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I. Introduction

There has recently been significant progress in the development of algorithms for learning
the directed acyclic graph (DAG) part of a Bayesian network without latent variables from
data and optional background knowledge. However, the problem of learning the DAG part
of a Bayesian network with latent (unmeasured) variables is much more difficult for two
reasons: first the number of possible models is infinite, and second, calculating scores for
latent variables models is generally much slower than calculating scores for models without
latent variables.

In this paper we will describe how to extend search algorithms developed for non-latent
variable DAG models to the case of DAG models with latent variables. We will introduce
two generalizations of DAGs, called mixed ancestor graphs (or MAGs) and partial ancestor
graphs (or PAGs), and briefly describe how they can be used to search for latent variable
DAG models. In the last section we apply these techniques to a dataset concerning noctuid
moth trappings, that was previoulsy analyzed using models based on undirected graphs and
chain graphs.

II. Directed Acyclic Graphs (DAGs)

A Bayesian network consists of two distinct parts: a directed acyclic graph (DAG or belief-
network structure) and a set of parameters for the DAG. Under the statistical interpretation. .
of a DAG, a DAG with a set of vertices V represents a set of probability measures over V.
(We place sets of variables and defined terms in boldface.) Following the terminology of
Lauritzen et al. (1990) say that a probability measure over a set of variables V satisfies the
local directed Markov property for a directed acyclic graph (or DAG) G with vertices
V if and only if for every W in V, W is independent of V\(Descendants(W) U
Parents(W)) given Parents(W), where Parents(W) is the set of parents of W in G, and
Descendants(W) is the set of descendants of W in G. (Note that a vertex is its own
ancestor and descendant, although not its own parent or child.) A DAG G represents the
set of probability measures which satisfy the local directed Markov property for G.
Variants of probabilistic DAG models were introduced in the 1980’s in Pearl (1988) among
others. Many familiar parametric models, such as recursive structural equation models with
uncorrelated errors, factor analytic models, item response models, etc. are special cases of
parameterized DAGs. (See Pearl 1988 for references.)



Under the causal interpretation, a DAG represents the causal relations in a given population
with a set of vertices V when there is an edge from A to B if and only if A is a direct cause
of B relative to V. The use of DAGs to simultaneously represent a set of causal hypotheses
and a family of probability distributions extends back to the path diagrams introduced by
Sewell Wright (1934). For the class of models considered in this paper we make two
assumptions relating causal DAGs to probability distributions.

Causal Independence Assumption: If A does not cause B, and B does not cause A,
and there is no third variable that causes both A and B, then A and B are independent.

Causal Faithfulness Assumption: If a causal DAG M correctly describes the causal
structure in a population with probability distribution P, then each conditional independence
true in P is entailed by M.

These assumptions linking the statistical and causal interpretations of DAGs are defended
in Spirtes, Glymour and Scheines (1993).

III. Partial Ancestral Graphs (PAGs)

In some cases, not all of the variables in a DAG can be measured. We call those variables
whose values are measured the observed variables, and all other variables in the DAG
latent variables. For a given division of the variables in a DAG G into observed and latent,
we write G(O,L) where O is the set of observed variables and L is the set of latent
variables.

A DAG G entails a conditional independence relation if and only if it is true in
every probability measure satisfying the local directed Markov property for G. Two
directed graphs G1(O,L) and G5(0’,L?) are conditional independence equivalent if
and only if O = Q’, and for all X, Y and Z included in 0, G1(O,L) entails X and Y are
independent conditional on Z if and only if G2(O,L) entails X and Y are independent
conditional on Z. We denote the set of directed acyclic graphs that are conditional
independence equivalent to G(O,L) as Equiv(G(O,L)). |

A partial ancestral graph (PAG) can be used to represent any subset of
Equiv(G(O,L)). A PAG is an extended graph consisting of a set of vertices O, and a set
of edges between vertices, where there may be the following kinds of edges: A < B,
A0—0B,A0—>B,A<0B,A—>Bor A < B. We say that the A endpoint of A — B is
“~”; the A endpoint of an A <> B, A <0 B, or A « B edge is “<”; and the A endpoint of a
A 0—o0 B or A 0— B is “0”. The conventions for the B endpoints are analogous. In
addition pairs of edge endpoints may be connected by underlining (interpreted below). A
partial ancestral graph for a set of directed acyclic graphs G each sharing the same set of
observed variables O, contains partial information about the ancestor relations in G,
namely only those ancestor relations common to all members of G. (If we allow G to

contain directed cyclic graphs as well as directed acyclic graphs then several extra types of
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edges are needed in the PAG (See Richardson, 1996). In the following definition, which
provides a semantics for PAGs we use “*” as a meta-symbol indicating the presence of any
one of {o, -, >}, e.g. A *— B represents either A — B, A < B, or A o— B.

Partial Ancestral Graphs (PAGs)

If G is a set of directed acyclic graphs included in Equiv(G(O, L)), ¥ (with vertices O)
is a PAG for G if and only if
(i) There is an edge between A and B in ¥ if and only if every DAG in G does not
entail that A and B are independent conditional on any subset of O\{A,B}.
(ii) If there is an edge in ¥ out of A, i.e. A — B, then A is an ancestor of B in every
graph in G.
(iii) If there is an edge in ¥ into B, i.e. A*— B, then in every DAG in G, B is not an
ancestor of A.
(iv) If there is an undérlining A*—*B*_*C in ¥ then B is an ancestor of (at least one
of) A or Cin every DAG in G.
(v) Any edge endpoint not marked in one of the above ways is left with a small circle -
thus: o—*.

Some examples of PAGs are shown in Figure 1, where O = {A,B,C,D}. In cases where -
the distinction between latent variables and measured variables is important, we enclose
latent variables in ovals. (The MAGs in Figure 1 are defined in the next section.)

