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Abstract. Let L be a language containing the modal operator B — for
full belief. An information model is a set E of stable L-theories ([19],
[21], [30], [27]). A sentence is valid if it is accepted in all theories of every
model. We show that a formula A is valid if and only if it is a theorem
of the modal system S5.

The second part of the paper considers the possibility of providing prob-
abilistic foundations for full belief. We study a proposal presented by
Bas van Fraassen in [31]. Some of the results proved in [31] are general-
ized (especially theorem 5.2) and the dynamic aspects of the model are
discussed. We show that a characterizations of probability kinematics
compatible with van Fraassen’s proposal is cumuletive - inputs intro-
duced at any stage in a series of changes are rigidly maintained through
subsequent changes. Finally we consider the range of applicability of cu-
mulative models of belief change.

1 Qualitative models of full belief

Acceptance as true and full belief are closely related epistemic attitudes. Com-
mitment to full belief is mirrored by commitment to accept as true; and commit-
ment not to accept is mirrored by commitment not to fully believe. These ideas
can be rendered formally by appealing to a regimented language L containing a
modal operator B. In order to use a uniform notation we can focus on the set of
consistent theories o of L obeying the following two constraints:

(Al)Aeciff BA)eo
(A2)A¢oiff ~B(A)€o

o can be seen in this context as a commitment set representing the doxastic
commitments of an agent at certain instant t. One can say that an agent explic-
itly believes a finite set of sentences M, but that he is doxastically committed
to the closure of M — under the classical notion of logical consequence. Then
membership in o represents commitment to accept and lack of membership in o
represents commitment no to accept.

The account of full belief summarized above was first articulated by Isaac
Levi in [20] and [21] - following pioneering ideas of De Finetti.! Formally simi-
lar approaches have been proposed in computer science (see [27] and [12]) and

! De Finetti’s remarks appear in [9] chapter 2.



philosophy [30]. Different models of the logic of full belief have been presented
recently by Van McGee in {24] and [31] (among others). All these approaches
share an interest in the study of the logic of certainty. Nevertheless, some of
these approaches tend to prioritize, in the order of explanation, probability over
(full) belief while others see this reduction as problematic. In the first part of
this paper we will take the notion of full belief as a primitive and we will study
its logic. The second part of the paper will be devoted to study recent attempts
to explicate the notion of full belief via a probabilistic reduction.

The logical behavior of theories closed under A1-2 has been recently consid-
ered independently by several researchers in different disciplines. In computer
science the aforementioned theories are called stable theories,? and the study of
such theories is considered part of autoepistemic logic, a branch of intensional
logic introduced by Robert Moore (see[27] for a foundational introduction to
the subject). Autoepistemic logic has been, nevertheless, motivated by different
ideas than the ones presented above.

The main intuition in autoepistemic logic is as follows: one starts with a
premise set, which typically is not closed. Then the idea is to capture the final
states that an agent might reach by reflecting on his beliefs and by making
inferences from them and about them. As Stalnaker explains in [30] these final
states must meet two intuitive conditions: first they must be stable, in the sense
that no further conclusions can be drawn from them; and secondly they should
be grounded in the initial (usually not closed) premise set. A theory T over the
language L is stable as long as it is deductively closed and it is also closed under
A1-2. Groundedness is usually captured via a syntactic definition of a fixed point.

Most of the work in autoepistemic logic has consisted in specifying useful
formal definitions of groundedness. More recently a possible world semantics
has been developed (see [27] for details and [12] for the first completeness re-
sult using possible worlds semantics). For the view presented here the notion of
groundedness is unimportant and the space of all stable theories plays a different
role than the one that they play in eutoepistemic theories. We are interested in
formulating acceptance rules for full belief, not in specifying truth conditions for
(an eventually indexical) epistemic operator. Therefore we prefer to develop a
purely syntactical modelling.

According to the view defended here the stable theories represent the infor-
mational commitments of the agent rather than the information explicitly avail-
able for the purposes of reasoning and acting. A thorough presentation of the
importance of adopting the previous interpretation of stable theories rather than
the one prevalent in autoepistemic logic is presented in [3]. I will only summarize
some of the features of the view of saturated theories defended here. First, we
characterize an operator of certainty or full belief (via acceptability conditions), -
not a doxastic notion used to represent the uncertainty of the agent. Second,
we are tacitly assuming that both acceptance and belief carry commitments.

