivariate non-linear Gaussian additive noise model

True model T = €, €z, €y ~ Indep. Gaussian
r+x° + €,

<
|
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Bivariate non-linear Gaussian additive noise model

True model T = €, €z, €y ~ Indep. Gaussian

3

Y =T+ T + €

e
p(y | z)

-5 0 5 :5 (I) ;
X Y

Forwards

(true) model

18 (graphics from Hoyer et al. 2009)



Bivariate non-linear Gaussian additive noise model

True model T = €, €z, €y ~ Indep. Gaussian

y:x+x3+ey

e f
p(y | x) p(r|y)
5 . s ¢ 0 5 3 0 3
X y X
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Bivariate non-linear Gaussian additive noise model

True model T = €, €z, €y ~ indep. Gaussian
L 3
Y =T+ T + €
e f
p(y | x) p(z | y)
5 0 ; 5 0 5 3 0 3
X y X
Forwards Backwards
(true) model model

55:9(2U)"|‘g:1:

18 (graphics from Hoyer et al. 2009)



General non-linear additive noise models
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General non-linear additive noise models

Hoyer et al. condition (HetalC): Technical condition on the relation
between the function, the noise distribution and the parent distribution
that, if satisfied, permits a backward model.

® |f the error terms are Gaussian, then the only functional
form that satisfies HetalC is linearity, otherwise the model
is identifiable.

® |f the errors are hon-Gaussian, then there are (rather
contrived) functions that satisfy HetalC, but in general
identifiability is guaranteed.

- this generalizes to multiple variables (assuming minimality™)!
= extension to discrete additive noise models

® |f the function is linear, but the error terms non=Gaussian,
then one can’t fit a linear backwards model (Lingam), but there
are cases where one can fit a non=-linear backwards
model

19
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Experiments

® which experiments to perform?
® how to integrate the results from experimental data?

® what search space assumptions are still required?
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SATisfiability solver

® finds a truth value assighment for a Boolean formula in
Conjunctive Normal Form (CNF)
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SATisfiability solver

® finds a truth value assighment for a Boolean formula in
Conjunctive Normal Form (CNF)

® a Boolean term X is a backbone variable if X takes the
same value (T or F) in all satisfying truth value assignments of a
given formula
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Encoding continued
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Algorithm

Proceed in order of conditioning set size
® heuristically find unknown independence /
dependence relations and determine them.

¢ Encode the relations into the working formula
F, including definitions as needed.
¢ Determine the “backbone” of F using the
SAl-solver, i.e. for each pair of variables (x,y) in V
and for each edge type determine whether it is
- present in all causal structures consistent with
the input.

= absent in all causal structures consistent with
the input.

- unknown,i.e. present in some, and absent in
other causal structures consistent with the input.
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Algorithm background
—— knowledge
representable
Proceed in order of conditioning set size using encoding
. . o . can be included

® heuristically find unknown independence / \ )

dependence relations and determine them.

¢ Encode the relations into the working formula (" independence

F, including definitions as needed. constraints can be
treated separately

¢ Determine the “backbone” of F using the from dependence
SAT-solver, i.e. for each pair of variables (x,y) in V \__constram®s
and for each edge type determine whether it is

- present in all causal structures consistent with \
you can R

the input.
= absent in all causal structures consistent with compute the
. backbone over
the Input. any graphical
- unknown,i.e. present in some, and absent in feature that you
other causal structures consistent with the input. are interested in

- J
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