
Inferring Observed Structure For Dynamic Graphs
 with Unobserved Variables

Isaac Davis, Erich Kummerfeld, David Danks, and Sergey Plis

November 23, 2015

Technical Report No. CMU-PHIL-193

Philosophy

Methodology

Logic

Carnegie Mellon
Pittsburgh, Pennsylvania 15213

Inferring Observed Structure For Dynamic Graphs with
Unobserved Variables

Isaac Davis (CMU), Erich Kummerfeld (University of Pittsburgh),
David Danks (CMU),

and Sergey Plis (Mind Research Network, University of New Mexico)

Abstract. This paper provides theoretical analysis on the impact of unmea-

sured variables on causal structure learning from time series data. In particu-
lar, we provide an algorithm for transforming a dynamic causal graph over a

causally sufficient set of variables into the corresponding dynamic graph over

a subset of the causally sufficient variables.

1. Background and Terminology

1.1. Introduction. Many scientific investigations aim to learn the causal
structure underlying some observed dynamic or time series phenomena. However,
we are often unable to measure all causally relevant variables, and many structure
learning algorithms fail when this causal sufficiency assumption is violated. For
example, suppose the true causal structure is V t2 ← V t−11 → V t3 , where superscripts
denote time. If V1 is unmeasured, the structure learning algorithm may infer that
V2 is a contemporaneous cause of V3, or visa versa, when in fact neither causes the
other. In this paper, we use compressed graphs to efficiently represent causal struc-
ture in time series data, and provide and algorithm for transforming a compressed
graph GV , where V is a causally sufficient set of variables, into the corresponding
compressed graph GO, where O ⊆ V . This characterizes the impact of unobserved
variables when the “full” graph is known.

1.2. Assumptions. A dynamic causal graphical model consists of a graph GV
over nodes for random variables in V at the current time-step t, as well as every
preceding time-step that contains a direct cause of a random variable at t. There is
additionally a probability distribution P (V) over the nodes in V , although for the
purpose of this paper we will abstract away from parametric considerations. We
assume that V is causally sufficient- that is, any variable which is a direct cause
of a variable in V must also be in V . We impose two further assumptions on the
independence relationships between variables in V : the Markov assumption, which
asserts that a variable v ∈ V is conditionally independent of its non-descendant
variables conditional on its direct ancestors, and the faithfulness assumption, which
asserts that the only independence relations are those arising from the Markov
assumption. For theoretical simplicity, we also assume that the GV has Markov

1

ISAAC DAVIS, ERICH KUMMERFELD, DAVID DANKS, AND SERGEY PLIS

order 1. That is, if V t−ni is a direct cause of V tj , then n = 1. We also assume that

there is no contemporaneous causation. That is, we cannot have V ti → V tj : any
direct causal effect must occur after one time-step.

1.3. Mathematical Notation. A compressed graph is a compact and ef-
ficient representation of a dynamic causal graphical model. Rather than having
distinct nodes for variables at each time-step, we simply write Vi → Vj , and asso-
ciate a set of integers to this arrow corresponding to the time-lags between variable
Vi and its effect on variable Vj . Formally, a compressed graph GW consists of a set
W of nodes, a function dW : W ×W → P(N), and a function bW : W ×W → P(Z).
The function dW determines directed edges between nodes in W , while bW deter-
mines bi-directed edges. If X and Y are nodes in W , then dW (X,Y) = S means
that for all n ∈ S, the underlying graph contains the edge Xt−n → Y t. Here
we will call S the set of “directed edge-lags between A and B.” We will allow
dW (X,Y) = ∅, the interpretation being that the underlying graph contains no di-
rected edges from X to Y . For notation considerations, we will write dW (X,Y) as
dWxy when no confusion is possible. For bi-directed edges, we impose an arbitrary

ordering <W over the nodes in W . For X,Y ∈W , if bWXY = S, this means that for
all n ∈ S, Xt−n ↔ Y t if X <W Y and Y t−n ↔ Xt if Y <W X. For the rest of
this paper, whenever bi-directed edges are being considered, we will assume that
A <W B in the imposed ordering.

We will need one more bit of mathematical notation before we proceed. Suppose
S, T ⊆ Z. Then we define

S ⊕ T = {s+ t|s ∈ S, t ∈ T}
S 	 T = {s− t|s ∈ S, t ∈ T}

Note that ⊕ is a commutative operation on sets of integers while 	 is not commu-
tative. Lastly, for a finite set S = {s1, . . . , sn} ⊂ Z, we define

〈S〉 = {α1s1 + . . .+ αnsn|αi ∈ Z≥0}

1.4. Formal Statement of The Forward Inference Problem. Suppose
GW is a causally sufficient, fully-sampled, compressed graph. Let O ⊂ W and
U = W\O. We interpret O as the observed variables in W and U as the unobserved
variables in W . The forward inference problem is, given GW , what is GO? That is,
what is the fully-sampled compressed graph over O if we do not observe U?

The solution to the forward inference problem hinges on the following fact:
Edge lag indices represent the time delays between directly correlated values in the
observed variables connected by that edge. Since the values are directly correlated,
these correlations can not be derivable from the values of other observed variables.
This means that only unobserved variables may exist on the path between the two
correlated variables (potentially none, in the case where the edge lag index is the
singleton {1} which corresponds to the observed edge between them). As such, by
enumerating all the correlation- inducing paths between members of O which cross
only through nodes in U, all possible ways in which the removal of U from W can
induce edges in GO are accounted for.

2. Simultaneous Update Equations

The goal for this section is, for any two nodes A,B ∈ O, to construct the sets
dOAB and bOAB . That is, to compute the sets of directed and bi-directed edge-lags

2

INFERRING OBSERVED STRUCTURE FOR DYNAMIC GRAPHS WITH UNOBSERVED VARIABLES3

between A and B in the restricted graph GO. To do so, we must first introduce
notation to represent the “length” of paths between A and B. To this end, we define
a Cycle-Restricted Directed (CRD) path to be a directed path with no repeated
cycles. Suppose the CRD-path π consists of edges X1 → X2 → . . . → Xn, where
X1 = A, Xn = B, Xi ∈ U for all 1 < i < n. We will define a function L() which
maps each path π to a set of positive integers corresponding to the set of all path
lengths along this path. To do so, first let cy(π) be the set of all sub-cycles of π.
Because cycles can be iterated an arbitrary number of times along a path, each
cycle will contribute infinitely many lags to the path’s edge-lag set.

Now, define the set ti(π) to be

ti(π) =
n⊕
i=2

dWXi−1Xi

Next, define the set ci(π) to be

ci(π) =
⊕

p∈cy(π)

〈ti(p)〉

where 〈S〉 is the set generated by elements of S. Here, ti(π) is the set of all lengths
obtainable on the path π without repeating any cycles, and ci(π) is the additional
set of lengths obtained by iterating the cycles in π. The length-set of π is defined
to be

L(π) = ti(π)⊕ ci(π)

Now, for nodes A,B ∈ O, define
∏W,U
d (A,B) to be the set of all CRD-paths

from A to B with intermediate nodes in U . Taking the union of the length-sets of

all paths in
∏W,U
d (A,B) gives us the full set of directed edge-lags between A and B

when all nodes in U are removed. Therefore the forward inference rule for directed
edges is

(2.1) dOAB =
⋃

π∈
∏W,U

d (A,B)

L(π)

The right hand side of the above equation constitutes a complete search of all the
directed paths from A to B with intermediate nodes in U . The edge lag set for
A→ B consists of all and only those path-lengths.

