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MANUSCRIPT IN PROGRESS

We investigate the asymptotic consistency of causal inference procedures in the
framework of directed acyclic graphs (DAG’s) as developed by Spirtes, Glymour
and Scheines (SGS) and Pearl and Verma (PV). We show that there exist “point-
wise consistent” but not “uniformly consistent” procedures. These results have
implications for making inferences based on finite sample sizes and for construct-
ing valid confidence intervals for causal effects.

1. INTRODUCTION

The problem of inferring causal relationships between variables is a topic of continuing
interest. One promising approach that has received much attention lately is based on directed
acyclic graphs (DAG’s). In this approach, direct causal relationships among variables are
represented by arrows on a DAG. Hence, we refer to this as the “DAG framework” for causal
inference. Under weak assumptions, the DAG implies certain conditional independence
assumptions among the variables. In practice, one tries to deduce features of the underlying
DAG from observed independence relationsin the data. Statisticians are usually concerned
about the effect of unobserved confounding variables. But the DAG framework explicitly
allows for unobserved confounding. How is it possible to infer causal relationships when there
are unobserved confounders? This would seem to contradict standard statistical wisdom
about the difficulties of inferring causality from observational data. One might suspect that
the inferences are possible because the DAG approach has strong hidden assumptions. We
show in this paper that the apparent contradiction between the results in the DAG framework
and the conventional statistical wisdom are not really at odds with each other. Learning
about causal relationships is possible in the DAG framework but the type of learning is based
on pointwise consistency, rather than uniform consistency. The goal of this paper is to make
this point precise and, in doing so, to cast light on what is and is not learnable in causal
inference.

A brief overview of the framework of the paper and the results are as follows. We have
a set of random variables V' = (O,U) but we only observe the variables ©. The other

variables U are latent, unobserved variables. For example, suppose @ = {X,Y} where X
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is a binary variable that indicates whether or not a subject is a smoker or not, and Y is
a binary variable that indicates presence or absence of some lung disease. U represents all
possible unobserved confounding variables that are related to X and Y. We are interested
in the causal relationships between these variables in ©. For example, we want to know if
X causes Y. The possibility hat we are omitting relevant variables that affect both X and
Y is obviated since U is assumed to contain all possible confounding variables.

In the DAG framework, we assume that the variables V have some joint distribution P
which is “Markov” and “faithful” with respect to some DAG G. Each vertex in G corresponds
to one variable in V' and each arrow in G represents a direct causal relationship. The Markov
assumption means roughly that the absence of arrows in G induce independence relationships
between variables. The faithfulness assumption means roughly that the presence of arrows
in G induce dependence relationships between variables. Our goal is to infer features of G
such as “is there an arrow frpm X to Y'?” Specifically, consider two questions:

(1) Give ohly the joint distribution Po for O, can we deduce certain features of G?

(2) Given n i.i.d. data points from Py, can we reliably infer certain features of G?

Spirtes, Glymour and Scheines (SGS) (1993) and Pearl and Verma (PV) (1991) show
that the answer to (1) is yes. More precisely they show that, given Pp, it is possible to find
a non-trivial set of DAG’s that contains the true DAG G. Two paradigmatic examples in
Section 2 will show how the reasoning works.

In practice, we only have a sample from Pp. This brings us to question (2). Now the
answer to (2) depends on what we mean by “reliable.” SGS claim, correctly, that from the
sample, we can consistently deduce certain features of the DAG for V. Specifically, let G,
denote the true DAG and let O = (0,...,0,) denote the observed data. SGS create a
procedure which, given O™, yields a a non-trivial set of graphs G(O™). They claim, correctly,
that

Pr(Go ¢ G(O™) =0 asn — oo. (1)

This may seem surprising since G involves an unknown numBer of unobservable \}ariables
” - _
Equation (1) is an example of pointwise consistency: The probability of an incorrect
result tends to 0. On the other hand, there are good reasons that one might demand a
stronger mode of consistency, namely, some form of uniform consistency. We will show

that — in the absence of randomization or specific assumptions about confounding — causal



procedures cannot in general be uniformly consistent.