2 The terminology was probably introduced by Stalnaker in [30].



Thirdly we focus on the linguistic description of mental acts. We are not giving
an account of speech acts or an account of dozrastic reports.>

An information model is a set of theories of L closed under Al-2. In order
to distinguish the view proposed here from the more dynamical one used in
autoepistemic logic we will call such theories saturated. They can be seen as
the linguistic representation of the commitments carried by the set of feasible
states of information of a rational agent at a given instant. A1 and A2 are now
seen as acceptance rules for full belief. One can then ask which are the modal
formulae that are accepted in all saturated theories of a given model. Following
* the notation used in [20], [7] and [6], as well as [21], we can call such formulae
positively valid in a model, and positively valid when positively valid in all models.
Let Th(S5) denote the set of theorems of the system S5 of modal logic defined
as follows:

We will use the meta-letters A, B, C,... to refer to formulas of L. S5 consists
of the following axioms (1) All tautologies, (2) (B(A) A B(A — B)) — B(A),
(3) the alethic axiom: B(A) — A, (4) the positive introspection axiom: B(A)
—» B(B(A)), (5) the negative introspection axiom: —B(A) — B(—B(A)). The
rules of inference are modus ponens and the rule that guarantees that B(A) is a
theorem of S5 whenever A is a theorem of S5.

Now we can establish the following fact:

Theorem 1. A € Th(S5) if and only if A is positively valid.

Proof. We need to show that a formula A of L is positively valid if and only if
A is a theorem of S5. From left to right the proof is not demanding. From right
to left the proof is slightly harder.

We will assume that « is not a S5 theorem and we will show that a does not
belong to some saturated theory T. Take K = S5 U — B(a). K is consistent. For
suppose that K were inconsistent. Then, by axiom (3), a is an S5 theorem.

We form now a list L of all formulae of L: g1, g2,..., gn,... With respect to
this list, we construct an infinite sequence of sets

Iy, L., In,....

as follows. As I we take K, i.e.,

I =K

Then, for each positive integer n we set:

Loy = Cn(I; U {git1}) if I;, gi+1 is consistent
LT otherwise

% The last distinction has several formal and conceptual consequences. For example,
one can define the following notion of consequence: I" entails A iff A is believed in
any stable theory grounded on I'. Stalnaker proposed in [30] to use such notion of
consequence to formalize the (Gricean) notion of (generalized) conversational impli-
cature. A criticism of this idea is presented in [3] where a different view of the former
notion of entailment is offered.



Form, then, a Lindenbaum-type set: K = C(UI;), where UI; denotes the union
of all the infinitely many sets I;. K is a complete S5-theory. Nevertheless K is
not saturated. It is interesting to see why not. Consider any formula A added at
stage i. At stage i + j one could consistently add —B(A) - if LL is such that B(A)
has not been added yet. This is so because the formula A A —-B(A), although
epistemically problematic, is logically consistent. To put it in a different way,
the modal system S5 is unable to capture syntactically the paradoxical nature
of Moore’s paradox (‘this is my hand, but I do not fully believe it’).*

But the formula A A —~B(A) does not belong to any consistent saturated
theory. For say (by contradiction) that A A ~B(A) is in a consistent saturated
theory T. Then =B(A) € T and hence (by A2) A ¢ T which leads to an immediate
contradiction. So, the standard Henkin method used in modal logic to prove
completeness does not suffice. We propose the following Moore saturation® of K:

M ={A: BA) e K}

M is consistent. For suppose by contradiction that 1 € M. Then, B(l) €
K. But since S5 C K, -B(L)e K. Therefore we have a contradiction because
it is easy to check that K is consistent. M is a S5 theory. It is easy to see that
all S5 theorems are in M. In fact, B(A) is a S5-theorem whenever A is a S5-
theorem and, by construction, all S5-theorems are in K . In general, assume that
A entails B. Then B(A — B) is in K . Assume that A is in M. Then B(A) €
K. Therefore B(B) K — K is a complete S5-theory ~ and this guarantees that
B is in M. Assume that A, B are in M. Then B(A), B(B) are in K. Now the
formula B(A) A B(B) — B(A A B) is a S5-theorem, and therefore A A B is in
M