The requirement that G is included in Equiv(G(O, L)) guarantees that if one directed
acyclic graph in Equiv(G(O, L)) does not entail that A and B are independent conditional
on any subset of O\{A,B}, then all directed acyclic graphs in Equiv(G(O, L)) do not
entail that A and B are independent conditional on any subset of O\{A,B}.

o

A —B C4—D A—>pB4PC €D Ac—Pp B 4P C 4D
DAG G, MAG(G,(O,L)) PAG(Equiv(G,(O,L))

A A
\‘B—)D >B—'PD \B—)D
c” C | C

DAG G,  MAG(G,(O,L)) PAG(Equiv(G,(O,L))

A

Figure 1

Note that only condition (i) gives necessary and sufficient conditions about features of the
PAG. All of the other conditions are merely necessary conditions. That means that there
can be more than one PAG representing a given set G; two such PAGs have the same



adjacencies, but one may contain a “0” endpoint where the other contains a “~” or “> -
endpoint. There are PAGs for Equiv(G(O, L)) with enough orientation information to
determine whether or not each DAG in Equiv(G(O, L)) entails that A and B are
independent conditional on any subset included in O\(A U B); we will say that any such
PAG that has enough orientations to do this is “weakly complete” for Equiv(G(O, L)).
(Weak completeness does not entail that every ancestor relation common to every member
of Equiv(G(0O, L)) is explicitly represented in the PAG.)

Thus a PAG can be used to represent both the ancestor relations among the members of O
common to members of G, and the set of conditional independence relations among the
members of O in G. Some PAGs (e.g. PAG(Equiv(G1(0,L))) in Figure 1) represent a

set of conditional independence relations not entailed by any DAG G(O,L) where L = &.

PAGs have two distinct uses. Just as DAGs can be used by algorithms to perform fast
conditionalizations, PAGs can be used in a similar way. And just as, given a causal
interpretation, DAGs can be used to calculate the effects of any ideal intervention upon a
system, PAGs, given a causal interpretation, can be.used to calculate the effects of some
ideal interventions upon a system. (See Spirtes et al. 1993, where PAGs are called
POIPGs.)

While it would generally be preferable to know the true causal DAG G(O,L) rather than a
PAG representing Equiv(G(O, L)), there are several reasons why it may be easier to find
a PAG representing Equiv(G(O, L)) than-it is to find G(O,L) itself. First the space of
PAGs is finite, while the space of DAGs with latent variables is infinite. Second, for a
variety of scores for models (such as BIC, posterior probability, etc.) there may be many
different DAGs which receive the same score, but represent different causal theories and
make different predictions about the effects of interventions upon a system. The data alone
does not allow one to distinguish between these models, so even with population data, one
cannot be sure which is the correct causal model. Nevertheless, for some (but not all)
equivalence classes of causal models, and some (but not all) ideal interventions, it is
possible to use a PAG to consistenly estimate the effect of the intervention, even without
knowing which causal model represented by the PAG is the correct model. Note that this -
strategy is not useful in instances where every pair of measured variables has some strong
latent common cause; in that case the PAG that represents Equiv(G(O, L)) is completely
connected, and cannot be used to predict the effects of any ideal interventions on the
system.

Is it possible to find a PAG from data and background knowledge? The FCI algorithm,
under a set of assumptions described in Spirtes et al. 1993, is guaranteed in the large
sample limit to find a weakly complete correct PAG for a given distribution. It uses a
series of conditional independence tests to construct a PAG that represents a given
distribution. The algorithm is exponential in the number of vertices in the PAG in the worst
case (as is any algorithm based upon conditional independence tests.) However, the large
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sample reliability does not guarantee reliability on realistic sample sizes, and if the power of
the conditional independence tests is low, the results of the tests are not compatible with
any single PAG. For these reasons, it would be desirable to have a search that was not
based upon conditional independence tests, or could be used to supplement an algorithm
based upon conditional independence tests by using the output of the FCI algorithm as a
starting point for a search.

Recently, a number of algorithms for searching for DAGs without latent variables have
been developed that do not rely on conditional independence tests. (Chickering et al. 1995,
Spirtes and Meek 1995) Instead, these are heuristic searches that attempt to maximize a
score. We will describe here a heuristic PAG search that attempts to find a PAG with the
highest score. One problem with this approach is that because a PAG represents a set of
DAG models which may receive different scores (either Bayes Information Criterion,
posterior probability, etc.) a PAG cannot be assigned a score by setting its score equal to an
arbitrarily chosen DAG that it represents. In the next section we will show how to
indirectly assign a score to a PAG.

IVv. Mixed Ancestral Graphs (MAGs)

A MAG (or mixed ancestral graph) is a completely oriented PAG for a set of graphs which
consists of a single directed acyclic graph G(O,L). (By completely oriented we mean that
there are no “0” endpoints on any edge). Some examples of MAGs are shown in Figure 1,
where O = {A,B,C,D}.

A MAG can also be considered a representation of a set of conditional independence
relations among variables in O (which in some cases cannot be represented by any DAG
containing just variables in O; e.g. MAG(G1(O,L)) in Figure 1.) A MAG imposes no
restrictions on the set of distributions it represents other than the conditional independence
relations that it entails. (The class of MAGs is neither a subset nor a superset of other
generalizations of DAGs such as chain graphs, cyclic directed graphs, or cyclic chain -
graphs.)

MAGs have the following useful features:

. DAG G in Figure 1 is an example of a DAG such that as the sample size
increases without limit, the difference between the Bayés Information Criterion
(BIC) of MAG(G1,0) and the BIC of any DAG G’ that contains only variables in
O increases without limit almost surely. Hence in some cases a maximum
likelihood estimate of the MAG parameters is a better estimator of some of the
population parameters than the maximum likelihood estimate of any DAG
parameters.



. In the large sample limit, for multi-variate normal or discrete distributions,

any (possibly latent variable) DAG with a maximum BIC score is represented by
the MAG with the highest BIC score among all MAGs.

° There is a three place graphical relation among disjoint sets of vertices (A is
d-separated from B given C) which holds if and only if the MAG entails that A is
independent of B conditional on C. D-separation in MAGs is a simple extension of
Pearl’s d-separation relation (Pearl 1988) defined over DAGs.

If a PAG YV represents Equiv(G(O,L)), we say that any MAG that represents graph
G(O,L) is represented by ¥. For every PAG, there is some MAG that it represents, and
every MAG represented by a PAG receives the same BIC score. Thus a PAG can be
assigned a score by finding some MAG that it represents, scoring the MAG, and assigning
that score to the PAG. It is possible that a PAG represents some non-MAG model that
receives a higher BIC score than any MAG represented by the PAG. However, assigning a
MAG score to a PAG that represents it has the following desirable property. For any
distribution P(Q), if there is some DAG G that contains O, such that for any three disjoint
sets of variables X, Y, Z < O, X is independent of Y given Z if and only if X is d-
separated from Y given Z in G, then P(O) is said to be faithful to G over Q. For any
multi-variate normal distribution P(0), if P(O) is faithful to some DAG G over O, then in .
the large sample limit the PAG that represents G receives the highest BIC score among all
PAGs.