In Section 2 we give a brief introduction to causal inference based on DAG’s. In Section
3 we discuss consistent tests. In Section 4 we take up the main claim of the paper: the
non-existence of uniformly consistent causal inference procedures. Section 5 examines the
implications for confidence intervals and point estimates. Section 6 discusses sensitivity
analysis, section 7 discusses the philosophical implications. Proof of results are in Section
8. Throughout the paper, we write X I1 Y to mean that the random variables X and Y are
independent. Similarly, we write X IIY|Z to mean that the random variables X and Y are

independent given Z.
2. CAUSAL INFERENCE

Let V = (Xi,...,X}) be a set of random variables. For simplicity, assume each X ; is
discrete. Consider a DAG G where each node in G corresponds to one variable in V. An
arrow from X; to X; represents the fact that X; is a direct cause of X;. Let PA; be the
parents of Xj, i.e. the set of variables with arrows pointing into X;. A distribution P with

mass function p “is Markov to G” if its density p can be written
n
p(z1,. .., zx) = [ p(zilpas).
i=1

Let P = P(G) be all probability distributions that are-Markov to G. Given p € P, let Z(p)
represent all independence and conditional independence relation implied by p. We say that
p is “faithful” to G if '
T(p) = NeerZ(q).

In other words, p is faithful if it does not possess “extra” independence relations not shared
by all the others distributions in P. In cases where P can be parameterized by a family
of distributions with a parameter # of finite dimension, the set of unfaithful distributions
typically has Lebesgue measure 0 (reference xxxxx). This is one reason for taking faithfulness -
as an assumption. Moreover, since unfaithfulness represents independencies that arise by
coincidence rather than through structural reasons, it is often reasonable to rule out such
distributions on the principle of parsimony.

The faithfulness assumption provides an extremely powerful lever for.turning judgments

about statistical independence into claims about causality. If statistical judgments about



independence are correct, then in some circumstances (which we will illustrate here) faithful-
ness can eliminate the possibility of unmeasured confounders and establish the existence of
a causal relation. Let Q be all the probability distributions that are Markov and faithful to
a DAG G. Then the independence relations in every member of 2 can be computed directly
from G by applying Pearl’s d-separation criterion to G (Pear]l 1988, SGS 1993). Thus it is
easy to begin with a DAG over a set of random variables V and compute the independence
relations that hold among V in every probability distribution Markov and faithful to G, a
set which we say is faithfully generated by G.

Inferring causal relations goes the other way, however. We begin with the independence
relations implied by a distribution P, which in practice we must decide statistically from
data, and make inferences about the causal structure that might have faithfully generated P.
Not surprisingly, many different DAGs over V can faithfully generate the same set of inde-
pendence relations. Such DAGs are d-separation equivalent, and they are indistinguishable
from independence relations alone. For example, illustrating the adage that correlation is
not causation, if V = {X,Y} and X and Y are not independent, the DAGS G1 =X — Y,
and G2 = X + Y are d-separation equivalent and thus indistinguishable from independence
facts alone, even assuming faithfulness. If we further allow that our data might only include
a proper subset of the variables in the DAG that faithfully generated the full data, i.e.,
there might be unmeasured confounders, then the situation is even worse. Suppose that
V = {X,Y,U}, but that the measured variables O = {X,Y} and ~ X II'Y in Pp, the joint
distribution over O, then the set of DAGs that could have faithfully generated a distribution
P for which Py is the marginal over O is in Figure RS1 1.

How are we to know that U is the only unmeasured confounder? The DAGs in Figure
RS2, and an infinity of others like them, could also have faithfully generated a distribution
P for which Py is the marginal over O. ‘ o

The situation may appear completely hopeless for causal inference, but isn’t. Suppose
that X and Y are independent. Then there is no DAG with oﬁr without unmeasured variables
that could have faithfully generated a distribution P for which P, is the marginal ox}er Oin
which:

X is a cause of Y, or

Y is a cause of X, or

there exists some unmeasured U that is a cause of both X and Y.