Bi-directed edges can be dealt with in a similar manner, but first we must
introduce a new kind of trek. Heterogeneous treks (h-treks) are a generalization
of CRD treks that account for the possible existence of bi-directed edges in GW ,
since A ← Y ↔ X → B is a legitimate (i.e. correlation-inducing) trek between A
and B. An h-trek is an ordered triple 〈τ1, τ2, e〉 where τ1 is a CRD path from some
node X1 to B, τ2 is a CRD path from some node X2 to A, and in the event that
X1 6= X2, e is a bi-directed edge between X1 and X2. At most one of τ1, τ2, and e
can be empty. If e is empty, then X1 = X2. If τ1 is empty, then e is a bi-directed
edge between the head node of τ2 and B. If τ2 is empty, then e is a bi-directed edge
between the head node of τ1 and A.

We can use h-treks to employ the same strategy for bi-directed edges as we

did with directed edges. Let
∏W,U
b (A,B) be the set of all h-treks between A and

B with intermediate nodes in U . For any h-trek τ ∈
∏W,U
b (A,B), with A <W B,

define lags(τ) = [L(τ1) 	 L(τ2)] ⊕ ind(e), where L(∅) = {0} by convention and
ind(e) is defined as

3

ISAAC DAVIS, ERICH KUMMERFELD, DAVID DANKS, AND SERGEY PLIS

ind(e) =

{
bWAB if e 6= ∅
{0} otherwise

We can now state the forward inference rule for bi-directed edges as follows:

(2.2) bOAB =
⋃

τ∈
∏W,U

b (A,B)

lags(τ)

Similarly to the rule for directed edges, the right hand side of this equation consti-
tutes a complete search of all correlation-inducing h-treks between A and B with
intermediate nodes in U .

With these two forward inference rules established, the forward algorithm for
computing GO from GW is simple: for each pair of nodes A,B ∈ O, add an edge
A→ B with edge-lag set dOAB as computed above, then add a bi-directed edge A↔
B with edge-lag set bOAB as computed above. Then delete all nodes in U . However,
it is generally not going to be feasible to implement this algorithm, as enumerating

all the paths in
∏W,U
d (A,B) and

∏W,U
b (A,B) can be very computationally intensive

if U is large. In practice, it is much faster to iteratively remove one variable at a

time, since
∏W,{X}
d (A,B) and

∏W,{X}
b (A,B) are small enough that they can be

expressed in a simple closed form and calculated quickly. For this reason, we provide
a more comphrehensive set of forward equations for removing a single variable.

3. Single Variable Update Equations

Removal of a single variable can induce both edges between distinct nodes as
well as self-loops (both directed and bi-directed) between a node and itself. The
strategy is to consider all of the paths which will disappear when a node R is
removed, and how those paths will or won’t affect the edges between the remaining
variables. When only a single variable is being removed, the number of paths to
consider is small, so we can simply work through them one by one. This process
results in a method that is certainly correct when starting from an un-marginalized
compressed graph, but it must be proven that the process is correct when starting
from a marginalized compressed graph as well. This will be proven in a later section.
For the purpose of this section, R will denote the node that is being removed.

3.1. Directed Self-Loops. We first consider directed self-loops induced by
the removal of R. In order for the removal of R to induce a directed self-loop on
A, there must be a directed path that starts at A, passes only through R (though
possibly more than once), and terminates again at A. The edges that could be
involved in such a path are A→ R, R→ A, and R→ R, and the length-set of this
family of paths in dWAR ⊕ dWRA ⊕ 〈dWRR〉. Therefore when R is removed it will add
all elements of dWAR ⊕ dWRA⊕ 〈dWRR〉 to the edge-lag set dWAA. We can therefore write
the update rule for directed self-loops on A as

d
W\{R}
AA = dWAA ∪

(
dWAR ⊕ dWRA ⊕ 〈dWRR〉

)
3.2. Bi-Directed Self-Loops. For bi-directed self-loops on A, there must be

a correlation-inducing trek starting and ending at A whose unique root variable is
also unmeasured. Since each path in the trek must terminate at A, each path must
involve either R → A or A ↔ R. However A ↔ R cannot occur at both ends of
the trek, as this would force a collider to occur along the trek. Therefore the only

4

INFERRING OBSERVED STRUCTURE FOR DYNAMIC GRAPHS WITH UNOBSERVED VARIABLES5

two types of treks that can induce bi-directed self-loops on A when R is removed
are those that have R → A at both ends and those that have A ↔ R on one end
and R→ A at the other.

When both ends of the trek terminate with R → A, both the directed and
bi-directed self-loops on R may participate in the trek. The directed self-loop may
participate on either side of the trek, but the bi-directed self-loop can participate
only once or not at all. The contribution of each trek to the edge-lag set for the
induced bi-directed self-loop is equal to the difference between the path lengths on
either side of the root variable. Therefore the bi-directed self-loop on A induced by
these treks has edge-lag set equal to

[(dWRA ⊕ 〈dWRR〉)]	 [(dWRA ⊕ 〈dWRR〉)]⊕ ({0} ∪ bWRR)

In the case that the trek terminates with R → A on one end and R ↔ A on
the other, the bi-directed self-loop on R cannot participate on either side of the
trek, as this would create a collider at R. The edge-lag set induced by these treks
is equal to

[(dWRA ⊕ 〈dWRR〉)	 (bWRA ⊕ 〈dWRR〉)] ∪ [(bWRA ⊕ 〈dWRR〉)	 (dWRA ⊕ 〈dWRR〉)]

Putting these sets together gives us the full update rule for bi-directed self-loops
on A as:

b
W\{R}
AA = bWAA ∪ [(dWRA ⊕ 〈dWRR〉)]	 [(dWRA ⊕ 〈dWRR〉)]⊕ ({0} ∪ bWRR)

∪[(dWRA ⊕ 〈dWRR〉)	 (bWRA ⊕ 〈dWRR〉)] ∪ [(bWRA ⊕ 〈dWRR〉)	 (dWRA ⊕ 〈dWRR〉)]

3.3. Directed Edges Between Distinct Nodes. The removal of R can
induce a directed edge from node A to node B if and only if there is a directed
path from A to B through R. The only edges that can participate in such a path
are A → R, R → B, and R → R. The length-set of this family of paths is
dWAR ⊕ dWRB ⊕ 〈dWRR〉. Therefore the update rule for directed edges from A to B is

d
W\{R}
AB = dWAB ∪ dWAR ⊕ dWRB ⊕ 〈dWRR〉

3.4. Bi-Directed Edges Between Distinct Nodes. There are three types
of treks which will induce bi-directed edges between A and B when R is removed.
These are: A← R→ B, A← R↔ B, and A↔ R→ B. For the first type of trek,
both a directed self-loop at R and a bi-directed self-loop at R could participate in
the trek. The edge-lag set induced by this trek is therefore (note that we assume
throughout the paper that A <W B):