A. Parameterizing Gaussian MAGs

We will describe how a parameterization of a MAG in the multi-variate normal case is an
extension of a parameterization of a DAG corresponding to a “structural equation model”.
(Parameterization and estimation of parameters in the case of discrete variables is an area of -
current research.) '

The variables in a linear structural equation model (SEM) can be divided into two sets, the
“error variables” or “error terms,” and the substantive variables. Corresponding to each
substantive variable Xj is a linear equation with Xj on the left hand side of the equation,
and the direct causes of Xj plus the error term € on the right hand side of the equation.

Since we have no interest in first moments, without loss of generality each variable can be
expressed as a deviation from its mean.

Consider, for example, two SEMs S and S5 over X = {X1, X5, X3}, where in both

SEMs X is a direct cause of X5. The structural equations in Figure 2 are common to both
S1 and Sp:



X1=¢1
Xo2=P2u X1 +&
X3=¢3
Figure 2: Structural Equations for SEMs S; and S»

where B is a free parameters ranging over real values, and €1, € and €3 are error terms.
In addition suppose that €1, €7 and €3 are distributed as multivariate normal. In §; we will
assume that the correlation between each pair of distinct error terms is fixed at zero. The
free parameters of Sy are 6 = <f, P>, where [ is the set of linear coefficients {1 } and P
is the set of variances of the error terms. We will use X ,, to denote the covariance matrix
parameterized by the vector 0 for model Sy. If all the pairs of error terms in a SEM S are
uncorrelated, we say S is a SEM with uncorrelated errors.
S7 contains the same structural equations as S1, but in S we will allow the errors between
X7 and X3 to be correlated, i.e., we make the correlation between the errors of X5 and X3
a free parameter, instead of fixing it at zero, as in Si. In S the free parameters are 6 = <f3,
P’>, where P is the set of linear coefficients {71} and P’ is the set of variances of the
error terms and the correlation between € and €3. If the correlations between any of the
-error terms in a SEM are not fixed at zero, we will call it a SEM with correlated errors.

It is possible to associate with each SEM with uncorrelated errors a directed graph that
represents the causal structure of the model and the form of the linear equations. For
example, the directed graph associated with the substantive variables in Sj is X1 — X2
X3, because X is the only substantive variable that occurs on the right hand side of the
equation for X».

It is generally accepted that correlation is to be explained by some form of causal
connection. Accordingly if €p and €3 are correlated we will assume that either € causes €3,
€3 causes €3, some latent variable causes both €; and €3, or some combination of these. We
represent the correlated error between €) and €3 by introducing a latent variable T that is a
common cause of X, and X3. If O = {X,X2,X3}, the MAG for the directed graph
associated with Sy is X1 — X3 <> X3. The statistical justification for this is provided in
Spirtes et al. (1996). It turns out that the set of MAGs is a subset of the set of recursive
structural equation models with correlated errors. Hence, there are well known techniques

(Bollen, 1992) for estimating and performing statistical tests upon MAG models such as
Sa.

B. The Bayes Information Criterion (BIC) Score of a MAG

As the sample size increases without limit, the Bayes Information Criterion is an O(1)
approximation of a function of the posterior distribution. In the case of a multi-variate
normal structural equation model, for a given sample
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BIC(M , sample) = -2L( X M(emx),sample) + In(samplesize) * dfyy,
= constant + Deviance(M) + In(samplesize) * dfym
where

] Omax is the maximum likelihood estimate of the parameters for model M

from sample,

o Z s, 18 the covariance matrix for M when 6 takes on its maximum
likelihood value Opax,
. L( 2y, )-5ample) is the likelihood ratio test statistic of X,

. dfy is the degrees of freedom of the MAG M .

] Deviance(M) is twice the difference between the unconstrained maximum of
the log-likelihood and the maximum taken over M.

(See Raftery, 1993).

V. Example: Noctuid Moth Data

To illustrate the use of these models on a simple data set we present an analysis of data on
moth trappings, which originally appeared in the statistical literature in a paper of Cochran
(1938), but which were subsequently analyzed by Dempster (1972), who used the data to
illustrate covariance selection models, and Whittaker (1990), who fitted a chain graph
model to this data. These earlier analyses provide an interesting point of comparison for the
partial ancestor graph analysis.

The data consist of one response variable,

moth : log (1 + no. of moths caught in a light trap on one night),
and five covariates:

min : the minimum night temperature,

max : the previous day's maximum temperature,

wind : the average wind speed during the night,

rain: the amount of rain during the night

cloud: the percentage of starlight obscured by clouds
The data as given by Cochran are:



min max wind rain cloud moth
min 1.00
max 0.40 1.00
wind 0.37 0.02 1.00
rain 0.18 -0.09 0.05 1.00
cloud -0.46 0.02 -0.13 -0.47 1.00
moth 0.29 0.22 -0.24 0.11 -0.37 1.00
Variance 14.03 14.54 2.07 17.11 7.87 3.55

The original observations are not available, but Cochran implies that they come from a
complicated design with an effective sample size of 72.

A. Dempster's Model

Dempster (1972) fitted a covariance selection model to this data, which corresponds to the
following undirected graph:

. . Dimension Deviance Deviance
max min wind +In(SS)*dim.
12 15.66 66.90

rain cloud moth

Figure 3: Dempster's Model
where conditional independence is encoded via separation, e.g. min 1 moth | cloud,wind.

Dempster arrived at his model via a forward selection procedure which terminated when it
found the first model for which the p-value was greater than 0.05; the p-value was
computed by comparing the Deviance to a 2 distribution with d.f. = (21 — dimension of
the model). We also give Deviance + In(Sample Size)*Dimension, since this is equal to the
BIC score + a constant (note that lower scores correspond to 'better’ models under this
criterion).

B. Whittaker's Model

Whittaker (1990) presents an analysis based on a chain graph, based upon a division of the
variables into two blocks, the first containing the five covariates, the second containing the
response:



Dimension Deviance Deviance

wind +In(SS)*dim.
\ ‘ \¢ 14 4.42 64.52

rain cloud—$» moth

Figure 4: Whittaker's Model!