We will check now that M is closed under Al and A2. First we will check Al.
Assume that B(A) € M. Assume now by contradiction that A ¢ M. Then B(A)
¢ K, and since K is a complete S5 theory, ~B(A) € K. Therefore, by negative
introspection, B(~B(A)) € K. This, in turn, entails that ~B(A) € M, against
the consistency of M. Assume now that A € M. Then B(A) € K. By positive
introspection, B(B(A)) € K. This yields the desired result, namely that B(A) €
M.

Secondly we should check A2. Assume that A ¢ M. Then B(A) ¢ K, and
since K is a complete S5 theory, ~B(A) € K. Therefore, by negative introspec-
tion, B(—~B(A)) € K. This, in turn, entails that ~B(A) € M, as desired. Finally
assume that —~B(A) € M. Assume by contradiction that A € M. Then B(A) €

# The philosopher G. E. Moore offered different variants of his paradox. A cannonical
version appears in [26].

® Notice that the Moore saturation of a set K does not need to be an eztension of K ~
although it is constructed as a function of K. For consider the case where the initial
K is paradoxical (in the sense of G.E. Moore), i.e. it contains both A and -B(A).
The Lindenbaum extension of K will contain both A and ~B(A), but the saturation
of K will only contain —B(A) - and it will not contain A.



K. Positive introspection guarantees that B(B(A)) € K. But then B(A) € M,
against the consistency of M.

So, M is a consistent and saturated S5 theory. But, by construction, =B(a)
€ M. In fact, =B(a) € K C K. Therefore, by negative introspection, B(—~B(A))
€ K, which is enough to guarantee that ~B(a) € M. But now, by A2, o & M.
This completes the proof.

0

1.1 First person belief and belief attributions

A better understanding of the above result can be achieved by embedding the
previous model in a more complicated one, where time and the perspectives of
different agents are represented.

Let I = {1,..., n} be a set of rational agents. The underlying language is a
Boolean standard language (Lo) augmented by the modal operators B; ; for each
iin I and for each instant ¢. This various operators represent the (full) beliefs of
different agents at different instants.

By the same token we can index our acceptance sets. So we will have sets
05, representing the sentences accepted by agent i at instant ¢ Notice that
the interpretation of the epistemic operators, when embedded in the sets ¢; ;4 is
context dependent. In fact, B;+(...) € 0 means that agent jis certain at time
t’that agent ¢ is certain that ... is the case at time ¢. B; +(...) € oy¢ with t <t’
holds whenever agent i is certain that he was certain that .... B; +(...) € 0y ¢ with
t > t’ holds whenever agent i is certain that he will be certain that .... Finally
B;4(...) € 0;4 holds whenever agent i holds ‘I am certain that ...” at time ¢.

We can focus on the set of all possible certainty sets of agent i at time &
The only constraint that we impose on these sets is that they must be closed
under logical consequence and under the principles (A1-2). No other requirement
is imposed. ¢’s background knowledge at t can be reduced to the logical conse-
quences of a Boolean sentence, say p, or i’s certainties at ¢ can contain several
other items, including some certainties about other agents — for example 4 could
be certain that j is certain that — p.

The fact that the modelling used in the previous section did not appeal to
indexes for agents and times, is only due to the fact that (A1-2) hold in the
case in which the indexes in the acceptance sets and the indexes of the modal
operators coincide:

(A1) A € ;¢ iff B,;,t(A) €0t
(AZ) A ¢ Tt iff - Bi,t(A) € 054

Therefore (A1-2) can be formally studied without loss of generality by drop-
ping indexation. Nevertheless conceptual clarity about the scope of the modelling
might be loss.

Consider for example the alethic axiom:

(3) Bi’t(A) — A.