(dWRB ⊕ 〈dWRR〉)	 (dWRA ⊕ 〈dWRR〉)⊕ ({0} ∪ bWRR)

For treks of the form A ← R ↔ B, the bi-directed self-loop on R cannot
participate, as it would form a collider on R. Furthermore, the directed self-loop
can only occur on one side of the trek, in particular the side with the directed edge
(in this case the side towards A). Furthermore, we must know whether R comes
before or after B in the ordering on W . To this end, let I(X,Y) be an indicator
function which returns 1 if X <W Y and −1 if Y <W X. Then the bi-directed
edge-lag set induced by treks of this form is

I(R,B)bWRB 	 dWRA 	 〈dWRR〉

5

ISAAC DAVIS, ERICH KUMMERFELD, DAVID DANKS, AND SERGEY PLIS

The analysis for treks of the form A ↔ R → B is symmetrical to the above
analysis, and the edge-lag set induced by treks of this form is equal to

I(A,R)bWRA 	 dWRB 	 〈dWRR〉

Putting this all together gives us the full update rule for bi-directed edges
between distinct nodes:

b
W\{R}
AB = bWAB ∪ [(dWRB ⊕ 〈dWRR〉)	 (dWRA ⊕ 〈dWRR〉)⊕ ({0} ∪ bWRR)] ∪ [I(R,B)bWRB 	 dWRA 	 〈dWRR〉]

∪ [I(A,R)bWRA 	 dWRB 	 〈dWRR〉]

3.5. Summary of Update Equations. The full set of forward update equa-
tions for removal of a single node R are as follows:

d
W\{R}
AA = dWAA ∪

(
dWAR ⊕ dWRA ⊕ 〈dWRR〉

)
b
W\{R}
AA = bWAA ∪ [(dWRA ⊕ 〈dWRR〉)]	 [(dWRA ⊕ 〈dWRR〉)]⊕ ({0} ∪ bWRR)

∪[(dWRA ⊕ 〈dWRR〉)	 (bWRA ⊕ 〈dWRR〉)] ∪ [(bWRA ⊕ 〈dWRR〉)	 (dWRA ⊕ 〈dWRR〉)]
d
W\{R}
AB = dWAB ∪ dWAR ⊕ dWRB ⊕ 〈dWRR〉

b
W\{R}
AB = bWAB ∪ [(dWRB ⊕ 〈dWRR〉)	 (dWRA ⊕ 〈dWRR〉)⊕ ({0} ∪ bWRR)] ∪ [I(R,B)bWRB 	 dWRA 	 〈dWRR〉]

∪[I(A,R)bWRA 	 dWRB 	 〈dWRR〉]

With these established, we can now construct the iterative forward inference
algorithm which removes one node at a time. Note that we still need to prove that
deleting nodes iteratively produces the same graph as deleting nodes simultaneously,
which we prove in the last section.

4. The Sequential Forward Inference Algorithm

For the purpose of this section, assume we have a compressed graph GW over
nodes W . We provide an algorithm for computing GW\{X} for some X ∈ W .
For the general case, we will have some set O ⊂ W of observed variables, with
U = W\O representing the unobserved variables, and we wish to obtain GO from
GW . To do so, we apply this algorithm iteratively for each node X ∈ U in any
order.

4.1. Forward Inference on Directed Edges. Algorithm for constructing
directed edges resulting from deletion of X from GW :

(1) Identify all nodes with edges into and out of X: Let Ix = {A 6= X ∈
W |dWAX 6= ∅} and let Ox = {B 6= X ∈W |dWXB 6= ∅}.

(2) For any pair of nodes A ∈ IX and B ∈ OX , set

d
W\{X}
AB = dWAB ∪

[
dWAX ⊕ dWXB ⊕ 〈dWXX〉

]
(3) For any pair of nodes C,D not identified in step 2, set

d
W\{X}
CD = dWCD

6

INFERRING OBSERVED STRUCTURE FOR DYNAMIC GRAPHS WITH UNOBSERVED VARIABLES7

4.2. Forward Inference on Bidirected Edges. Algorithm for constructing
bi-directed edges resulting from deletion of X from GW :

(1) Constructing bi-directed self-loops resulting from deletion of X:
(a) Identify all nodes A with a directed edge from X: let Ox = {A 6=

X ∈ V |dWXA 6= ∅}
(b) For each A ∈ Ox, two cases follow:

• Case 1: bWXA = ∅. Let

TXA =
[
(dWXA ⊕ 〈dWXX〉)	 (dWXA ⊕ 〈dWXX〉)

]
⊕ ({0} ∪ bWXX)

Then set

b
W\{X}
AA = bWAA ∪ TXA

• Case 2: bWXA 6= ∅. Let

SXA =
[
(dWXA ⊕ 〈dWXX〉)	 (bWXA ⊕ 〈dWXX〉)

]
∪
[
(bWXA ⊕ 〈dWXX〉)	 (dWXA ⊕ 〈dWXX〉)

]
and let

TXA =
[
(dWXA ⊕ 〈dWXX〉)	 (dWXA ⊕ 〈dWXX〉)

]
⊕ ({0} ∪ bWXX)

Then set

b
W\{X}
AA = bWAA ∪ TXA ∪ SXA

(c) For each B /∈ Ox, set

b
W\{X}
BB = bWBB

(2) Constructing bi-directed edges between distinct nodes resulting from dele-
tion of X:
(a) Identify all nodes with a directed edge from X and all nodes with a

bi-directed edge with X: Let Ox = {A 6= X ∈ W |dWXA 6= ∅}, and let
Bx = {A 6= X ∈W |bWXA 6= ∅}.

(b) In order for the bi-directed edge-lag sets to be meaningful, we must
have some arbitrary ordering <W over nodes in W . For all ordered
pairs of nodes (A,B) ∈ (Ox ∪ Bx) × (Ox ∪ Bx) such that A <W B,
set

LAB =

{
(dWXB ⊕ 〈dWXX〉)	 (dXA ⊕ 〈dWXX〉)⊕ ({0} ∪ bWXX) if A,B ∈ Ox
∅ otherwise

Next, let I(S, T) be an indicator function that returns 1 when S <W
T and −1 when T <W S. Then let

MAB =

{
I(X,B)bWXA 	 dWXB 	 〈dWXX〉 if A ∈ Ox, B ∈ Bx
∅ otherwise

Lastly, let

NAB =

{
I(A,X)bWXA ⊕ dWXB ⊕ 〈dWXX〉 if A ∈ Bx, B ∈ Ox
∅ otherwise

Finally, set

b
W\{X}
AB = bWAB ∪ LAB ∪MAB ∪NAB

7

ISAAC DAVIS, ERICH KUMMERFELD, DAVID DANKS, AND SERGEY PLIS

(c) For any pair of nodes (C,D) not identified in the previous steps, set

b
W\{X}
AB = bWAB

5. Equivalence of Sequential and Simultaneous Variable Removal

Recall that the sequential forward algorithm is necessary because the simulta-
neous forward algorithm may be computationally intractable for large U . However,
in order to use the sequential algorithm, we must prove that it yields the same graph
as the simultaneous algorithm. To this end, suppose I ⊂ W , and let Mar(GW , I)
be the function that computes GW\I from GW and I via simultaneous edge removal.
We will prove the following theorem:

Theorem 5.1. Mar(Mar(GW , I), {X}) = Mar(GW , I ∪ {X})
Note that the left hand side of the above equation is the graph obtained by

deleting {X} from the graph obtained by deleting I from GW , and the right hand
side of the equation is the graph obtained by deleting I and {X} from GW simul-
taneously. Since I, {X}, and GW are arbitrary, this equation entails that iterated
removal of singletons will produce the same graph as simultaneous removal of these
variables. Note also that a compressed graph is defined entirely in terms of its
node set W and its directed and bi-directed edge functions dW and bW . Since both
graphs clearly have the same node set W\I ∪ {X}, proving the above theorem is
equivalent to proving that Mar(Mar(GW , I){X}) has the same directed and bi-
directed edge lag sets as Mar(GW , I ∪ {X}). We will separate the proof into two
sub-proofs, one for directed edges and one for bi-directed edges.