Whittaker arrived at this model by first searching for an undirected model for the
covariates, and then regressing moth on the five covariates, selecting min, cloud, and wind
on the basis of the edge exclusion deviances (which is the deviance of the model with one
edge removed against the full model including all covariates). Note that this model implies
that cloud 1L wind | min, and does not imply cloud 1 wind | min, moth whereas the
reverse is true of Dempster's model.

C. FCI Model

Applying the FCI algorithm to this data resulted in the Partial Ancestral Graph shown in
Figure 5. (The structural equation modelling programme EQS, developed by Peter Bentler,
was used to fit these models.)

. . Dimension Deviance Deviance
max O—P»-min —§wind +In(SS)*dim.
12 6.53 57.77
rainQO—QcloudO—#»moth

Figure 5: PAG found by FCI search

This PAG imposes the following conditional independence constraints:
max AL rain, cloud, moth;
min 1L rain, moth | cloud,
“wind 1 max, cloud, rain | min;
rain . max, min, wind, moth | cloud.
This is not a complete list of conditional independences, but it is sufficient to uniquely
specify the PAG. Further, the PAG implies the following structural properties are true of

any DAG (possibly with latent variables) which is conditional independence equivalent to
the PAG:

min is not an ancestor of cloud or max;
wind is not an ancestor of min or moth,;

moth 1is not an ancestor of cloud or wind,

lyhen we used the Bentler's EQS programme to fit tbvsanaddl 7:4Whgmtakaar
reports a devianceof 4.42.
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min is an ancestor of wind;
there is an unmeasured common cause of moth and wind.

It is interesting to compare the FCI model to those of Whittaker and Dempster. In fact, the
FCI model is nested within Whittaker's model. Since the two models differ by 2 d.f. but
the difference in deviance is only 2.11, a likelihood ratio test finds no evidence against the
FCI model (p-value = 0.39). In fact, the FCI model has the same pairs of adjacent vertices
as in Dempster's model. The two extra edges present in Whittaker's model are the max—
cloud and min—moth edges. Let us examine these in turn:

In describing how he came up with his model Whittaker states that at first he fitted an
undirected model to the covariates, which did not include the max—cloud edge, since these
two variables are close to being uncorrelated. However, after examining the edge exclusion
deviance, which measured the dependence of max and cloud given min, wind and rain he
decided to include this extra edge, since the deviance indicated strong dependence, yet the
model without the edge would imply max AL cloud | min, wind, rain . The FCI model
manages to accommodate both the marginal independence and the conditional
independence. In fact, in this case a DAG model such as shown in Figure 6 could also have
achieved this.

max —§» min —P»wind

rain = cloud
Figure 6: DAG model for the covariates

This calls into question the motivation for blocking variables and fitting undirected graphs
within blocks, and directed edges between blocks, that is advocated by Whittaker and
others.

If we now examine the min—moth edge that is absent in the FCI PAG, but present in
Whittaker's model, this illustrates a potential shortcoming of regressing a response on all
previous covariates in order to determine those that are causes of the response. Consider
the DAG with latent variables T1, T2, shown in Figure 8. This DAG is conditional
independence equivalent to the FCI PAG over the variables {cloud, min, wind, moth}.
Further, it is compatible with the background knowledge that Whittaker used when
constructing his model: all the covariates temporally precede moth. However, although min
and moth are not directly related in this DAG, min and moth are dependent given the other
covariates cloud and wind.
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cloud min —» wind

moth

Figure 8: A DAG with latent variables

It is well known that failing to include a confounding variable in a regression may lead to a
spurious dependence between two variables. What is perhaps less well known is that
including the wrong variable in a regression may lead to a spurious dependence: in this case
regressing moth on min, wind and cloud leads to a spurious dependence between moth
and min, and thus to the additional edge in Whittaker's model.

It should be stressed that in comparing the FCI model to Whittaker's model we do not wish
to imply that the FCI model is the 'true' model for this dataset. With a comparatively small
sample size, as in this case, we would not expect the data to uniquely identify a single
model: this is borne out by the fact that there are many different PAG models with scores
that are relatively close. (See Figure 10.) The existence of so many different models with
relatively similar scores must temper any causal or structural inferences that we might wish
to draw from this analysis, unless all of the models receiving high scores share this feature
in common.

As described in section IV, it is not possible to score a PAG directly, but only through
parameterizing a MAG represented by it. The MAG used for scoring the FCI PAG is
shown in Figure 9.

max —P» min —Pwind

rain ~—p» cloud—P» moth
Figure 9: MAG corresponding to PAG in Fig. 5

Note that the same BIC score would be obtained from scoring any other MAG represented
by the PAG. The FCI search is a heuristic search procedure based upon the results of a
series of conditional independence tests, and is not guaranteed to find the PAG with the
best BIC score (though it will do so asymptotically). However, it appears that in this
example the FCI algorithm did locate the PAG with the best score; a greedy search failed to
find a PAG with a higher score. A number of other PAGs, together with the associated
deviance and scores are given in Figure 10.
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max O—Omin —P»wind

rain Q—QcloudD—P»moth

max O—P»min —P»-wind

NS

rainQ—Q cloudO—Pp-moth

max O—P»-min <@—P-wind

rain <—clo§ \ t

d-@P>moth

max O—»-min <@-P-wind

N 2ed

rain -— cloud-@Pmoth
max O—+»-min @Pwind
rain -§—— cloud-@-Prmoth

max O—P»-min @-Ppwind

rain QO—Qcloud-@-Pprmoth

Figure 9:

Summary and Future Work

Dimension

13

13

13

15

12

12

Deviance

6.50

4.77

4.77

2.26

11.13

7.52

Other PAG Models
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Deviance

+In(SS)*dim.

62.01

60.28

59.11

66.31

62.37

58.76

In this paper have introduced Partial Ancestral Graphs as a representation for equivalence
classes of DAGs with latent variables, that captures structural features that are common to
all the DAGs in a given equivalence class. We have presented a method for parameterizing
the set of Gaussian distributions defined by these conditional independence constraints.
This allows a BIC score to be calculated for a PAG. Finally, we have illustrated through an
example, that the class of PAG models allow greater flexibility in representing conditional
independence, leading to more parsimonious models. Research is currently focused upon



parameterizing MAGs with discrete variables, and developing fast algorithms for
transforming PAGs into MAGs.
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Scoring Ancestral Graph Models

Thomas Richardson, University of Washington (tsr@stat.washington.edu)

Peter Spirtes, Carnegie Mellon University.