4



Because these features are common to every member of the equivalence class of DAGs
that could have faithfully generated a distribution for which Py is the marginal, this feature
of the causal structure can be tested, provided one is willing to assume faithfulness.

If one is not willing to assume faithfulness, then even this feature of the generating
causal structure cannot be inferred. For example, if the DAG RS3 is interpreted as a linear
structural equation model in which all variables are normally distributed with mean 0 and
variance 1, then if a = -bc then X ITY, i.e., the distribution is unfaithful and has produced
an independence by a reduction in the dimensionality of the parameter space.

In general, the goal of causal inference procedures based on the work of Verma and Pearl
and SGS is to output the features of the causal structure that are shared by every member
of an equivalence class of causal structures, where every member of the class faithfully
generates the independence relations found to hold in a sample of measured data So. SGS,
and more recently Richardson (1996), have defined a graphical representation of d-separation
equivalence classes, Partial Ancestral Graphs (PAGs), from which one can straightforwardly
read off either features of the generating causal structure or the precise nature of our causal
ignorance. In a PAG, each pair of variables X and Y are connected by one of the following

kinds of edges, along with their causal interpretations:

X Y X and Y are not directly causally connected

X 0-0 Y X and Y are causally connected (cc), but in an unknown way

X o0o->YX and Y are cc, and Y is not a cause of X

X <-0YXand Y are cc, and Y is not a cause of X

X<->YXand Y are cc, X is not a cause of Y, and Y is not a cause of X
X-> YXis acause of Y

The interpretations extend to every member of the equivalence class of DAGs that
could have faithfully generated the independence relations in Po. The FCI algorithm (SGS,
Scheines, et al., 1994) takes independence facts and outputs a PAG that represents the fea-
tures of the generating structures that can be determined under the faithfulness assumption.
So, for example, given X I1Y, the FCI algorithm would output the PAG: X Y, which means
that X and Y are not causally connected. Given ~ X I1'Y then the FCI algorithm would
output: Xo—oY, which means that X and Y are causally connected, but in an unknown way.

Even though both of these PAGs represent an infinity of equivalent causal structures, they
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each effectively choose one member of the d-separation partition of all the generating graphs
that involve X and Y. Given three measured variables {X,Y, Z} and two independence facts:
XY and Y II Z, then FCI would output:

Xo->Y <02

which means that:

i) X and Z are not causally connected

ii) X and Y are causally connected, but Y is not a cause of X, and

iii) Y and Z are causally connected, but Y is not a cause of Z.

‘Thus, although we can infer nothing about the causes that do exist, by assuming faithful-
ness we can infer that Y is not a cause of either X or Z, a feature of the generating structure
that in many circumstances would be of large practical value. Suppose that we assume that
X is prior in time to Y, which is prior in time to Z, and we use this knowledge to exclude
the possibility that Y is a cause of X and that Z is a cause of X or Y. Suppose further that
from sample data we decide that X ITY|Z. The the PAG output by the FCI algorithm is:

Xo-> Y -> Z

which means that:

i) X and Y are causally connected, and Y is not a cause of X, and’

ii) X and Z are not directly causally connected, and

iii) Y'is a cause of Z.

Although there might be an infinity of unobserved confounders influencing X and Y, in
no member of the equivalence class is there any confounder between Y and Z, nor is there
any member in which Z is a cause of Y. If there were, X and Y would not be d-separated by
Z, and X I1Y|Z would mean that the distribution was unfaithful. Without the assumption
of faithfulness, from the same facts we could only conclude that:

i) X and Y are causally connected

ii) X and Z are causally connected

iii) Y and Z are causally connected

but we would have no further knowledge of the features of the generating structure. Given
the-independence facts true of the generating distribution, and the Markov and faithfulness
assumptions, then the output of the FCI algorithm is an equivalence class that is guaranteed

to include the generating DAG.