5.1. Proof for Directed Edges. We begin by constructing the following
sets. Let:

Λ1
i =

⋃
π∈

∏W,I
d (A,B)

L(π)

Λ2
i =

⋃
π∈

∏W\I,{X}
d (A,B)

L(π)

Λb =
⋃

π∈
∏W,I∪{X}

d (A,B)

L(π)

Note that Λ1
i is the set of lengths of all paths from A to B in GW with intermediate

nodes in I, Λ2
i is the set of lengths of all paths from A to B in GW\I with interme-

diate nodes in {X}, and Λb is the set of lengths of all paths from A to B in GW
with intermediate nodes in I ∪ {X}. Therefore, Theorem 5.1 for directed edges is
equivalent to Λ1

i ∪ Λ2
i = Λb, which is the claim that we shall prove.

To do so, we first split up Λb into two components which correspond to Λ1
i and

Λ2
i . Let

∏W,I
d (A,B) be the set of all paths in

∏W,I∪{X}
d (A,B) which do not cross

X, and let
∏W,I∪{X}
d (A,X,B) be the set of all paths in

∏W,I∪{X}
d (A,B) which

cross X at least once. Define

Λ1
b =

⋃
π∈

∏W,I
d (A,B)

L(π)

Λ2
b =

⋃
π∈

∏W,I∪{X}
d (A,X,B)

L(π)

8

INFERRING OBSERVED STRUCTURE FOR DYNAMIC GRAPHS WITH UNOBSERVED VARIABLES9

Clearly we have Λb = Λ1
b ∪ Λ2

b . Furthermore, Λ1
b consists of all and only directed

paths from A to B with intermediate nodes in I, which is exactly what Λ1
i is defined

to be, so we have Λ1
i = Λ1

b . Therefore we can reduce the claim Λ1
i ∪Λ2

i = Λb to the
claim Λ2

i = Λ2
b .

To this end, first observe that
∏W\I,{X}
d (A,B) is very small, consisting only of

the following two paths:

• πa = A→ X → B
• πb = A→ X → X → B

Therefore we can fully characterize Λ2
i as L(πa) ∪ L(πb). Furthermore, we know

that

L(πa) = d
W\I
AX ⊕ d

W\I
BX

L(πb) = d
W\I
AX ⊕ d

W\I
BX ⊕ 〈d

W\I
XX 〉

Therefore we have
(5.1)

Λ2
i = L(πa)∪L(πb) = [d

W\I
AX ⊕d

W\I
BX]∪[d

W\I
AX ⊕d

W\I
BX ⊕〈d

W\I
XX 〉] = d

W\I
AX ⊕d

W\I
BX ⊕〈d

W\I
XX 〉

To calculate the indices d
W\I
AX , d

W\I
XX , and d

W\I
XB in terms of GW , we apply the

simultaneous update equation and expand the L() terms into their ti() and ci()
components:

d
W\I
AX =

⋃
π∈

∏W,I
d (A,X)

ti(π)⊕ ci(π)

d
W\I
XX =

⋃
π∈

∏W,I
d (X,X)

ti(π)⊕ ci(π)

d
W\I
XB =

⋃
π∈

∏W,I
d (X,B)

ti(π)⊕ ci(π)

Replacing the appropriate terms in equation (5.2) yields the set Λ2
i expressed solely

in terms of GW :
(5.2)

Λ2
i =

⋃
π∈

∏W,I
d (A,X)

[ti(π)⊕ci(π)]⊕
⋃

π∈
∏W,I

d (X,B)

[ti(π)⊕ci(π)]⊕〈
⋃

π∈
∏W,I

d (X,X)

[ti(π)⊕ci(π)]〉

Finally, it will be convenient later to have the right side of the this equation ex-
pressed in only 3 terms. This result is nearly identical to equation (5.2) but will
simplify later steps:

Λ2
i (A,X) = d

W\I
AX =

⋃
π∈

∏W,I
d (A,X)

ti(π)⊕ ci(π)

Λ2
i (X,B) = d

W\I
XB =

⋃
π∈

∏W,I
d (X,B)

ti(π)⊕ ci(π)

Λ2
i (X,X) = 〈dW\IXX 〉 = 〈

⋃
π∈

∏W,I
d (X,X)

ti(π)⊕ ci(π)〉

Giving us the compact form:

(5.3) Λ2
i = Λ2

i (A,X)⊕ Λ2
i (X,B)⊕ Λ2

i (X,X)

9

ISAAC DAVIS, ERICH KUMMERFELD, DAVID DANKS, AND SERGEY PLIS

The next step of the proof is to show that the elements of Λ2
b can be similarly

described in terms of the summation of 3 components, which correspond usefully
to those of Λ2

i .
Expanding the L() term in the definition of Λ2

b yields:

Λ2
b =

⋃
π∈

∏W,I∪{X}
d (A,X,B)

ti(π)⊕ ci(π)

In order to get a formulation of Λ2
b appropriate for our purposes, we need to break

its ti() and ci() components down even further. Before we proceed, however, we
introduce a bit of notation for breaking up paths into smaller sub-paths. Suppose

π ∈
∏W,I∪{X}
d (A,X,B). We will partition π into three subpaths as follows: let

π(A,X) be the shortest subpath of π from A to X, π(X,B) be the shortest subpath
of π from X to B, and let π(X) be the longest subpath of π from X to itself (if π only
crosses X once, then π(X) is just the node X). Clearly π is the concatenation of

π(A,X), π(X), and π(X,B). Furthermore, π(A,X) ∈
∏W,I
d (A,X), and π(X,B) ∈∏W,I

d (X,B). The last thing to note is that π(X) is a sequence of cycles from X to
itself. Let π1(X), . . . , πn(X) be the sequence of cycles such that each πi(X) only
crosses X at the head and tail, and π(X) is the concatenation of π1(X), . . . , πn(X)
in that order. Since π is a CRD path, we know that πi(X) 6= πj(X) for i 6=
j. Furthermore, for each i, we have πi(X) ∈

∏W,I
d (X,X), which means that

L(πi(X)) ⊆ d
W\I
XX . Since π(X) is the concatenation of the πi(X) sub-cycles, this

means that L(π(X)) ⊆ 〈dW\IXX 〉.
With this established, we can rewrite

ti(π) = ti(π(A,X))⊕ ti(π(X))⊕ ti(π(X,B))

Since π(X) is by definition a subcycle of π, we have π(X) ∈ cy(π), therefore
ti(π(X)) ⊆ ci(π), which entails that ti(π(X)) ⊕ ci(π) = ci(π). We can therefore
rewrite the ti(π)⊕ ci(π) term as

ti(π(A,X))⊕ ti(π(X,B))⊕ ci(π)

Now, recall that ci(π) =
⊕

p∈cy(π)〈ti(p)〉. We will break cy(π) into three parts.