I. Introduction

There has recently been significant progress in the development of algorithms for learning
the directed acyclic graph (DAG) part of a Bayesian network without latent variables from
data and optional background knowledge. However, the problem of learning the DAG part
of a Bayesian network with latent (unmeasured) variables is much more difficult for two
reasons: first the number of possible models is infinite, and second, calculating scores for
latent variables models is generally much slower than calculating scores for models without
latent variables.

In this paper we will describe how to extend search algorithms developed for non-latent
variable DAG models to the case of DAG models with latent variables. We will introduce
two generalizations of DAGs, called mixed ancestor graphs (or MAGs) and partial ancestor
graphs (or PAGs), and briefly describe how they can be used to search for latent variable
DAG models. In the last section we apply these techniques to a dataset concerning noctuid
moth trappings, that was previoulsy analyzed using models based on undirected graphs and
chain graphs.

I1. Directed Acyclic Graphs (DAGs)

A Bayesian network consists of two distinct parts: a directed acyclic graph (DAG or belief-
network structure) and a set of parameters for the DAG. Under the statistical interpretation
of a DAG, a DAG with a set of vertices V represents a set of probability measures over V.
(We place sets of variables and defined terms in boldface.) Following the terminology of
Lauritzen et al. (1990) say that a probability measure over a set of variables V satisfies the
local directed Markov property for a directed acyclic graph (or DAG) G with vertices
V if and only if for every W in V, W is independent of V\(Descendants(W) U
Parents(W)) given Parents(W), where Parents(W) is the set of parents of W in G, and
Descendants(W) is the set of descendants of W in G. (Note that a vertex is its own
ancestor and descendant, although not its own parent or child.) A DAG G represents the
set of probability measures which satisfy the local directed Markov property for G.
Variants of probabilistic DAG models were introduced in the 1980’s in Pearl (1988) among
others. Many familiar parametric models, such as recursive structural equation models with
uncorrelated errors, factor analytic models, item response models, etc. are special cases of
parameterized DAGs. (See Pearl 1988 for references.)



Under the causal interpretation, a DAG represents the causal relations in a given population
with a set of vertices V when there is an edge from A to B if and only if A is a direct cause
of B relative to V. The use of DAGs to simultaneously represent a set of causal hypotheses
and a family of probability distributions extends back to the path diagrams introduced by
Sewell Wright (1934). For the class of models considered in this paper we make two
assumptions relating causal DAGs to probability distributions.

Causal Independence Assumption: If A does not cause B, and B does not cause A,
and there is no third variable that causes both A and B, then A and B are independent.

Causal Faithfulness Assumption: If a causal DAG M correctly describes the causal
structure in a population with probability distribution P, then each conditional independence
true in P is entailed by M.

These assumptions linking the statistical and causal interpretations of DAGs are defended
in Spirtes, Glymour and Scheines (1993).

III. ~ Partial Ancestral Graphs (PAGs)

In some cases, not all of the variables in a DAG can be measured. We call those variables
whose values are measured the observed variables, and all other variables in the DAG
latent variables. For a given division of the variables in a DAG G into observed and latent,
we write G(O,L) where O is the set of observed variables and L is the set of latent
variables.

A DAG G entails a conditional independence relation if and only if it is true in
every probability measure satisfying the local directed Markov property for G. Two
directed graphs G1(0O,L) and G»(0O’,L.”) are conditional independence equivalent if
and only if O = O’, and for all X, Y and Z included in O, G1(O,L) entails X and Y are
independent conditional on Z if and only if G2(O,L) entails X and Y are independent
conditional on Z. We denote the set of directed acyclic graphs that are conditional
independence equivalent to G(O,L) as Equiv(G(O,L)).

A partial ancestral graph (PAG) can be used to represent any subset of
Equiv(G(O,L)). A PAG is an extended graph consisting of a set of vertices O, and a set
of edges between vertices, where there may be the following kinds of edges: A <> B,
Ao—o0B,Ao—>B,A«0B,A—Bor A« B. Wesay that the A endpoint of A —» B is
“~”; the A endpoint of an A <> B, A <-0 B, or A < B edge is “<”; and the A endpoint of a
A 0—o0 B or A o— B is “0”. The conventions for the B endpoints are analogous. In
addition pairs of edge endpoints may be connected by underlining (interpreted below). A
partial ancestral graph for a set of directed acyclic graphs G each sharing the same set of
observed variables O, contains partial information about the ancestor relations in G,
namely only those ancestor relations common to all members of G. (If we allow G to
contain directed cyclic graphs as well as directed acyclic graphs then several extra types of
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edges are needed in the PAG (See Richardson, 1996). In the following definition, which
provides a semantics for PAGs we use “*” as a meta-symbol indicating the presence of any
one of {0, —, >}, e.g. A *— B represents either A — B, A <> B, or A 0— B.

Partial Ancestral Graphs (PAGs)
If G is a set of directed acyclic graphs included in Equiv(G(O, L)), ¥ (with vertices O)
is a PAG for G if and only if
(1) There is an edge between A and B in ¥ if and only if every DAG in G does not
entail that A and B are independent conditional on any subset of O\{A,B}.
(ii) If there is an edge in ¥ out of A, i.e. A — B, then A is an ancestor of B in every
graph in G.
(i11) If there is an edge in ¥ into B, i.e. A*— B, then in every DAG in G, B is not an
ancestor of A.

(iv) If there is an underlining A*—*B*—*C in ¥’ then B is an ancestor of (at least one
of) A or Cinevery DAG in G.

(v) Any edge endpoint not marked in one of the above ways is left with a small circle
thus: o—*.

Some examples of PAGs are shown in Figure 1, where O = {A,B,C,D}. In cases where
the distinction between latent variables and measured variables is important, we enclose
latent variables in ovals. (The MAGs in Figure 1 are defined in the next section.)

The requirement that G is included in Equiv(G(O, L)) guarantees that if one directed
acyclic graph in Equiv(G(O, L)) does not entail that A and B are independent conditional
on any subset of O\{A,B}, then all directed acyclic graphs in Equiv(G(O, L)) do not
entail that A and B are independent conditional on any subset of O\{ A,B}.

