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Motivation: Byzantine Generals

Two generals Alice and Bob are deciding whether to attack an enemy.
• The conditions may or may not be favorable to attack.
• If the conditions are favorable to attack, Alice and Bob want to 

simultaneously attack in order to win the battle.
• If the conditions are not favorable to attack, or only one of the generals 

attacks, then anyone who attacks has their army obliterated.
The generals want to find joint strategies that are guaranteed to protect 
both of them from losing their respective armies.



Motivation: Learning Game

Two agents Alice and Bob are deciding whether to report a proposition 
 is true or defer judgement.

• If  is true, Alice and Bob want to both eventually converge on 
reporting  is true.

• If  is false, or only one of Alice or Bob converges on reporting  is 
true, then anyone who converges on reporting  is true gets 
perpetually shamed.

The agents want to find joint strategies that are guaranteed to protect 
both of them from being perpetually shamed.
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Motivation: Setup

• Denote Alice and Bob by  and .
•  is a countable set of possible worlds.
•  and  represent the possible information states of Alice and Bob. 
• Both agents have perfect recall.
• So,  and  are topological bases over . 
• Alice and Bob have non-zero prior  over .
• Alice and Bob also have retraction budget .
• That is, they are willing to switch their answer from Yes to deferring judgment at 

most  times.

a b
Ω
ℬa ℬb

ℬa ℬb Ω
μ Ω

n ∈ ℕ

n



Motivation: Strategies

• A strategy for  is a map .
• An -retraction sequence for  is a finite downward sequence 

 of information states in  such that 
 and .  

• An -retraction strategy for  has no -retraction sequences for 
any .

• So, Alice and Bob pick -retraction strategies  and .

i ∈ N = {a, b} si : ℬi → {Yes, ?}
m si

B1 ⊇ B2 . . . ⊇ B2m ℬi
si(B2k−1) = Yes si(B2k) = ?

n i m
m > n

n sa sb



Motivation: Payoffs

•  returns the output strategy  converges to in world .

• Payoffs are given by  where:

• Nash equilibria?

σ(si, w) si w
∑w∈Ω ui|w(sa, sb) ⋅ μ(w)

ui|w((sa, sb)) =
1 w ∈ P ∧ ∀j ∈ N, σ(sj, w) = Yes;
0 σ(si, w) = ?;
−∞ σ(si, w) = Yes ∧ (w ∉ P ∨ ∃j ∈ N, σ(sj, w) = ?) .



Coordination

• Coordination corresponds to strategy profiles where Alice converges to 
 iff Bob does.

• All equilibria must be coordinated since otherwise at least one player 
would save money by never reporting  is true.

• Further, Alice and Bob must be correct in the limit when they converge to 
 otherwise they would again save money by never reporting  is true.

• So, in equilibrium we have protected coordination:
.

• That is also sufficient.

Yes

P

Yes P

σ(sa, ⋅ )−1(Yes) = σ(sb, ⋅ )−1(Yes) ⊆ P



Protected Coordination Theorem

Theorem:  is a Nash equilibrium iff . 
• Proof: Necessity is already proved. 

• For sufficiency, let  and  be strategies such that . 

• By hypothesis  has non-negative expectation for . 

• Now suppose for contradiction that Alice has a profitable deviation . 

• Note  has non-negative expectation for . 

• So, it must be , else Alice would expect to receive . 

• But that means , so  cannot be profitable. . .
So Nash equilibria are exactly those joint strategies which are guaranteed to protect both 
agents from perpetual shame.

(sa, sb) σ(sa, ⋅ )−1(Yes) = σ−1(sb, ⋅ )(Yes) ⊆ P

sa sb σ(sa, ⋅ )−1(Yes) = σ−1(sb, ⋅ )(Yes) ⊆ P
si i

s′￼a
s′￼a a

σ(s′￼a, ⋅ )−1(Yes) ⊆ σ−1(sb, ⋅ )(Yes) −∞
σ(s′￼a, ⋅ )−1(Yes) ⊆ σ−1(sa, ⋅ )(Yes) s′￼a ⊥ □



0-Retraction Equilibria as Fixed Points

• There exists a -retraction strategy  so that  iff 
 is open in the topology  generated by .

• So, we can characterize -retraction equilibria by finding those 
subsets of  which are open in . 

• Let  denote the interior operator with respect to . 
• Consider the map from  to itself which sends 

. 