3. CONSISTENT TESTS

At the heart of these causal procedures is some test or model search technique for choosing
between alternative causal models. In this section we review some basic definitions and
results about statistical tests in general. We shall mainly be concerned with asymptotic
tests and their relationship to finite sample sizes.

3.1. Consistent Tests. Suppose we have a model consisting of a set of probability
measures () = {Py; 0 € 1} where each P lives on a sample space V. We observe i.i.d. data
V* = (W,...,V,) from some probability measure P in the model. Let V* =V x -+ x V.
For brevity, we write P instead of P™ for the product measure.

The “null hypothesis” is a subset Qy C €. Suppose we want to test:
Ho :Pe Qo versus H1 : P ¢ Qo.

As usual, a test consists of a rejection region R, C Vv if VP € R, we reject Hy. We shall
.be studying the asymptotic properties of tests. Thus, suppose we specify a test R,, for each
sample size n and let R = (R, Ry, ...).

Sometimes we do not observe V but rather we observe some function of ¥ = (V). For
example, V = (O,U) and we only observe . Obviously, the test can be based only on the
observable Y = #(V'). In these cases, it will be understood that the rejection regions R, are
subsets of J* = ) x --- X Y or, in other words, that the indicator function for R,is Y™
measurable. In what follows, all limits refer to the sample size n tending to co. When we

refer to a test, we mean the sequence of tests R. -

DEFINITION 1. A test is pointwise consistent if
(i) for every P €, P(R,,) — 0 and
(ii) for every P ¢ Qq, P(R,) — 1.

To discuss the notion of uniform consistency, we need to introduce a topology on €. For
this we use the total variation metric defined by d(P,Q) = sup, |P(A4) — Q(A)|. Also define
d(P, Q) = infgeq, d(P, Q) and for every é > 0 let Q5 = {P;d(P, Q) < 4}

DEFINITION 2. A test is uniformly consistent if
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(i) Suppeno P(.R/n) — 0 and
(ii) for every § > 0, Suppeos P(Rn) — 1.

Remark: To avoid triviality, if (0 is dense in Q then we say that no uniformly consistent
test exists.

The difference between a pointwise and uniformly consistent test is the presence of the
suprema, in the definitions. The reason why the difference matters is discussed in Section
3.4.

3.2. Hypotheses About Causal Graphs. The definitions above do not immediately
relate to hypotheses about causal graphs. We make this connection as follows. Suppose that
G is a DAG. A sub-graph is a DAG obtained from G by deleting one or more arrows in G.
Let A and B be two sets of sub-graphs. Let 4 be all distributions faithful to some DAG in
A and let Qp be all distributions faithful to some DAG in B. Finally, let Q = Q4 U Qp. If
24 NQp = B then we say that (A4, B) is a proper dichotomization of G.

In the remainder of the paper, we shall consider hypotheses about sets of subgraphs.
When we do so, it is understood that these can be translated into statements about sets of
distributions, as described in the previous paragraph.

3.3. Importance of Uniform Consistency. Pointwise and uniformly consistent tests
both guarantee good behavior with large samples, but there are important practical differ-
ences between these modes of convergence.

First, uniform consistency is what links asymptotic (i.e. large sample) procedures to
finite samples. To see this, suppose that, given € > 0, we wish to find a sample size ng(e)
such that the probability of falsely rejecting the null hypothesis is bounded above by e if
n > ng(e). To achieve this goal with a test that is pointwise but not uniformly consistent
requires one to know the true data generating probability. That is, n9(€) is a function of the
unknown P. Put another way, if the test is pointwise but not uniformly consistent, then for
any e,

inf{ng; P"(R,) <e¢forall P€Qy and foralln > ng} = oo.