Let p ∈ cyAX(π) iff p is a subcycle of π(A,X), and similarly for p ∈ cyXB(π). Let
cy∗(π) = cy(π)\(cyAX(π) ∪ cyXB(π)). Then cy∗(π) consist of all and only those
subcycles of π that either cross X at least once or are subcycles of π(X). We have
cy(π) = cyAX(π) ∪ cyXB(π) ∪ cy∗(π), so we can break the

⊕
in ci(π) into three

smaller operations as follows:

(5.4)
⊕

p∈cy(π)

〈ti(p)〉 =
⊕

p∈cyAX(π)

〈ti(p)〉 ⊕
⊕

p∈cyBX(π)

〈ti(p)〉 ⊕
⊕

p∈cy∗(π)

〈ti(p)〉

For convenience let the components of the righthand side of equation (5.5) be
ciAX(π), ciXB(π), and ci∗(π) respectively. This gives us the more convenient form:

(5.5) ci(π) = ciAX(π)⊕ ciXB(π)⊕ ci∗(π)

We can now express Λ2
b in the following form:

(5.6)

Λ2
b =

⋃
π∈

∏W,I∪{X}
d (A,X,B)

ti(π(A,X))⊕ ti(π(X,B))⊕ (ciAX(π)⊕ ciXB(π)⊕ ci∗(π))

10

INFERRING OBSERVED STRUCTURE FOR DYNAMIC GRAPHS WITH UNOBSERVED VARIABLES11

We can use the following terms to simplify the expression:

LA,X(π) = ti(π(A,X))⊕ ciAX(π)

LB,X(π) = ti(π(X,B))⊕ ciXB(π)

L∗(π) = ci∗(π)

We can now express Λ2
b in 3 terms that correspond usefully to the terms used to

express Λ2
i :

(5.7) Λ2
b =

⋃
π∈

∏W,I∪{X}
d (A,X,B)

LA,X(π)⊕ LX,B(π)⊕ L∗(π)

With this established, we will now use the forms of equations (5.4) and (5.8)
to prove that Λ2

b ⊆ Λ2
i and Λ2

i ⊆ Λ2
i .

Lemma 5.2. Λ2
b ⊆ Λ2

i

Proof. Suppose π ∈
∏W,I∪{X}
d (A,X,B). It follows immediately that π(A,X) ∈∏W,I∪{X}

d (A,X) and π(X,B) ∈
∏W,I∪{X}
d (X,B). Therefore by their definitions,

LA,X(π) ⊆ Λ2
i (A,X) and LX,B(π) ⊆ Λ2

i (X,B). By definition, any θ ∈ cy∗(π)

is either in
∏W,I∪{X}
d (X,X) or is a subcycle of a path in

∏W,I∪{X}
d (X,X). Thus⋃

θ∈cy∗(π) L(θ) ⊆
⋃
θ∈

∏W,I∪{X}
d (X,X)

L(θ). It follows from the definitions of Λ2
i (X,X)

and L∗(π) that L∗(π) ⊆ Λ2
i (X,X). From the above containment relations and the

properties of ⊕, it follows directly that for arbitrary π ∈
∏W,I∪{X}
d (A,X,B) that

LA,X(π)⊕ LX,B(π)⊕ L∗(π) ⊆ Λ2
i (A,X)⊕ Λ2

i (X,B)⊕ Λ2
i (X,X)

Since π was chosen arbitrarily, this proves the lemma. �

In order to prove that Λ2
i ⊆ Λ2

b , we will prove a slightly more general lemma
that will be useful in completing the proof for bi-directed edges. The lemma is as
follows:

Lemma 5.3. Suppose I ⊆ W and D,E, F ∈ W . Let πDE ∈
∏W,I
d (D,E),

π1
EE , . . . , π

n
EE ∈

∏W,I
d (E,E), and πEF ∈

∏W,I
d (E,F). Let πEE be the concatena-

tion of π1
EE , . . . , π

n
EE . Then for all y ∈ L(πDE)⊕ 〈L(πEE)〉 ⊕ L(πEF), there exists

some π ∈
∏W,I∪{E}
d (D,E, F) such that y ∈ L(π).

Proof. Suppose I ⊆W andD,E, F ∈W . Let πDE ∈
∏W,I
d (D,E), π1

EE , . . . , π
n
EE ∈∏W,I

d (E,E), and πEF ∈
∏W,I
d (E,F). Let πEE be the concatenation of π1

EE , . . . , π
n
EE .

Let y ∈ L(πDE) ⊕ 〈L(πEE)〉 ⊕ L(πEF). Suppose by contradiction that there is no

π ∈
∏W,I∪{E}
d (D,E, F) such that y ∈ L(π). Let Z be the set of variables touched

by πDE , πEE , and πEF , and letHZ be the compressed graph over Z consisting of all
and only those edges included in πDE , πEE , and πEF . Let πc be the concatenation of
πDE , πEE , and πEF . Then πc is a directed path in HZ from D to F , and y ∈ L(πc).
If all variables in Z aside from D and F are simultaneously marginalized out, then

y must be in d
{D,F}
DF . However, by assumption there is no π ∈

∏W,I∪{E}
d (D,E, F)

such that y ∈ L(π). But Z ⊆ I ∪{D,E, F}, so Z\{D,F} ⊆ I ∪{E}, so this entails

that there is no π ∈
∏Z,Z\{D,F}
d (D,E, F) such that y ∈ L(π). As such, applying

equation (2.1) to marginalize HZ would not be guaranteed to find a d
{D,F}
DE such

that y ∈ d{D,F}DE , thus contradicting the correctness of equation (2.1). Since we have

11

ISAAC DAVIS, ERICH KUMMERFELD, DAVID DANKS, AND SERGEY PLIS

derived a contradiction, there must exist some π ∈
∏W,I∪{E}
d (D,E, F) such that

y ∈ π, thus proving the lemma. �

Using this lemma, we can now prove that Λ2
i ⊆ Λ2

b .

Lemma 5.4. Λ2
i ⊆ Λ2

b

Proof. Suppose y ∈ Λ2
i . Then there must exist πAX ∈

∏W,I
d (A,X), πXB ∈∏W,I

d (X,B) and π1
XX , . . . , π

n
XX ∈

∏W,I
d (X,X) such that y ∈ L(πAX)⊕〈L(πXX)〉⊕

L(πXB), where πXX is the concatenation of π1
XX , . . . π

n
XX . By lemma 5.10, this

entails that there exists some π ∈
∏W,I∪{X}
d (A,X,B) such that y ∈ L(π). Since

Λ2
b =

⋃
π∈

∏W,I∪{X}
d (A,X,B)

L(π)

we have L(π) ⊆ Λ2
b . Therefore y ∈ Λ2

b , thus proving that Λ2
i ⊆ Λ2

b . �

This completes the proof that Λ2
i = Λ2

b , thus proving the theorem for directed
edges. We now move on to the proof for bi-directed edges.