0 si σ(si, ⋅ )−1(Yes) = X
X 𝒯i ℬi

0
P 𝒯a ∩ 𝒯b

inti 𝒯i
𝒫(Ω)

X ↦ ∩i∈N inti(P ∩ X)



0-Retraction Equilibria as Fixed Points

• Fixed points of  are exactly those subsets of  
which are open in .

• Unions of open sets are open.
• So, the map has a greatest fixed point: the union of all open sets in 

 which entail .
• Take  to be the interior operator with respect to .
• Thus, the greatest fixed point of  is .
• So,  characterizes welfare maximizing -retraction equilibria.  

X ↦ ∩i∈N inti(P ∩ X) P
𝒯a ∩ 𝒯b

𝒯a ∩ 𝒯b P
intN 𝒯a ∩ 𝒯b

X ↦ ∩i∈N inti(P ∩ X) intNP
intNP 0



Common Verifiability

•  is also epistemically interesting.

• Tarski’s fixed point theorem implies that  corresponds to the transfinite conjunction of the statements:
 Everyone can verify 
 Everyone can verify .

…
 Everyone can verify .

…
 , Everyone can verify .

 Everyone can verify . 
Etc.

• Thus  corresponds to the worlds where  is “commonly verifiable.”

• Question: Is  commonly verifiable iff  can become asynchronous common knowledge?

intNP
intNP
1) P
2) 1

k) k − 1

ω) ∀k < ω k
ω + 1) ω

intNP P
P P



Gonczarowski and Moses 2024

• Paradox:  and  is decidable for Alice. 
• Alice sends a message telling Bob  is true if she has verified it at time . 
• No message is sent if she verifies  at time 0.
• The message is guaranteed to arrive in either  1 minute or  2 minutes.
• There is no global clock. 
• Alice has a local clock which starts upon deciding  and Bob has a local clock 

which starts upon receiving a message from Alice. 
• Clearly,  is not common knowledge at time  in both  and . 
• More surprisingly,  is never common knowledge in either world!

Ω = {w1, w2, w3} P = {w1, w2}
P 0
¬P

w1) w2)

P

P 0 w1 w2
P



Gonczarowski and Moses 2024

• Suppose for a contradiction  is common knowledge among Alice and Bob at 
some time in . 

• Common knowledge arises synchronously.
• So there must exist a first time  where  becomes common knowledge in  

that is the same for Alice and Bob. 
• But since  and  are indistinguishable for both agents, this means the first 

time  becomes common knowledge in  is  for Bob and  for Alice. . 
• Thus  is never common knowledge in . 
• Symmetrically, we can argue  is never common knowledge in . 

P
w1

t P w1

w1 w2
P w2 t + 1 t ⊥
P w1

P w2



Gonczarowski and Moses 2024

• Why is this a paradox?
• Common knowledge is supposed to guide coordination. 
• We typically think successful coordination is possible in some equilibrium iff  

can become common knowledge.
• Since  cannot become common knowledge, successful coordination should 

not be possible.
• However, it is obvious how to successfully coordinate!
• Alice should report  is true upon verifying it and Bob should report  is true 

upon receiving the message. 

P

P

P P



Asynchronous Common Knowledge

• Solution: Allow common knowledge to arise asynchronously. 
• Intuition: Alice knows “Bob knows  upon receiving the message” upon sending the message.

• G&M refine possible worlds  into states of affairs  at a particular time.

• Each agent  has an information partition  over . 

• Fix .

•   and  denote the states of affairs where where  holds at some time and at all times. 

•  denotes the states of affairs that are indistinguishable at  for agent .

• Write  iff .

• Say a witness  is -local iff .  

• Say a witness profile  is -local iff  is -local.

P
w ∈ Ω (w, t) ∈ Ω × ℕ

i ∈ N 𝒫i Ω × ℕ
X ⊆ Ω × ℕ

◊X □ X X
𝒫i(w, t) (w, t) i

(w, t), 𝒫i ⊨ K*i X 𝒫i(w, t) ⊆ X
Wi ⊆ Ω × ℕ i K*i Wi = Wi

W ⊆ (Ω × ℕ)N N ∀i ∈ N, Wi i



Asynchronous Common Knowledge

• Given an -local witness profile ,  denotes “  knows  upon certifying ”, i.e.:

 iff 

• Similarly,  denotes “everyone knows  upon asynchronous certification of ”, i.e.:

 iff  for all 

• Finally,  denotes “  is common knowledge upon asynchronous certification of ”, i.e.:

 iff 

 iff 

 iff  for all 

N W K*i@Wi
P i P Wi

(w, t), 𝒫i ⊨ K*i@Wi
P (w, t), 𝒫i ⊨ ◊Wi ∧ □ (Wi → K*i P)