The completeness result shows that (3) is positively valid, and this means
that all substitution instances of (3) belong to every possible saturated set of i
at t. This, of course, does not mean that if ¢ is certain that A at £, then A is the
case. What this result shows is that all rational agents at time t are certain of
the truth of their certainties.

A coherent agent admits a representation by o;; containing both B;:(A)
with j <4 and — A. That only means that i believed A in the past, but now he
thinks A is false. But 7 cannot say at ¢, on pain of incoherence, ‘I am certain
that A, but A is false’. G.E. Moore’s paradox and the epistemic validity of (3)
are two sides of the same coin.®

The important issue uncovered by G. E. Moore’s analysis is that there are
sentences that are true in some situations (and false in others), but that cannot
be coherently judged as true in any possible situation. The negation of sentence
(3) is one of such sentences.

Much more can be said about how to treat (and dissolve) some well known
epistemic paradoxes in the modelling proposed above. Such an account is offered
in a companion paper [3]. The purpose of this section was to provide a minimal
clarification of the behavior of the so-called alethic axiom in our framework.

A final comment. Consider the system that can be obtained from S5 by
deleting the so-called alethic condition (axiom (3) in our presentation of S5) and
by replacing it with the axiom — B;;(Ll). This system is usually called KD45
and it is considered a good axiomatization of third-person belief (not certainty
or full belief).

The logic of belief attributions might very well be axiomatized by KD45.
This fact does not conflict with our result. We are interested in capturing the
logic of first-person claims of certainty (or full belief). On the other hand both
accounts can be bridged via the following fact:

(T) A is positively valid for agent i at tiff Fxpas;, Bi:(A).

In other words epistemic validity can be captured in terms of (third-person
KD45) belief attributions (via T). By the same token (T) explains away para-
doxical sentences (like G.E. Moore’s) as unbelievable sentences (in accordance
with the analysis offered by Hintikka in [15]).7

2 Probabilistic foundations

What is full belief? One can say that it is our strongest doxastic attitude. Prob-
abilists have considered the following (more specific) alternatives:

® We alluded to G.E. Moore’s epistemic paradox previously during the proof of The-
orem 1. We remind the reader that the standard reference can be found in {26].

7 To be more precise the paradoxical formulas are exactly the ones that are either KD45
unbelievable, or the ones whose negations should be believed by a KD45 agent — see
[3] for details.



(1) Full belief should be identified with maximal personal probability®
(2) Full belief should be identified with probability one.

The second reductive strategy is popular en Economics (where it is usually
taken for granted). But unfortunately both strategies suffer from problems first
pointed out by Henry Kyburg in [16].

EXAMPLE 1 (Kyburg): Think about a lottery with so many tickets that, for
any i, an agent considers maximally probable that ticket number ¢ will not win.
Then it seems that it would be reasonable for this agent to have the following
expectations:®

(3) Each ticket is expected to lose.
{4) Some ticket wins.
Now, in the presence of the following rule we have a contradiction

(Adjunction) If agent X fully believes A at t and X fully believes B at t, then
X fully believes A and B at t.

For in the presence of Adjunction, (3) entitles us to expect that:
(5) Every ticket will lose.

So, finally a self-contradictory expectation is derived: ’some ticket wins and
no ticket wins’.e

The only controversial step in the derivation of the paradox is (Adjunction).
But it is easy to see that (Adjunction) s a constraint on the logic of full belief
as presented in the former section. In fact, if o is the view of X at ¢, it is easy
to see that:

(Adjunction) If B(A) € o and B(B) € o, then BAAB) € o

8 A terminological clarification: the rules of the form ‘X fully believes the propositions
that he deems maximally probable’ are usually called rules of acceptance. This notion
of acceptance bridging probability. and qualitative attitudes should be distinguished
from the notion used in the first part of this article. One can provide ‘acceptability
conditions’ in the qualitative manner in which we provide them in section 1, without
appealing at all to the notion of probability. In order to avoid confusions, we will not
use the term ‘acceptance rules’ to refer to high probability rules — or any other rule
of that sort, like (2). Our only use of the term ‘acceptance’ will be the qualitative
one introduced in section 1. '

® I remind the reader that I am using the term ‘expectation’ as a shorthand for prac-
tical certainty’ or ‘full belief’.