5.2. Proof for Bi-Directed Edges. Define Γ1
i , Γ2

i , and Γb as

Γ1
i =

⋃
τ∈

∏W,I
b (A,B)

lags(τ)

Γ2
i =

⋃
τ∈

∏W\I,{X}
b (A,B)

lags(τ)

Γb =
⋃

τ∈
∏W,I∪{X}

b (A,B)

lags(τ)

Note that Γ1
i is the set of bi-directed edge lags induced by removing I from W , Γ2

i

is the set of bi-directed edge lags induced by removing {X} from W\I, and Γb is
the set of bi-directed edge lags induced by removing I ∪ {X} from W . Therefore,
for bi-directed edges, the above theorem is equivalent to

Γ1
i ∪ Γ2

i = Γb

We can partition Γb into two subsets as follows: by definition,
∏W,I∪{X}
b (A,B)

is the set of all correlation-inducing heterogeneous treks between A and B with

intermediate nodes (i.e. all non-tail nodes) in I ∪ {X}. So, let
∏W,I
b (A,B) be the

set of all h-treks in
∏W,I∪{X}
b (A,B) that do not crossX, and let

∏W,I∪{X}
b (A,X,B)

be the set of all h-treks in
∏W,I∪{X}
b (A,B) that cross X at least once. Clearly we

have
W,I∪{X}∏

b

(A,B) =

W,I∏
b

(A,B) ∪
W,I∪{X}∏

b

(A,X,B)

and
W,I∏
b

(A,B) ∩
W,I∪{X}∏

b

(A,X,B) = ∅

12

INFERRING OBSERVED STRUCTURE FOR DYNAMIC GRAPHS WITH UNOBSERVED VARIABLES13

Now, define

Γ1
b =

⋃
τ∈

∏W,I
b (A,B)

lags(τ)

Γ2
b =

⋃
τ∈

∏W,I∪{X}
b (A,X,B)

lags(τ)

Clearly Γb = Γ1
b ∪ Γ2

b . Furthermore, Γ1
b is identical to Γ1

i , as both unions range
over correlation inducing h-treks between A and B with intermediate nodes in I.
Therefore the proof of the theorem is reduced to showing that Γ2

i = Γ2
b .

To this end, we first consider Γ2
i . In particular, we examine what treks are in

the set
∏W\I,{X}
b (A,B). This is the set of correlation-inducing h-treks in GW\I

between A and B with intermediate nodes in {X}, and consists of only three types
of treks. These are

(1) τa : A← X → B
(2) τb : A← X ↔ B
(3) τc : A↔ X → B

For τa, both a directed self-loop at X and a bi-directed self-loop at X could par-
ticipate in the trek. Therefore the edge-lag index of this h-trek is

lags(τa) = (d
W\I
XB ⊕ 〈d

W\I
XX 〉)	 (d

W\I
XA ⊕ 〈d

W\I
XX 〉)⊕ ({0} ∪ bW\IXX)

For τb, a bi-directed self-loop at X cannot participate in the trek, as it would
create a collider, and a directed self-loop at X could only participate on one side
of the trek, namely the side leading to A (otherwise there would be a collider at
X). Furthermore, the edge-lag index of this trek depends on whether X <W B or
B <W X. Let I(S, T) be an indicator function that returns 1 if S <W T and −1 if
T <W S. Then the edge-lag index of this h-trek is

lags(τb) = I(X,B)b
W\I
XB 	 d

W\I
XA 	 〈d

W\I
XX 〉

For τc, the analysis is similar to that of τb, but with A taking the place of B. The
edge-lag index for this h-trek is

lags(τc) = I(A,X)b
W\I
XA ⊕ d

W\I
XB ⊕ 〈d

W\I
XX 〉

This exhausts all correlation-inducing h-treks between A and B with intermediate
nodes in {X}, so we can fully characterize Γ2

i as

Γ2
i = lags(τa) ∪ lags(τb) ∪ lags(τc)

Using this decomposition, we now show that Γ2
i = Γ2

b by proving that Γ2
b ⊆ Γ2

i and
Γ2
i ⊆ Γ2

b .
First, we handle the Γ2

b ⊆ Γ2
i direction. So, suppose y ∈ Γ2

b . Then there exists

an h-trek τ ∈
∏W,I∪{X}
b (A,X,B) such that y ∈ lags(τ). By definition, an h-trek τ

is an ordered triple 〈τ1, τ2, e〉, where τ1 is a directed path from some H1 ∈ I to B, τ2
is a directed path from some H2 ∈ I to A, and in the case that H1 6= H2, e is a bi-

directed edge between H1 and H2. Furthermore, because τ ∈
∏W,I∪{X}
b (A,X,B),

at least one of τ1, τ2 crosses X at least once. Four cases follow:

(1) e = ∅: in this case, H1 = H2 = H. Then lags(τ) = L(τ1)	L(τ2). Suppose
first that τ1 crosses X and τ2 does not. Let τ1(H,X), τ1(X), τ1(X,B)
be the partition of τ1 introduced above. Clearly L(τ1) = L(τ1(H,X)) ⊕

13

ISAAC DAVIS, ERICH KUMMERFELD, DAVID DANKS, AND SERGEY PLIS

L(τ1(X))⊕L(τ1(X,B)), so we have y ∈ (L(τ1(H,X))⊕ L(τ1(X))⊕ L(τ1(X,B)))	
L(τ2). Furthermore, τ1(X,B) ∈

∏W,I
d (X,B), therefore L(τ1(X,B)) ⊆

d
W\I
XB . Note also that τ1(H,X) and τ2 form a correlation-inducing trek

between X and A, so 〈τ1(H,X), τ2, ∅〉 ∈
∏W,I
b (X,A). Therefore we have

L(τ1(H,X))	L(τ2) ⊆ bW\IXA if A <W X and L(τ2)	L(τ1(H,X)) ⊆ bW\IXA if
X <W A. We can express this more compactly with L(τ1(H,X))	L(τ2) ⊆
I(A,X)b

W\I
XA . Lastly, L(τ1(X)) ⊆ 〈dW\IXX 〉. Putting this all together gives

us the following:

y ∈ [L(τ1(H,X))⊕ L(τ1(X))⊕ L(τ1(X,B))]	 L(τ2)

= L(τ1(X,B))⊕ L(τ1(X))⊕ (L(τ1(H,X)	 L(τ2))

⊆ d
W\I
XB ⊕ 〈d

W\I
XX 〉 ⊕ I(X,A)b

W\I
XA

= lags(τc) ⊆ Γ2
i

Therefore in the case that τ1 crosses X but τ2 does not, we have shown
that y ∈ Γ2

i . The case in which τ2 crosses X but τ1 does not is analogous,
and we end up showing that y ∈ lags(τb), rather than lags(τc). Lastly, we
consider the case in which both τ1 and τ2 cross X. In this case, we split up
both τ1 and τ2 into three parts each, L(τ1) = L(τ1(H,X)) ⊕ L(τ1(X)) ⊕
L(τ1(X,B)), and L(τ2) = L(τ2(H,X)) ⊕ L(τ2(X)) ⊕ L(τ2(X,A)). Fur-
thermore, we have