There is no finite sample size that bounds the probability of an error. If a test if uniformly
consistent then we can find ng(€) which does not depénd ofi P and such that suppeq, P*(Rs) <

€ for all n > ng(e). Furthermore, if the test is uniformly consistent, then given an error rate



€ > 0 and a é > 0, we find an ng such that, for all n > ng, the probability of falsely rejecting
the null is bounded above by € and the probability of failing to reject when d(P,Qp) > 4 is
also bounded above by ¢ for all n > ng, without knowledge of P.

Second, there is a relationship between tests and confidence intervals. Loosely speaking,
tests cannot be inverted to form confidence intervals unless they are uniformly consistent.
We discuss this further in Section 5.

In the next section we show that it is possible to construct uniformly consistent and

strongly consistent tests of associations but that it is difficult to do so for causal effects.

4. NON-EXISTENCE OF UNIFORMLY CONSISTENT TESTS FOR
CAUSAL HYPOTHESES.

In this section we prove the non-existence of uniformly consistent tests for causal hypothe-
ses in the two paradigmatic examples from Section 2. Recall that the first case involves a
potential cause X, an outcome Y and a potential confounder U. The second case involves a
covariate X, a potential cause Y, an outcome Z and two potential confounder U and V.

4.1. Case 1: Two Variables. The starting point here are two observed random
variables X and Y. Recall that from observing X and Y to be independent in a large
sample, the conclusion from the DAG framework is that X does not cause Y. Suppose that
V = (X,Y,U), that X and Y are known to be time ordered and that X precedes Y. The
variable U is meant to represent possible confounding variables. There are in fact infinitely
many choices V in which to embed X,Y. But one latent variable U is enough to demonstrate
the lack of a uniformly consistent test.

The question of interest is whether X causes Y i.e. is there an arrow from X to Y7 To
be concrete, we will take X and Y to be binary and we take U to be discrete. We assume
that the random variable U takes at least four distinct values. Let G be the complete DAG
for V' (with an arrow from X to Y) as in Figure 1. ,

Now we have to define what hypothesis we shall test. Pursuant to the discussion in Section -
3, this means we need to dichotomize the sub-graphs into two disjoint sets of subgraphs A
and B, say. Since we want to know whether X causes Y it seems natural to take A to be all
distributions faithful to any sub-graph with an arrow from X to Y and to take B to be the
complement. However, contrary to intuition, this is not a fruitful way to proceed, and it is

not the way that procedures like those in SGS work. The reason why this natural dichotomy
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is not appropriate is deferred until section 4.4. Instead, we dichotomize based on whether
or not X II'Y holds or not. Specifically, let A be all subgraphs with an arrow from X to Y
and also let A include the sub-graph where there is no arrow from X to Y but there is an
arrow from U to X and from U to Y. Let B be all other subgraphs. See Figure 2. Assuming
faithfulness, the set of distributions in B is equivalent to X IIY and the set of distributions
in A is equivalent to “not X II1Y™.

~ Note that if we accept the hypothesis B then we can conclude that “X does not cause
Y” since each graph in B has no arrow from X to Y. If we accept A our conclusion is “we
cannot make a decision about whether X causes Y” since some graphs in A have arrows
from X to Y while others do not. Thus, the best we can do is discover non-causation. In
Section 4.2 we consider a case where there is the possibility of discovering causation.

The results about the existence of pointwise and uniformly consistent tests depend on
whether or not U is observed and on whether A or B is treated as the null hypothesis. In
practice, we are really interested in the case where U is unobserved. We include the case
where U is observed to make it clear exactly what is lost by the presence of ‘unobserved
confounding. The proof of Theorem 1 and all other results are deferred until section 8.

"THEOREM 1. The ezistence or non-ezistence of pointwise consistent and uniformly

consistent tests is as summarized in Table 1.

| Ho | U observed? || Pointwise Consistent? | Uniformly Consistent? |
PeQy \/ ' \/ ' X
PeQp |+ Vv v
PeQy | x Vv | x
PeQp | x \/ X

Table 1. Summary of results for Theorem 1. i/ = Yes and x = No.