E*
N@W

P P W

(w, t), (𝒫i)i∈N ⊨ E*
N@W

P (w, t), 𝒫i ⊨ K*i@Wi
P i ∈ N

C*
N@W

P P W

(w, t), (𝒫i)i∈N ⊨ M*1
N@W P (w, t), (𝒫i)i∈N ⊨ E*

N@W
P

(w, t), (𝒫i)i∈N ⊨ M*k
N@W P (w, t), (𝒫i)i∈N ⊨ E*

N@W
M*k−1

N@W P

(w, t), (𝒫i)i∈N ⊨ C*
N@W

P (w, t), (𝒫i)i∈N ⊨ M*k
N@W P k ∈ ℕ\{0}



Example
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Example
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Alice verifies 
 ¬P



Example- Alice’s Partition
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Clock starts upon deciding  P



Example- Bob’s Partition 
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Clock starts upon receiving message



Example- Everyone Knows P
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Example- (Everyone Knows)2 P
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Example- (Everyone Knows)5 P
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Example- (Everyone Knows)6 P
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Example- (Everyone Knows)6 P

w3

w2

w1

0 1 2 3 4 5 6

There are no states of affairs where  is common knowledge!P



Example- : Alice Sent The MessageWa
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Example- : Alice Sent The MessageWa

w3

w2

w1

0 1 2 3 4 5 6

: Alice knows  upon certifying she sent the message K*a@Wa
P P



Example- : Bob Received The MessageWb
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Example- : Bob Received The MessageWb

w3

w2

w1

0 1 2 3 4 5 6

: Bob knows  upon certifying he received the message K*b@Wb
P P



Example- C*
N@W

P

w3

w2

w1

0 1 2 3 4 5 6

K*a@Wa
P = K*b@Wb

P = P → C*
N@W

P = P



Detemporalizing G&M

• There is no need for explicit talk of time.
• Agents’ payoffs do not depend on when their reports take place. 
• Agents only care in what worlds they converge on reporting  is true.
• So, detemporalize G&M’s semantics as follows:  
• Take an agent  with information partition  over .
• ,  and set .  
•  is a cover over .
• Elements of  correspond to information states. 

•  is the collection of information states  passes through in world .  

P

i ∈ N 𝒫i Ω × ℕ
∀k ∈ 𝒫i 𝒞i(k) = {w ∈ Ω | ∃t ∈ ℕ, (w, t) ∈ k} 𝒞i = {𝒞i(k) | ∀k ∈ 𝒫i}
𝒞i Ω

𝒞i
𝒞i|w i w



Detemporalizing G&M

• Given ,  denotes , i.e. the worlds where  at 
some information state certifies . 

• Given a profile , define the following operators:
 iff 

 iff  for all 

 iff 

 iff 

 iff  for all 

X ⊆ Ω certiX {w | ∃C ∈ 𝒞i|w, C ⊆ X} i
X

W ⊆ ΩN

w, 𝒞i ⊨ Ki@Wi
P w ∈ certiWi ∩ {w′￼| ∀C ∈ 𝒞i|w′￼, C ⊆ Wi → C ⊆ P}

w, (𝒞i)i∈N ⊨ EN@WP w, 𝒞i ⊨ Ki@Wi
P i ∈ N

w, (𝒞i)i∈N ⊨ M1
N@WP w, (𝒞i)i∈N ⊨ EN@WP

w, (𝒞i)i∈N ⊨ Mk
N@WP w, (𝒞i)i∈N ⊨ EN@W Mk−1

N@WP
w, (𝒞i)i∈N ⊨ CN@WP w, (𝒞i)i∈N ⊨ Mk

N@WP k ∈ ℕ\{0}



Detemporalizing G&M

Indeed, if  we let  denote , then we have the 
following translation:

∀X ⊆ Ω [X] X × ℕ

w, 𝒞i ⊨ Ki@Wi
P iff ∃t ∈ ℕ so that (w, t), 𝒫i ⊨ K*i@K*i [Wi]

[P]
w, (𝒞i)i∈N ⊨ EN@WP iff ∃t ∈ ℕ so that (w, t), (𝒫i)i∈N ⊨ E*N@(K*i [Wi])i∈N

[P]

w, (𝒞i)i∈N ⊨ Mk
N@WP iff ∃t ∈ ℕ so that (w, t), (𝒫i)i∈N ⊨ M*k

N@(K*i [Wi])i∈N
[P]

w, (𝒞i)i∈N ⊨ CN@WP iff ∃t ∈ ℕ so that (w, t), (𝒫i)i∈N ⊨ C*N@(K*i [Wi])i∈N
[P]