A —pB C4—D A—>B4PC €«—D Ac—Pp B 4P C 4D
DAG G, MAG(G,(O,L)) PAG(Equiv(G,(O,L))

A A
\AB—DD )E—PD O\‘B — D
c/ C C

DAG G, MAG(G,(O,L)) PAG(Equiv (G,(O, L))

A

Figure 1

Note that only condition (i) gives necessary and sufficient conditions about features of the
PAG. All of the other conditions are merely necessary conditions. That means that there
can be more than one PAG representing a given set G; two such PAGs have the same



adjacencies, but one may contain a “0” endpoint where the other contains a “~” or “> ”
endpoint. There are PAGs for Equiv(G(O, L)) with enough orientation information to
determine whether or not each DAG in Equiv(G(O, L)) entails that A and B are
independent conditional on any subset included in O\(A U B); we will say that any such
PAG that has enough orientations to do this is “weakly complete” for Equiv(G(O, L)).
(Weak completeness does not entail that every ancestor relation common to every member
of Equiv(G(O, L)) is explicitly represented in the PAG.)

Thus a PAG can be used to represent both the ancestor relations among the members of O
common to members of G, and the set of conditional independence relations among the
members of O in G. Some PAGs (e.g. PAG(Equiv(G1(0O,L))) in Figure 1) represent a

set of conditional independence relations not entailed by any DAG G(O,L) where L = &.

PAGs have two distinct uses. Just as DAGs can be used by algorithms to perform fast
conditionalizations, PAGs can be used in a similar way. And just as, given a causal
interpretation, DAGs can be used to calculate the effects of any ideal intervention upon a
system, PAGs, given a causal interpretation, can be used to calculate the effects of some
ideal interventions upon a system. (See Spirtes et al. 1993, where PAGs are called
POIPGs.)

While it would generally be preferable to know the true causal DAG G(O,L) rather than a
PAG representing Equiv(G(O, L)), there are several reasons why it may be easier to find
a PAG representing Equiv(G(O, L)) than it is to find G(O,L) itself. First the space of
PAGs is finite, while the space of DAGs with latent variables is infinite. Second, for a
variety of scores for models (such as BIC, posterior probability, etc.) there may be many
different DAGs which receive the same score, but represent different causal theories and
make different predictions about the effects of interventions upon a system. The data alone
does not allow one to distinguish between these models, so even with population data, one
cannot be sure which is the correct causal model. Nevertheless, for some (but not all)
equivalence classes of causal models, and some (but not all) ideal interventions, it is
possible to use a PAG to consistenly estimate the effect of the intervention, even without
knowing which causal model represented by the PAG is the correct model. Note that this
strategy is not useful in instances where every pair of measured variables has some strong
latent common cause; in that case the PAG that represents Equiv(G(O, L)) is completely
connected, and cannot be used to predict the effects of any ideal interventions on the
system.

Is it possible to find a PAG from data and background knowledge? The FCI algorithm,
under a set of assumptions described in Spirtes et al. 1993, is guaranteed in the large
sample limit to find a weakly complete correct PAG for a given distribution. It uses a
series of conditional independence tests to construct a PAG that represents a given
distribution. The algorithm is exponential in the number of vertices in the PAG in the worst
case (as is any algorithm based upon conditional independence tests.) However, the large
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sample reliability does not guarantee reliability on realistic sample sizes, and if the power of
the conditional independence tests is low, the results of the tests are not compatible with
any single PAG. For these reasons, it would be desirable to have a search that was not
based upon conditional independence tests, or could be used to supplement an algorithm
based upon conditional independence tests by using the output of the FCI algorithm as a
starting point for a search.

Recently, a number of algorithms for searching for DAGs without latent variables have
been developed that do not rely on conditional independence tests. (Chickering et al. 1995,
Spirtes and Meek 1995) Instead, these are heuristic searches that attempt to maximize a
score. We will describe here a heuristic PAG search that attempts to find a PAG with the
highest score. One problem with this approach is that because a PAG represents a set of
DAG models which may receive different scores (either Bayes Information Criterion,
posterior probability, etc.) a PAG cannot be assigned a score by setting its score equal to an
arbitrarily chosen DAG that it represents. In the next section we will show how to
indirectly assign a score to a PAG.

IV.  Mixed Ancestral Graphs (MAGs)

A MAG (or mixed ancestral graph) is a completely oriented PAG for a set of graphs which
consists of a single directed acyclic graph G(O,L). (By completely oriented we mean that
there are no “o” endpoints on any edge). Some examples of MAGs are shown in Figure 1,
where O = {A,B,C,D}.

A MAG can also be considered a representation of a set of conditional independence
relations among variables in O (which in some cases cannot be represented by any DAG
containing just variables in O; e.g. MAG(G1(O,L)) in Figure 1.) A MAG imposes no
restrictions on the set of distributions it represents other than the conditional independence
relations that it entails. (The class of MAGs is neither a subset nor a superset of other
generalizations of DAGs such as chain graphs, cyclic directed graphs, or cyclic chain
graphs.)

MAGs have the following useful features:

L DAG G1 in Figure 1 is an example of a DAG such that as the sample size
increases without limit, the difference between the Bayes Information Criterion
(BIC) of MAG(G1,0) and the BIC of any DAG G’ that contains only variables in
O increases without limit almost surely. Hence in some cases a maximum
likelihood estimate of the MAG parameters is a better estimator of some of the
population parameters than the maximum likelihood estimate of any DAG
parameters.



. In the large sample limit, for multi-variate normal or discrete distributions,

any (possibly latent variable) DAG with a maximum BIC score is represented by
the MAG with the highest BIC score among all MAGs.

. There is a three place graphical relation among disjoint sets of vertices (A is
d-separated from B given C) which holds if and only if the MAG entails that A is
independent of B conditional on C. D-separation in MAGs is a simple extension of
Pearl’s d-separation relation (Pearl 1988) defined over DAGs.

If a PAG ¥ represents Equiv(G(O,L)), we say that any MAG that represents graph
G(O,L) is represented by V. For every PAG, there is some MAG that it represents, and
every MAG represented by a PAG receives the same BIC score. Thus a PAG can be
assigned a score by finding some MAG that it represents, scoring the MAG, and assigning
that score to the PAG. It is possible that a PAG represents some non-MAG model that
receives a higher BIC score than any MAG represented by the PAG. However, assigning a
MAG score to a PAG that represents it has the following desirable property. For any
distribution P(0O), if there is some DAG G that contains O, such that for any three disjoint
sets of variables X, Y, Z < O, X is independent of Y given Z if and only if X is d-
separated from Y given Z in G, then P(O) is said to be faithful to G over O. For any
multi-variate normal distribution P(0), if P(O) is faithful to some DAG G over O, then in
the large sample limit the PAG that represents G receives the highest BIC score among all
PAGs.