L(τ1(X,B)) ⊆ d
W\I
XB

L(τ2(X,A)) ⊆ d
W\I
XA

L(τ1(X)) ⊆ 〈dW\IXX 〉

L(τ2(X)) ⊆ 〈dW\IXX 〉

〈τ1(H,X), τ2(H,X), ∅〉 ∈
W,I∏
b

(X,X)⇒ L(τ1(H,X))	 L(τ2(H,X)) ⊆ bW\IXX

Putting this all together gives us

y ∈ L(τ1)	 L(τ2)

= [L(τ1(H,X))⊕ L(τ1(X))⊕ L(τ1(X,B))]	 [L(τ2(H,X))⊕ L(τ2(X))⊕ L(τ2(X,A))]

= [L(τ1(X,B)⊕ L(τ1(X))]	 [L(τ2(X,A))⊕ L(τ2(X))]⊕ [L(τ1(H,X))	 L(τ2(H,X))]

⊆ (d
W\I
XB ⊕ 〈d

W\I
XX 〉)	 (d

W\I
XA ⊕ 〈d

W\I
XX 〉)⊕ (b

W\I
XX)

⊆ (d
W\I
XB ⊕ 〈d

W\I
XX 〉)	 (d

W\I
XA ⊕ 〈d

W\I
XX 〉)⊕ ({0} ∪ bW\IXX)

= lags(τa) ⊆ Γ2
i

Therefore in the case that both τ1 and τ2 cross X, y ∈ Γ2
i . This completes

the proof for the case that e = ∅.
(2) τ1 = ∅: in this case, τ2 must pass through X, and e must be a bi-directed

edge between H and B, where H is the head node of τ2. Since τ2 is a
directed path to A and A <W B, the lag set of this trek is

lags(τ) = ({0} 	 L(τ2))⊕ ind(e) = ind(e)	 L(τ2)

So, suppose y ∈ lags(τ) = ind(e) 	 L(τ2). We can split τ2 into three
components τ2(H,X), τ2(X), and τ2(X,A). Then 〈∅, τ2(H,X), e〉 is a

14

INFERRING OBSERVED STRUCTURE FOR DYNAMIC GRAPHS WITH UNOBSERVED VARIABLES15

correlation inducing h-trek between X and B with intermediate nodes in
I, therefore

〈∅, τ2(H,X), e〉 ∈
W,I∏
b

(X,B)

This implies that the lag set of this h-trek, which is [I(X,B)ind(e)] 	
[I(X,B)L(τ2(H,X))], is a subset of b

W\I
XB . We can write this more com-

pactly as

ind(e)	 L(τ2(H,X)) ⊆ I(X,B)b
W\I
XB

Furthermore, we have L(τ2(X)) ⊆ 〈dW\IXX 〉, and τ2(X,A) ∈
∏W,I
d (X,A),

so L(τ2(X,A)) ⊆ dW\IXA . Putting this all together gives us

y ∈ ind(e)	 L(τ2)

= ind(e)	 [L(τ2(H,X)⊕ L(τ2(X,A)⊕ L(τ2(X))]

= [ind(e)	 L(τ2(H,X))]	 L(τ2(X,A))	 L(τ2(X))

⊆
[
I(X,B)b

W\I
XB

]
	 dW\IXA 	 〈d

W\I
XX 〉

= lags(τb) ⊆ Γ2
i

Therefore in the case that τ1 = ∅, we have shown that y ∈ Γ2
i .

(3) τ2 = ∅: this case is quite similar to the previous case. In this case, τ1 is
a directed path from H to B, and e is a bi-directed edge between H and
A. The lag set of τ is therefore

lags(τ) = (L(τ1)	 {0})⊕ ind(e) = L(τ1)⊕ ind(e)

As in the previous case, we separate τ1 into three components τ1(H,X),

τ1(X) and τ1(X,B). Then 〈τ1(H,X), ∅, e〉 ∈
∏W,I
b (X,A), and the lag set

of this h-trek is L(τ1(H,X))⊕ ind(e), so we have

L(τ1(H,X))⊕ ind(e) ⊆ I(A,X)b
W\I
XA

Furthermore, L(τ1(X)) ⊆ 〈dW\IXX 〉 and L(τ1(X,B)) ⊆ d
W\I
XB . Putting this

all together gives us

y ∈ L(τ1)⊕ ind(e)

= [L(τ1(H,X))⊕ L(τ1(X,B))⊕ L(τ1(X))]⊕ ind(e)

= [L(τ1(H,X)⊕ ind(e)]⊕ L(τ1(X,B))⊕ L(τ1(X))

⊆ I(A,X)b
W\I
XA ⊕ d

W\I
XB ⊕ 〈d

W\I
XX 〉

= lags(tc) ⊆ Γ2
i

So in the case that τ2 = ∅, we have shown that y ∈ Γ2
i

(4) : τ1, τ2, e 6= ∅: in this case, τ1 is a directed path from H1 to B, τ2 is a
directed path from H2 to A, and e is a bi-directed edge between H1 and
H2, with H1 6= H2. The lag set of this h-trek is

lags(τ) = [L(τ1)	 L(τ2)]⊕ ind(e)

Furthermore, at least one of τ1, τ2 must pass through X. Suppose first
that only τ1, but not τ2, passes through X. Then 〈τ1(H1, X), τ2, e〉 is a

15

ISAAC DAVIS, ERICH KUMMERFELD, DAVID DANKS, AND SERGEY PLIS

correlation-inducing h-trek between X and A, so

[L(τ1(H1, X))	 L(τ2)]⊕ ind(e) ⊆ I(A,X)b
W\I
XA

Furthermore L(τ1(X)) ⊆ 〈dW\IXX 〉, and L(τ1(X,B)) ⊆ d
W\I
XB . Putting this

all together gives us

y ∈ [L(τ1)	 L(τ2)]⊕ ind(e)

= [(L(τ1(H1, X))⊕ L(τ1(X))⊕ L(τ1(X,B)))	 L(τ2)]⊕ ind(e)

= [(L(τ1(H1, X))	 L(τ2))⊕ ind(e)]⊕ L(τ1(X,B))⊕ L(τ1(X))

⊆ I(A,X)b
W\I
XA ⊕ d

W\I
XB ⊕ 〈d

W\I
XX 〉

= lags(τc) ⊆ Γ2
i

For the case in which τ2, but not τ1, crosses X, the analysis is analogous,
and we show that in this case y ∈ lags(τb) ⊆ Γ2

i . Lastly, we consider the
case in which both τ1 and τ2 crossX. In this case, 〈τ1(H1, X), τ2(H2, X), e〉
is a correlation-inducing h-trek between X and itself. Therefore the lag
set of this h-trek, [L(τ1(H1, X))	 L(τ2(H2, X))] ⊕ ind(e), is a subset of

b
W\I
XX . Furthermore, we have

L(τ1(X)) ⊆ 〈dW\IXX 〉

L(τ2(X)) ⊆ 〈dW\IXX 〉

L(τ1(X,B)) ⊆ d
W\I
XB

L(τ2(X,A) ⊆ d
W\I
XA

Putting this all together gives us

y ∈ [L(τ1)	 L(τ2)]⊕ ind(e)