The cases where Hy : P € Q4 do not have uniformly consistent tests since A¢ is dense in
(). The more interesting case is when Hp : P € Qp. In this case, if U we observed, we could
end up concluding that X is not a cause of Y using a uniformly consistent test. We cannot
do so of U is unobserved as in an observational study.

It is worth recalling that there do exist uniformly consistent tests for testing associations.

PROPOSITION 1. Let Qq be all P's such that X 1Y wunder P and let Q; all other

distributions in P. Then there ezists a uniformly consistent test for Hy : P € §y versus
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lePeﬂl.

4.2. Case 2. Now consider time ordered variables X,Y and Z and potential confounding
variables U and V. We are interested in the causal effect of ¥ on Z. The directed acyclic
graph to describe the model is given in Figure 3. Again, we take X,Y and Z be to be binary
and we take U and V to be discrete, each taking at least four unique values.

The dichotomization is as follows. Let B consist of all subgraphs in which (i) there is
an arrow from X to Y, (ii) there is an arrow from Y to Z, (iii) there is at most one arrow
emanating from U and (iv) there is at most one arrow emanating from V. Let A be all
other subgraphs. If we accept the hypothesis B then we can conclude that Y causes Z. If
we accept A then the conclusion is “no decision about causation.” In this sense, this case is
the dual of Case 1. Some further intuition on this dichotomy is given in the next Lemma. -

LEMMA 1. Let Q4 be all distributions faithful to some graph in A and let Qp be all
distributions faithful to some graph in B. Then, assuming faithfulness, P € B if and only

if, under P we have

(XIO Z|Y) and (not X IIY) and (not Y II Z).

THEOREM 2. Under the above dichotomization, the existence or non-ezistence of point-

wise consistent and uniformly consistent tests is as summarized in Table 2.

Hy | U observed? || Pointwise Consistent? | Uniformly Consistent? | ‘
A |V v X
B | v v
A | x Vv X
B | x v X

Table 2. Summary of results for Theorem 2. 1/ = Yes and x = No.

4.3. Why Randomized Experiments Do Have Uniformly Consistent Tests.
In a randomized experiment, it is possible to construct uniformly consistent tests of causal

hypotheses. To see this, return to case 1 of Section 4.1. Randomization breaks the arrow
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from U to X in Figure 1. The hypothesis Hy : “no arrow from X to Y” is then equivalent
to Hyp: X ITY and there are well known uniformly consistent tests, as in Proposition 1.

4.4. Other Choices of Dichotomizations. The choice of dichotomizations in Sections
4.1 and 4.2 might seem odd. For example, in case 1, it might seem more natural to take A
to be all graphs with an arrow from X to ¥ and B to be all graphs with no arrow from X to
Y. Then A corresponds to “X causes Y” and B corresponds to “X does not cause Y. Let
us call this the “natural dichotomization.” However, it is easy to see that this choice makes
the situation worse. Indeed, there will no longer exist pointwise consistent tests. The reason
is due to the graph G, in which there is no arrow from X to Y but there are arrows from U
to X and from U to Y. In the natural dichotomization, G, is moved from A to B. But the
(X,Y) marginal distribution under G, is indistinguishable from that of the graph X —» Y
in A. This makes the two hypotheses indistinguishable. We state this formally below.

THEOREM 3. Using the natural dichotomy described above, there are no pointwise or
uniformly consistent tests if U is unobserved.

In fact, it can be shown that the dichotomy in Section 4.1, which is the dichotomy used
by SGS, is the only one that leads to a non-trivial conclusion and has pointwise consistency.

Similar comments apply to Case 2.
5. CONFIDENCE INTERVALS AND.POINT ESTIMATES

So far we have confined attention to testing. In practice, we are often more interested in
point estimation and interval estimation. To proceed, then, we need to define what exactly
we are estimating. ..

‘The parameter of interest in causal problems is the causal effect or treatment effect. It
is defined precisely in Robins (xxxx) using a functional called the G-equation and is also
defined in SGS using the manipulation theorem. Both approaches lead to the same formula.