A. Parameterizing Gaussian MAGs

We will describe how a parameterization of a MAG in the multi-variate normal case is an
extension of a parameterization of a DAG corresponding to a “structural equation model”.
(Parameterization and estimation of parameters in the case of discrete variables is an area of
current research.) '

The variables in a linear structural equation model (SEM) can be divided into two sets, the
“error variables” or “error terms,” and the substantive variables. Corresponding to each
substantive variable Xj is a linear equation with Xj on the left hand side of the equation,
and the direct causes of Xj plus the error term €j on the right hand side of the equation.

Since we have no interest in first moments, without loss of generality each variable can be
expressed as a deviation from its mean.

Consider, for example, two SEMs S and S over X = {X, X, X3}, where in both
SEMs X is a direct cause of X». The structural equations in Figure 2 are common to both
S1 and Sp:



X1=¢
X2 =P21 X1+ €2
X3 =1¢€3
Figure 2: Structural Equations for SEMs S; and S

where 371 is a free parameters ranging over real values, and €1, € and €3 are error terms.
In addition suppose that €1, €2 and €3 are distributed as multivariate normal. In §; we will
assume that the correlation between each pair of distinct error terms is fixed at zero. The
free parameters of S7 are 8 = <3, P>, where [ is the set of linear coefficients {1 } and P
is the set of variances of the error terms. We will use Z; 4, to denote the covariance matrix
parameterized by the vector 6 for model S;. If all the pairs of error terms in a SEM S are
uncorrelated, we say S is a SEM with uncorrelated errors.
S7 contains the same structural equations as Sy, but in S we will allow the errors between
X7 and X3 to be correlated, i.e., we make the correlation between the errors of X7 and X3
a free parameter, instead of fixing it at zero, as in S7. In S, the free parameters are 6 = <3,
P’>, where [ is the set of linear coefficients {1} and P’ is the set of variances of the
error terms and the correlation between € and €3. If the correlations between any of the
_error terms in a SEM are not fixed at zero, we will call it a SEM with correlated errors.

It is possible to associate with each SEM with uncorrelated errors a directed graph that
represents the causal structure of the model and the form of the linear equations. For
example, the directed graph associated with the substantive variables in S is X1 — X3
X3, because X is the only substantive variable that occurs on the right hand side of the
equation for X.

It is generally accepted that correlation is to be explained by some form of causal
connection. Accordingly if € and €3 are correlated we will assume that either €) causes €3,
€3 causes €3, some latent variable causes both £, and €3, or some combination of these. We
represent the correlated error between €; and €3 by introducing a latent variable T that is a
common cause of Xy and X3. If O = {X{,X2,X3}, the MAG for the directed graph
associated with Sy is X — Xy <> X3. The statistical justification for this is provided in
Spirtes et al. (1996). It turns out that the set of MAGs is a subset of the set of recursive
structural equation models with correlated errors. Hence, there are well known techniques

(Bollen, 1992) for estimating and performing statistical tests upon MAG models such as
S7.

B. The Bayes Information Criterion (BIC) Score of a MAG

As the sample size increases without limit, the Bayes Information Criterion is an O(1)
approximation of a function of the posterior distribution. In the case of a multi-variate
normal structural equation model, for a given sample
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BIC(M , sample) = -2L( 2 M(emx),sample) + In(samplesize) * dfy,
= constant + Deviance(M) + In(samplesize) * dfi
where

. Bmax is the maximum likelihood estimate of the parameters for model M

from sample,
o 2., is the covariance matrix for M when 0 takes on its maximum

likelihood value Opy,x,

° L(x M@, y,sample) is the likelihood ratio test statistic of X M)

. dfyy is the degrees of freedom of the MAG M.

. Deviance(M) is twice the difference between the unconstrained maximum of
the log-likelihood and the maximum taken over M.

(See Raftery, 1993).

V. Example: Noctuid Moth Data

To illustrate the use of these models on a simple data set we present an analysis of data on
moth trappings, which originally appeared in the statistical literature in a paper of Cochran
(1938), but which were subsequently analyzed by Dempster (1972), who used the data to
illustrate covariance selection models, and Whittaker (1990), who fitted a chain graph
model to this data. These earlier analyses provide an interesting point of comparison for the
partial ancestor graph analysis.

The data consist of one response variable,

moth : log (1 + no. of moths caught in a light trap on one night),
and five covariates:

min : the minimum night temperature,

max : the previous day's maximum temperature,

wind : the average wind speed during the night,

rain . the amount of rain during the night

cloud: the percentage of starlight obscured by clouds
The data as given by Cochran are:



min max wind rain cloud moth
min 1.00
max 0.40 1.00
wind 0.37 0.02 1.00
rain 0.18 -0.09 0.05 1.00
cloud -0.46 0.02" -0.13 -0.47 1.00
moth 0.29 0.22 -0.24 0.11 -0.37 1.00
Variance 14.03 14.54 2.07 17.11 7.87 3.55

The original observations are not available, but Cochran implies that they come from a
complicated design with an effective sample size of 72.

A. Dempster's Model

Dempster (1972) fitted a covariance selection model to this data, which corresponds to the
following undirected graph:

. ) Dimension Deviance Deviance
max min wind +In(SS)*dim.
12 15.66 66.90

rain cloud moth

Figure 3: Dempster's Model
where conditional independence is encoded via separation, e.g. min 1L moth | cloud,wind.

Dempster arrived at his model via a forward selection procedure which terminated when it
found the first model for which the p-value was greater than 0.05; the p-value was
computed by comparing the Deviance to a 2 distribution with d.f. = (21 — dimension of
the model). We also give Deviance + In(Sample Size)*Dimension, since this is equal to the
BIC score + a constant (note that lower scores correspond to 'better' models under this
criterion).

B. Whittaker's Model

Whittaker (1990) presents an analysis based on a chain graph, based upon a division of the
variables into two blocks, the first containing the five covariates, the second containing the
response:



. i Dimension Deviance Deviance
max min wind

+In(SS)*dim.
\ ' \* 14 4.42 64.52

rain cloud—@» moth

Figure 4: Whittaker's Model!