= (L(τ1(H1, X))⊕ L(τ1(X))⊕ L(τ1(X,B)))	 (L(τ2(H2, X))⊕ L(τ2(X,A))⊕ L(τ2(X)))⊕ ind(e)

= (L(τ1(X,B))⊕ L(τ1(X)))	 (L(τ2(X,A))⊕ L(τ2(X)))⊕ (L(τ1(H1, X))	 L(τ2(H2, X)))⊕ ind(e)

⊆ (d
W\I
XB ⊕ 〈d

W\I
XX 〉)	 (d

W\I
XA ⊕ 〈d

W\I
XX 〉)⊕ b

W\I
XX

⊆ (d
W\I
XB ⊕ 〈d

W\I
XX 〉)	 (d

W\I
XA ⊕ 〈d

W\I
XX 〉)⊕ ({0} ∪ bW\IXX)

= lags(τa) ⊆ Γ2
i

Therefore we have shown in all possible cases that if y ∈ Γ2
b , we must also

have y ∈ Γ2
i . This completes the proof that Γ2

b ⊆ Γ2
i .

Now we show that Γ2
i ⊆ Γ2

b . To this end, suppose y ∈ Γ2
i . Since Γ2

i = lags(τa) ∪
lags(τb) ∪ lags(τc), three cases follow:

(1) Case 1: y ∈ lags(τa). In this case, we have

y ∈ (d
W\I
XB ⊕ 〈d

W\I
XX 〉)	 (d

W\I
XA ⊕ 〈d

W\I
XX 〉)⊕ b

W\I
XX

16

INFERRING OBSERVED STRUCTURE FOR DYNAMIC GRAPHS WITH UNOBSERVED VARIABLES17

Therefore there must exist

πXA ∈
W,I∏
d

(X,A)

πXB ∈
W,I∏
d

(X,B)

π1
XX , . . . , π

n
XX ∈

W,I∏
d

(X,X)

τXX ∈
W,I∏
b

(X,X)

such that

y ∈ (L(πXB)⊕ 〈L(πXX)〉)	 (L(πXA)⊕ 〈L(πXX)〉)⊕ lags(τXX)

where πXX is the concatenation of π1
XX , . . . , π

n
XX . By definition, τXX

consists of a path πH1X ∈
∏W,I
d (H1, X), a path πH2X ∈

∏W,I
d (H2, X),

and if H1 6= H2, a bi-directed edge e between H1 and H2. Then we have
lags(τXX) = L(πH2X)	 L(πH1X)⊕ ind(e). Therefore

y ∈ (L(πXB)⊕〈L(πXX)〉)	 (L(πXA)⊕〈L(πXX)〉)⊕ (L(πH2X)	L(πH1X)⊕ ind(e))

By definition, there must exist integers a ∈ L(πXA), b ∈ L(πXB), c1, c2 ∈
〈L(πXX)〉, h1 ∈ L(πH1X), h2 ∈ L(πH2X), and ε ∈ ind(e), such that

y = (b+ c1)− (a+ c2) + (h2 − h1 + ε) = (h2 + c1 + b)− (h1 + c1 + a) + ε

Note that h2 + c2 + b ∈ L(πH2X) ⊕ 〈L(πXX)〉 ⊕ L(πXB), therefore by

lemma 5.10 there exists some π2 ∈
∏W,I∪{X}
d (H2, X,B) such that h2 +

c2 + b ∈ L(π2). Similarly, h1 + c1 + a ∈ L(πH1X)⊕ 〈L(πXX)〉 ⊕ L(πXA),

so there exists π1 ∈
∏W,I∪{X}
d (H1, X,A) such that h1 + c1 + a ∈ L(π1).

Furthermore, τ = 〈π1, π2, e〉 ∈
∏W,I∪{X}
b (A,X,B), and lags(τ) = L(π2)	

L(π1)⊕ ind(e). Putting this all together gives us

y = (h2 + c2 + b)− (h1 + c1 + a) + ε ∈ (L(π2)	 L(π1))⊕ ind(e) = lags(τ) ⊆ Γ2
b

Therefore in the case that y ∈ lags(τa), we have y ∈ Γ2
b .

(2) Case 2: y ∈ lags(τb). In this case, we have

y ∈ I(X,B)b
W\I
XB 	 d

W\I
XA 	 〈d

W\I
XX 〉

Therefore there must exist

τXB ∈
W,I∏
b

(X,B)

πXA ∈
W,I∏
d

(X,A)

π1
XX , . . . , π

n
XX ∈

W,I∏
d

(X,X)

17

ISAAC DAVIS, ERICH KUMMERFELD, DAVID DANKS, AND SERGEY PLIS

such that

y ∈ I(X,B)lags(τXB)	 L(πXA)	 〈L(πXX)〉
where πXX is the concatenation of π1

XX , . . . , π
n
XX . By definition, τXB con-

sists of some path πH1X ∈
∏W,I
d (H1, X), some path πH2X ∈

∏W,I
d (H2, B),

and if H1 6= H2, some bi-directed edge e between H1 and H2. So we have

lags(τXB) = I(X,B)(L(πH2B)	 L(πH1X))⊕ ind(e)

Therefore we can write

y ∈ (L(πH2B)	 L(πH1X))⊕ ind(e)	 L(πXA)	 〈L(πXX)〉
By definition, this means that there exist integers h1 ∈ L(πH1X), h2 ∈
L(πH2B), a ∈ L(πXA), c ∈ 〈L(πXX)〉, and ε ∈ ind(e) such that

y = (h2 − h1) + ε− a− c = h2 − (h1 + c+ a) + ε

Note that h1 + c + a ∈ L(πH1X) ⊕ 〈L(πXX)〉 ⊕ L(πXA), so by lemma

5.10 there exists some π ∈
∏W,I∪{X}
d (H1, X,A) such that h1 + c + a ∈

L(π). Furthermore, τ = 〈πH2B , π, e〉 ∈
∏W,I∪{X}
b (A,X,B), so lags(τ) =

L(πH2B)	 L(π)⊕ ind(e) ⊆ Γ2
b . Putting this all together gives us

y = h2 − (h1 + c+ a) + ε ∈ L(πH2B)	 L(π)⊕ ind(e) = lags(τ) ⊆ Γ2
b

Therefore in the case that y ∈ lags(τb), we have y ∈ Γ2
b .

(3) Case 3: y ∈ lags(τc). This case is analogous to the previous case, but with
τXA taking the place of τXB . This exhausts all possible cases, therefore
we have shown that for any y ∈ Γ2

i , we must have y ∈ Γ2
b . Thus we have

Γ2
i ⊆ Γ2

b , thereby completing the proof that Γ2
i = Γ2

b .

Therefore we have proven that the graphs obtained by Mar(Mar(GW , I), {X})
and Mar(GW , I ∪ {X}) have the same directed and bi-directed edge-lag sets, and
clearly they have the same node-sets. Therefore the two graphs are equivalent, and
we have proven that simultaneous edge removal yields the same graph as iterated
edge removal.

18

	Title Page
	forward inference technical report