In case 1, (one version of) the causal effect is given by
6= /[PT(Y =X =1,U=u)— Pr(Y¥ = 1|X = 0,U = u)]dPy(u)

which can be thought of as the proportion of the population who would have Y = 1 if X
were set to 1, minus the proportion of the population who would have Y = 1 if X were set
to 0. In the language of counterfactuals (Neyman xxxx, Rubin xxxx, Robins'xxxx); this is
equivalent to 6 = E(Y;) — E(Y,) where Y; is the outcome of a subject when X = 1 and Yo
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is the outcome of a subject when X = 0. When we want to be clear that § depends on P
we write 0 = T'(P).

In case 2 the causal effect is
6= /[Pr(Z =1y =1,U=uV =0v) - Pr(Z=1|]Y =0,U =,V = v)|dPyy(u,v).

In each case, note that § € © = [-1,1].
5.1. Confidence Intervals. An asymptotic 1 — a confidence region I, is a function of
the observable into the subsets of © such that

liminf, Il)IéléP(T(P) €el,)>1-aq.

A confidence region is consistent if it eventually omits all false values i.e. if T(Q) # T(P)
implies that
P(T(@Q) eI, —O0.

THEOREM 4. Let € (0,1). In cases 1 and 2 from Section 4, if U is not observed then
there do not exist consistent 1 — a confidence regions for 6.
5.2. Point Estimation. A point estimate is a function 6, of the observable data into

©. A point estimate is consistent if, for every P and every e > 0,
P(|T(P) — 6| > €) = 0.

A point estimate is uniformly consistent if, for every compact set K C , and for every
e> 0, ‘

sup P(|T(P) — 0,] > €) = 0.

PeK

THEOREM 5. Consider the two cases studied in Section 4. In both cases, there does not

exist a uniformly consistent point estimate.
8. PROOFS
Proof of Theorem 1. Pointwise Consistency Results.

Case 1: Hy = B; U is observed. Let A, be the standard likelihood ratio statistic
based on (X™,Y™) for testing Hy : A1l B versus H, : not AIl B. Clearly, a pointwise

consistent test for I:IO versus H; is also a pointwise consistent test for Hy versus H;. Let
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Ry, = {(X™,Y"); An > cn(an)} where cy(2) is such that Pr(x? > cu(t)) = ¢, and o, — 0.
Standard asymptotic theory shows that, under Hp, A, converges in distribution to a x?
random variable. Hence, for any P € Qy, P*(R,) = ay + 0o(1) —= 0.

On the other hand, if P € H; then again a standard result from asymptotic theory of
likelihood ratio tests shows that the test has asymptotic power 1, i.e. P*(R,) — 1.

Case 2: Hy = A; U is observed. Use the same argument but define the rejection region

to be the complement of R, as defined above.

Case 3: Hy = B; U is unobserved. Note that the proof for the case where U was observed

did not make use of U, i.e. A, is (X™,Y™) measurable. So the same proof applies.

Case 4: Hy = A; U is unobserved. Same as above.

Proof of Theorem 1: Uniform Consistency Results.
Case 1: Hy = B; U is observed. Note that P € B if and only if
XY and XIY|U.

Let Ay, be the likelihood ratio test for XIIY and let I', be the likelihood ratio test for XITIY'|U.
(The latter is a function of (X", Y™, U") which is permitted since U is observed.) Standard
asymptotic theory shows that a uniformly consistent test for X ITY can be constructed by
taking R, = {(X™®, Y™, U"™); A, > c,} for an appropriate choice of c,. Similarly, a uniformly
consistent test for X IIY'|U can be constructed by taking S, = {(X*, Y™, U"); T, > d,} for
an appropriate choice of ¢,. Let T;, = R, U S,. It is easy to see that T,, forms a uniformly
consistent test for H,.