Whittaker arrived at this model by first searching for an undirected model for the
covariates, and then regressing moth on the five covariates, selecting min, cloud, and wind
on the basis of the edge exclusion deviances (which is the deviance of the model with one
edge removed against the full model including all covariates). Note that this model implies
that cloud Il wind | min, and does not imply cloud 1. wind | min, moth whereas the
reverse is true of Dempster's model.

C. FCI Model

Applying the FCI algorithm to this data resulted in the Partial Ancestral Graph shown in

Figure 5. (The structural equation modelling programme EQS, developed by Peter Bentler,
was used to fit these models.)

. - Dimension Deviance Deviance
max O—P»-min —P»=wind +In(SS)*dim.
12 6.53 57.77
rainQ—Q cloudD—P»moth

Figure 5: PAG found by FCI search

This PAG imposes the following conditional independence constraints:
max A rain, cloud, moth;
min 1 rain, moth | cloud,
wind AL max, cloud, rain | min;
rain AL max, min, wind, moth | cloud.
This is not a complete list of conditional independences, but it is sufficient to uniquely

specify the PAG. Further, the PAG implies the following structural properties are true of

any DAG (possibly with latent variables) which is conditional independence equivalent to
the PAG:

min is not an ancestor of cloud or max;
wind is not an ancestor of min or moth;

moth is not an ancestor of cloud or wind;

IWwhen we used the Bentler's EQS programme to fit tkevsameddl 7dfihgatraker
reports a devianceof 4.42.
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min 1s an ancestor of wind,
there is an unmeasured common cause of moth and wind.

It is interesting to compare the FCI model to those of Whittaker and Dempster. In fact, the
FCI model is nested within Whittaker's model. Since the two models differ by 2 d.f. but
the difference in deviance is only 2.11, a likelihood ratio test finds no evidence against the
FCI model (p-value = 0.39). In fact, the FCI model has the same pairs of adjacent vertices
as in Dempster's model. The two extra edges present in Whittaker's model are the max—
cloud and min—moth edges. Let us examine these in turn:

In describing how he came up with his model Whittaker states that at first he fitted an
undirected model to the covariates, which did not include the max—cloud edge, since these
two variables are close to being uncorrelated. However, after examining the edge exclusion
deviance, which measured the dependence of max and cloud given min, wind and rain he
decided to include this extra edge, since the deviance indicated strong dependence, yet the
model without the edge would imply max I cloud | min, wind, rain . The FCI model
manages to accommodate both the marginal independence and the conditional
independence. In fact, in this case a DAG model such as shown in Figure 6 could also have -
achieved this.

max -——§» min —P»wind

rain —» cloud
Figure 6: DAG model for the covariates

This calls into question the motivation for blocking variables and fitting undirected graphs
within blocks, and directed edges between blocks, that is advocated by Whittaker and
others.

If we now examine the min—moth edge that is absent in the FCI PAG, but present in
Whittaker's model, this illustrates a potential shortcoming of regressing a response on all
previous covariates in order to determine those that are causes of the response. Consider
the DAG with latent variables Ty, Ty, shown in Figure 8. This DAG is conditional
independence equivalent to the FCI PAG over the variables {cloud, min, wind, moth}.
Further, it is compatible with the background knowledge that Whittaker used when
constructing his model: all the covariates temporally precede moth. However, although min
and moth are not directly related in this DAG, min and moth are dependent given the other
covariates cloud and wind.
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cloud min —§» wind

moth

Figure 8: A DAG with latent variables

It is well known that failing to include a confounding variable in a regression may lead to a
spurious dependence between two variables. What is perhaps less well known is that
including the wrong variable in a regression may lead to a spurious dependence: in this case
regressing moth on min, wind and cloud leads to a spurious dependence between moth
and min, and thus to the additional edge in Whittaker's model.

It should be stressed that in comparing the FCI model to Whittaker's model we do not wish
to imply that the FCI model is the 'true’ model for this dataset. With a comparatively small
sample size, as in this case, we would not expect the data to uniquely identify a single
model: this is borne out by the fact that there are many different PAG models with scores
that are relatively close. (See Figure 10.) The existence of so many different models with
relatively similar scores must temper any causal or structural inferences that we might wish
to draw from this analysis, unless all of the models receiving high scores share this feature
in common.

As described in section IV, it is not possible to score a PAG directly, but only through
parameterizing a MAG represented by it. The MAG used for scoring the FCI PAG is
shown in Figure 9.

max -—@» min —P»wind

rain @ cloud—» moth
Figure 9: MAG corresponding to PAG in Fig. 5

Note that the same BIC score would be obtained from scoring any other MAG represented
by the PAG. The FCI search is a heuristic search procedure based upon the results of a
series of conditional independence tests, and is not guaranteed to find the PAG with the
best BIC score (though it will do so asymptotically). However, it appears that in this
example the FCI algorithm did locate the PAG with the best score; a greedy search failed to
find a PAG with a higher score. A number of other PAGs, together with the associated
deviance and scores are given in Figure 10.
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Dimension Deviance Deviance

. +In(SS)*dim.
max O—Qmin —§»wind

13 6.50 62.01
rain O—CcloudD—»moth

max O——p-min —P»wind

g \ t 13 477 60.28

rainQ—cloudO—P»-moth

max O—P»-min @-Ppwind

‘\ t 13 4.77 59.11

rain <@§— cloud-@p-moth

max O—P»-min <@-Pwind
¢ 15 2.26 66.31
rain <d— cloud-@-P-moth

max O—#»min @-Prwind

12 11.13 62.37
rain <@ cloud-@§-Pmoth
max O—P»-min @-Pwind

12 7.52 58.76
rain O—Q cloud-@-Prmoth

Figure 9: Other PAG Models

VI.  Summary and Future Work

In this paper have introduced Partial Ancestral Graphs as a representation for equivalence
classes of DAGs with latent variables, that captures structural features that are common to
all the DAGs in a given equivalence class. We have presented a method for parameterizing
the set of Gaussian distributions defined by these conditional independence constraints.
This allows a BIC score to be calculated for a PAG. Finally, we have illustrated through an
example, that the class of PAG models allow greater flexibility in representing conditional
independence, leading to more parsimonious models. Research is currently focused upon
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parameterizing MAGs with discrete variables, and developing fast algorithms for
transforming PAGs into MAGs.
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