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• causal Markov: permits inference from probabilistic 
dependence to causal connection

• causal faithfulness: permits inference from probabilistic 
independence to causal separation

• causal sufficiency: there are no unmeasured common 
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(Pearl & Geiger 1988, Meek 1995)
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Moving forward

1. Weaken the assumptions (and increase the equivalence 
class)
a. allow for unmeasured common causes
b. allow for cycles 
c. all of the above

2. Exclude the limitations (and reduce the equivalence 
class)
a. restrict to non-Gaussian error distributions
b. restrict to non-linear causal relations

3. Include for more general data collection set-ups 
(and see how assumptions can be adjusted and what 
equivalence class results)
a. experimental evidence
b. multiple (overlapping) data sets
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Linear non-Gaussian method (LiNGaM)

• Linear causal relations:

• Assumptions:
- causal Markov
- causal sufficiency
- acyclicity

‣ If         non-Gaussian, then the true graph is uniquely 
identifiable from the joint distribution.

- (faithfulness not required!)

11

xi =
�

xj∈Pa(xi)

βijxj + �j

�j ∼

(Shimizu et al., 2006)
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y = βx+ �y

Theorem 1 (Darmois-Skitovich) Let X1, . . . , Xn be independent,
non-degenerate random variables. If for two linear combinations

l1 = a1X1 + . . .+ anXn, ai �= 0

l2 = b1X1 + . . .+ bnXn, bi �= 0

are independent, then each Xi is normally distributed.

Forwards model
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In the next section, we start by defining the family of models under study, and then, in Section 3

we give theoretical results on the identifiability of these models from non-interventional data. We

describe a practical method for inferring the generating model from a sample of data vectors in

Section 4, and show its utility in simulations and on real data (Section 5).

2 Model definition
We assume that the observed data has been generated in the following way: Each observed variable

xi is associated with a node i in a directed acyclic graph G, and the value of xi is obtained as a

function of its parents in G, plus independent additive noise ni, i.e.

xi := fi(xpa(i)) + ni, (1)

where fi is an arbitrary function (possibly different for each i), xpa(i) is a vector containing the

elements xj such that there is an edge from j to i in the DAG G, the noise variables ni may

have arbitrary probability densities pni(ni), and the noise variables are jointly independent, that

is pn(n) =
�

i pni(ni), where n denotes the vector containing the noise variables ni. Our data then

consists of a number of vectors x sampled independently, each using G, the same functions fi, and

the ni sampled independently from the same densities pni(ni).

Note that this model includes the special case when all the fi are linear and all the pni are Gaussian,

yielding the standard linear–Gaussian model family [2, 3, 9]. When the functions are linear but the

densities pni are non-Gaussian we obtain the linear–non-Gaussian models described in [7].

The goal of causal discovery is, given the data vectors, to infer as much as possible about the gen-

erating mechanism; in particular, we seek to infer the generating graph G. In the next section we

discuss the prospects of this task in the theoretical case where the joint distribution px(x) of the

observed data can be estimated exactly. Later, in Section 4, we experimentally tackle the practical

case of a finite-size data sample.

3 Identifiability
Our main theoretical results concern the simplest non-trivial graph: the case of two variables. The

experimental results will, however, demonstrate that the basic principle works even in the general

case of N variables.

Figure 1 illustrates the basic identifiability principle for the two-variable model. Denoting the two

variables x and y, we are considering the generative model y := f(x) + n where x and n are
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Figure 1: Identification of causal direction based on constancy of conditionals. See main text for

a detailed explanation of (a)–(f). (g) shows an example of a joint density p(x, y) generated by a

causal model x → y with y := f(x) + n where f is nonlinear, the supports of the densities px(x)
and pn(n) are compact regions, and the function f is constant on each connected component of the

support of px. The support of the joint density is now given by the two gray squares. Note that the

input distribution px, the noise distribution pn and f can in fact be chosen such that the joint density

is symmetrical with respect to the two variables, i.e. p(x, y) = p(y, x), making it obvious that there

will also be a valid backward model.

y = x+ �y
x = �x �x, �y ∼ indep. GaussianTrue model

(graphics from Hoyer et al. 2009) 
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Continuous additive noise models

• If           is linear, then non-Gaussian errors are required for 
identifiability

➡ What if the errors are Gaussian, but          is non-linear?

➡ More generally, under what circumstances is the graphical 
structure identifiable?
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fj(.)
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In the next section, we start by defining the family of models under study, and then, in Section 3

we give theoretical results on the identifiability of these models from non-interventional data. We

describe a practical method for inferring the generating model from a sample of data vectors in

Section 4, and show its utility in simulations and on real data (Section 5).
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In the next section, we start by defining the family of models under study, and then, in Section 3

we give theoretical results on the identifiability of these models from non-interventional data. We

describe a practical method for inferring the generating model from a sample of data vectors in

Section 4, and show its utility in simulations and on real data (Section 5).

2 Model definition
We assume that the observed data has been generated in the following way: Each observed variable

xi is associated with a node i in a directed acyclic graph G, and the value of xi is obtained as a
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xi := fi(xpa(i)) + ni, (1)
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elements xj such that there is an edge from j to i in the DAG G, the noise variables ni may

have arbitrary probability densities pni(ni), and the noise variables are jointly independent, that

is pn(n) =
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i pni(ni), where n denotes the vector containing the noise variables ni. Our data then

consists of a number of vectors x sampled independently, each using G, the same functions fi, and

the ni sampled independently from the same densities pni(ni).

Note that this model includes the special case when all the fi are linear and all the pni are Gaussian,

yielding the standard linear–Gaussian model family [2, 3, 9]. When the functions are linear but the

densities pni are non-Gaussian we obtain the linear–non-Gaussian models described in [7].

The goal of causal discovery is, given the data vectors, to infer as much as possible about the gen-

erating mechanism; in particular, we seek to infer the generating graph G. In the next section we

discuss the prospects of this task in the theoretical case where the joint distribution px(x) of the
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that, if satisfied, permits a backward model.

• If the error terms are Gaussian, then the only functional 
form that satisfies HetalC is linearity, otherwise the model 
is identifiable.

• If the errors are non-Gaussian, then there are (rather 
contrived) functions that satisfy HetalC, but in general 
identifiability is guaranteed.

- this generalizes to multiple variables (assuming minimality*)!
- extension to discrete additive noise models 

• If the function is linear, but the error terms non-Gaussian, 
then one can’t fit a linear backwards model (Lingam), but there 
are cases where one can fit a non-linear backwards 
model
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Experiments

• which experiments to perform?

• how to integrate the results from experimental data?

• what search space assumptions are still required?
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SATisfiability solver

• finds a truth value assignment for a Boolean formula in 
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SATisfiability solver

• finds a truth value assignment for a Boolean formula in 
Conjunctive Normal Form (CNF)

• a Boolean term X is a backbone variable if X takes the 
same value (T or F) in all satisfying truth value assignments of a 
given formula
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longest path 
that needs to be 

considered:
l_max = 2n-4 
where n = |V|



Algorithm

Proceed in order of conditioning set size

• heuristically find unknown independence / 
dependence relations and determine them.

• Encode the relations into the working formula 
F, including definitions as needed.

• Determine the “backbone” of F using the 
SAT-solver, i.e. for each pair of variables (x,y) in V 
and for each edge type determine whether it is

- present in all causal structures consistent with 
the input.

- absent in all causal structures consistent with 
the input.

- unknown, i.e. present in some, and absent in 
other causal structures consistent with the input.
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backbone over 
any graphical 
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