Case 2: Hy = A; U is observed. Since A€ is dense in {2, the result follows from the remark
after Definition 3.
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Case 3: Hy = B; U is unobserved. In what follows, if P is any distribution for (X,Y,U)
then P will denote the (X,Y) marginal of P. We will now find two distributions P and Q
and a positive number & > 0 such that (i) d(P, Q) > 4, (i) Q € Q, (iii) P = §, (iv) P is
unfaithful, (v) for all small € > 0, there exists a faithful P, € Q; such that d(P, P,) < e.

In Table 3 we list the 16 atoms of the sample space and the mass function p of P.

X 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
Y 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
U 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
p 0 0 0 1/4 0 0 1/4 0 0 1/4 0 0 1/4 0 0 0
I | sqa1 sqaz sgaz  3qas 3gay Sgaz sgasz  sqas 5ga; 3Sqay Sqas  Sqag 5Ga; 8qaz 3qa 3qay

Table 3. Mass Functions for Proof of Theorem 1.

Let @ be the uniform distribution. Then @ € Q and it is easy to see that P = Q. Thus,
(ii) and (iii) hold. Also, direct calculations show that, under P, X is not independent of U
and Y is not independent of (X, U). On the other hand, from (iii) and the fact that X ITY
under @), we see that X IIY under P. Thus, P is unfaithful so (iv) holds.

Next we verify (i). Let 6 = 1/32. We can decompose ) into three disjoint sets Qp,
Q2 and Qg3 where R € Qq; iff (X,Y,U) are mutually independent under R, R €
iff X and U are dependent and Y is independent of (X,U) and, R € Qg3 iff Y and U
are dependent and X is independent of (Y,;U). Consider a R in Qy;. Then R must have
a mass function r of the form shown in Table 3, where s,q € [0,1], a1,as,as,a4 > 0,
25=16;=1,5=1—sand §=1—gq. A well known property of total variation distance is

that d(P,Q) = 1 3", |p(z) — g(2)| the sum being over all points in he sample space. Thus,

2d(P,R) = sq(1 - a4)+ sq(1 — as) +3g(1 — a2) +3g(1 — a,)

1 1 -
+ + +l — 3qa

L
4 4 4 4
Suppose first that p > 1/2 and s > 1/2. If azsq > & then 2d(P,Q) > 6. If not, then-
as < §/(sq) < 44. Hence,

‘ 1
——sqa4‘+‘——sqa3 — —3qay

s 1
<-a3<20 =—.
sgas 2a3_6 16
Thus,
'1 i1 _1..>6
1% =377

In either case then, 2d(P,Q) > 6. When one or both of s and g is not greater than or
equal to 1/2, a similar argument shows that 2d(P, Q) > 8. We have thus demonstrated that
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d(P, Q1) > 1/64. It can be shown that d(P, Qpz) > 1/64 and d(P,{3) > 1/64 using similar
arguments. The details are omitted.

Fix € > 0. It is possible to find a faithful distribution P, such that d(P, P) < e. This
can be seen by perturbing the mass function of P by a small amount and using continuity
of d(P, R). Note that d(P1,$%) > ¢ — € so that P € Qf, for ¢ small.

Suppose there exists a uniformly consistent test with rejection regions Ry, Ry, .... Note

that since U is unobserved, the test is (X™,Y™) measurable. Now,

Q(Rn)

Q(R,) since R, depends only on (X", Y™)
P(R,) since P = Q

P(R,) since R, depends only on (X™, Y™)
Py(R,) — ¢ since d(P,P) <e.

AVAN|

Since the test is consistent and since P, € Qf ,, P1(R,) — 1. Hence, liminf,Q(R,) > 1 —e.
Since this holds for all € > 0, it follows that lim,Q(R,) = 1. Thus, lim, suppcq P(R,) >
lim, Q(R,) = 1 contradicting the fact that lim, suppco P(R;) should tend to 0 for a uni-

formly consistent test.

Case 4: Hy = A; U is unobserved. Since A°¢ is dense in Q, the result follows from the
remark after Definition 3.

This completes the proof of Theorem 1. O
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Figure 1. Directed Acyclic Graph for Case 1.
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Figure 2. Dichotomization for Case 1.
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