Example- Alice’s Cover

w1 w2 w3



Example- : Alice Sends The MessageWa
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Example- : Alice Sends The MessageWa

w1 w2 w3

: Alice knows  upon certifying she sends the message Ka@Wa
P P



Example- Bob’s Cover

w1 w2 w3



Example- : Bob Receives The MessageWb
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Example- : Bob Receives The MessageWb

w1 w2 w3

: Bob knows  upon certifying he receives the message Kb@Wb
P P



Example- CN@WP

w1 w2 w3

Ka@Wa
P = Kb@Wb

P = P → CN@WP = P



ACKNP

• Is  commonly verifiable iff  can become asynchronous 
common knowledge?

• We can capture the worlds where  can become asynchronous 
common knowledge by defining:

• So, our question is whether .
• However, our question is still not well formed!

P P

P

w, (𝒞i)i∈N ⊨ ACKNP iff ∃W ⊆ ΩN so that w, (𝒞i)i∈N ⊨ CN@WP
intNP = ACKNP



certNP

• Why?
•  is a cover, not a basis.
• So, interior isn’t defined. 
• But,  naturally coincides with  when  is a basis. 
• So, we can define  as the greatest fixed point of  

.
• Does it hold that ?

𝒞i

certiP intiP 𝒞i
certNP

X ↦ ∩i∈N certi(P ∩ X)
certNP = ACKNP



• Yes!
• So,  is commonly certifiable iff  can become asynchronous common knowledge. 

• In summary, denote the map  by . 
• The following diagram commutes:

P P
X ↦ {CN@W X | W ⊆ ΩN} CN@_

certNP = ACKNP

𝒫(Ω) 𝒫2(Ω)

𝒫(Ω)
certN

∪

CN@_



0-Retraction Equilibria Revisited

• Agents have perfect recall in our game.
• So each agent’s cover is actually a basis .
• Fact:  is a subset of  which is open in each  iff  so that 

.
• So,  characterizes all equilibria in the -retraction game.

• Also,  captures the worlds where agents can successfully 
coordinate in some equilibrium of the -retraction game.

• Can we do something similar for the -retraction game when ?

ℬi
X P 𝒯i ∃W ⊆ ΩN

CN@WP = X
CN@_P 0

intNP
0

n n > 0



-Retraction Equilibrian

• Fact: There exists a -retraction strategy  so that  iff  is -open in the topology .

• So, we can characterize equilibria by finding subsets of  which are -open in each . 
• But how do we find these sets?

n si σ (si, ⋅ )−1(Yes) = X X 2n + 1 𝒯i

P 2n + 1 𝒯i

(Image courtesy of Kevin Kelly)



Asynchronous Common Belief

•  holds iff  is -open in the subspace topology .

• So,  can decide  in  switches starting with no in light of evidence .
•  holds iff  is -closed in the subspace topology .

• So,  can decide  in  switches starting with yes in light of evidence .

• Define  as . 

• Define  as .

•  expresses “  says yes to  in light of evidence  when their 
switching tolerance is .” 

Vern
i (X | B) X n 𝒯i |B
i X n B

Refni (X | B) X n 𝒯i |B
i X n B

Yes1
i (X | B) Ref1i (X | B) ∧ (X ∩ B ≠ Ø)

Yesn
i (X | B) (Refni (X | B) ∧ ¬Vern−1

i (X | B)) ∨ Yesn−1
i (X | B)

Yesn
i (X | B) i X B

n



Asynchronous Common Belief

• Given a witness profile ,  denotes “  believes  upon -affirming ”, i.e.:

 iff 

• Similarly,  denotes “everyone believes  upon asynchronous -affirmation of ”, i.e. :

 iff  for all 

• Next,  denotes “  is common belief upon asynchronous -affirmation of ”, i.e.:

 iff 

 iff 

 iff  for all 

• Finally,  denotes “  can become asynchronous common belief when everyone’s switching tolerance is ”, i.e.:

W ⊆ ΩN Bn
i@Wi

P i P n Wi

w, ℬi ⊨ Bn
i@Wi

P w ∈ {w′￼| ∃B ∈ ℬi|w′￼, Yesn
i (Wi | B)} ∩ {w′￼| ∀B ∈ ℬi|w′￼, Yesn

i (Wi | B) → B ∩ Wi ⊆ P}

EBn
N@W P P n W

w, (ℬi)i∈N ⊨ EBn
N@W P w, ℬi ⊨ Bn

i@Wi
P i ∈ N

CBn
N@W P P n W

w, (ℬi)i∈N ⊨ MBn,1
N@W

P w, (ℬi)i∈N ⊨ EBn
N@W P

w, (ℬi)i∈N ⊨ MBn,k
N@W

P w, (ℬi)i∈N ⊨ EBn
N@WMBn,k−1

N@W
P

w, (ℬi)i∈N ⊨ CBn
N@W P w, (ℬi)i∈N ⊨ MBn,k

N@W
P k ∈ ℕ\{0}

ACBn
N P P n

w, (ℬi)i∈N ⊨ ACBn
N P iff ∃W ⊆ ΩN so that w, (ℬi)i∈N ⊨ CBn

N@W P



Asynchronous Common Knowledge

• Given a witness profile ,  denotes “  knows  upon certifying ”, i.e.:

 iff 

• Similarly,  denotes “everyone knows  upon asynchronous certification of ”, i.e. :
 iff  for all 

• Next,  denotes “  is common knowledge upon asynchronous certification of ”, i.e.:

 iff 

 iff 

 iff  for all 

• Finally,  denotes “  can become asynchronous common knowledge”, i.e.:

W ⊆ ΩN Ki@Wi
P i P Wi

w, 𝒞i ⊨ Ki@Wi
P w ∈ certiWi ∩ {w′￼| ∀C ∈ 𝒞i|w′￼, C ⊆ Wi → C ⊆ P}

EN@W P P W
w, (𝒞i)i∈N ⊨ EN@W P w, 𝒞i ⊨ Ki@Wi

P i ∈ N
CN@W P P W

w, (𝒞i)i∈N ⊨ M1
N@W P w, (𝒞i)i∈N ⊨ EN@W P

w, (𝒞i)i∈N ⊨ Mk
N@W P w, (𝒞i)i∈N ⊨ EN@W Mk−1

N@W P

w, (𝒞i)i∈N ⊨ CN@W P w, (𝒞i)i∈N ⊨ Mk
N@W P k ∈ ℕ\{0}

ACKN P P
w, (𝒞i)i∈N ⊨ ACKN P iff ∃W ⊆ ΩN so that w, (𝒞i)i∈N ⊨ CN@W P



• Fact:  is a subset of  which is -open in each  iff  so that .

• Denote the map  by .

•  characterizes all equilibria in the -retraction game.

• Let  denote the topology generated by taking -open sets in  as basis elements (the resulting topology 
is independent of ).

•  is interior with respect to  and  is interior with respect to . 

• The following diagram commutes:

X P n + 1 𝒯i ∃W ⊆ ΩN (∩i∈NWi) ∩ CBn
N@W P = X

X ↦ {(∩i∈NWi) ∩ CBn
N@W X | W ⊆ ΩN} ℂn

N@_

ℂ2n
N@_P n

𝒯O∩C
i n + 1 𝒯i

n
INTi 𝒯O∩C

i INTN ∩i∈N 𝒯O∩C
i

Asynchronous Common Belief

𝒫(Ω) 𝒫2(Ω)

𝒫(Ω)INTN

∪

ℂn
N@_



Switching Tolerance Invariance

•  does not depend on .
• Further, we can show .
• So the worlds where  can become true asynchronous 

common belief does not depend on agents’ switching 
tolerances so long as ?

• Shouldn’t agents be able to successfully coordinate reporting 
on larger and larger sets in equilibrium as their retraction 
budgets increase?

INTNP n
INTNP = P ∩ ACBn

NP
P

n > 0



Switching Tolerance Invariance

• Yes and yes.
•  does not necessarily characterize any equilibria. 
• The worlds where  can become true asynchronous common 

belief are simply the worlds where agents can successfully 
coordinate in some equilibrium of the -retraction game.

• But, there need not be any equilibria which successfully 
coordinate reporting in every world where  can become true 
asynchronous common belief.

INTNP
P

n

P



Conclusion

• Topological bases provide a simple semantics for defining asynchronous 
common knowledge.

• Topological semantics also naturally admit a notion of asynchronous common 
belief.

• These concepts can be shown to characterize the equilibria of a Byzantine 
generals-like learning game. 

• This tracks with our intuition that common knowledge ought to guide 
coordination!

• Future work should analyze the unbounded-retraction game and consider how 
to extend to when agents don’t have perfect recall.

• Latter will require additional structure on covers…what’s a retraction?



Q&A