The second proposal suffers from what has been called a transfinite version
of the lottery paradox (see [23]). The following example is a measure-theoretical
version of the lottery paradox (that defeats (2)).

EXAMPLE 2. Say that agent a assumes that the weight of a stone is
representable by a real number in some interval,-say between .5 and 1 pounds.
a is practically certain of the hypothesis that says that the weight lies
somewhere in the interval [.5, 1]. In other words, a does not reject any of the
hypothesis H,: “The weight is exactly x pounds, where x is a real value
between .5 and 1’. I.e. a does not fully believe H,,, for any x between .5 and
120 Yet a might coherently assign 0 probability to the uncountably many rival
hypothesis of the form H,,.e

EXAMPLE 2 has been used by Patrick Maher (in [23], pages 388-89) in order
to argue that probability one is not a sufficient condition for full belief.!! This
is so at least if one insists that doxastic representations should be consistently
completable. Otherwise, it would not be unreasonable for a to give probability
one to the hypotheis that one of the H, is true and probability one to all the
H,.

van Fraassen concludes in a more general way that: ‘In science we deal with
continuous quantities. Therefore, in general, if we let science guide our opinion,
the maximally likely propositions will not form a single picture — they will just
give us a family of rival maximally likely pictures.” ([31], page 350).12

10 Here we are using informally some features of the logic of full belief developed in the
former sections. Say that o is the current ‘belief set ’ of a. Then the rejection of H,
is represented as: H. € o. Failure to reject H, as H, ¢ o. But then (A2) gives us
that ~BH, € o. This argument is informally carried out in [23], page 387.

Maher argued in his piece that probability 1 is not a sufficient condition for ac-
ceptance, not for full belief. Maher characterizes acceptance of a hypothesis H as
the state of mind expressed by the sincere intentional assertion of H. Full belief,
in turn, is characterized in terms of maximal personal probability. Then, he argues
that probability one is neither a sufficient not a necessary condition for acceptance.
Here we have not appealed to the cuasi-pragmatical characterization of acceptance
used by Maher. But we are assuming as intuitive that an agent might fail to fully
believe hypothesis to which he assigns maximal probability. One therefore needs a
precise characterization of this intuitive notion. The following sections of the article
will be devoted to study a proposal recently developed by Bas van Fraassen. A final
historical clarification. van Fraassen has argued that full acceptance does not entail
full belief. But, again, here full belief is the notion characterized in terms of max-
imal personal probability. In the new model developed by van Fraassen full belief
no longer will be characterized in this manner, and in this new context the eventual
remaining differences between full acceptance and full belief seem to be minimal.
Henry Kyburg’s solution of the standard paradox cousists in rejecting Adjunction. He
has defended his view in a series of recent papers (see, [17], [18]). [17] is particularly
useful in order to contrast the account of full belief presented here and Kyburg’s

11

1
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Is it possible to improve on the previous probabilistic proposals? Bas van
Fraassen presented an interesting alternative in [31]. The remaining sections of
this paper will be devoted to study van Fraassen’s proposal and the constraints
that it imposes on the dynamics of belief.

3 Full belief: a probabilistic account

The following sub-section will be devoted to presenting the probabilistic reduc-
tion of full belief proposed in [31].

3.1 Basic definitions

A spaceis a couple S = (U, F)) with U a non-empty set and F a sigma-field on U.
A 1-place probability measure on S is characterized by Kolmogoroff’s axioms.

1.0 < P(A) <1=P(U)
2. P(A U B) - P(A N B) = P(A) + P(B) (finite additivity)

3. If {En: n = 1,2,...} are disjoint, with union E, then P(E) = 5 {P(En): n =
1,2,...} (countable additivity)

Conditional probabilities can be defined in the usual manner. Alternatively
one can take 2-place probability functions as primitives. This can be done as
follows:

A 2-place probability measure P(- | -) on space S is a map F x F into real
numbers such that:

I. (Reduction Axiom) The function P(- | A) is either a probability measure on
S or else has a constant value 1.

II. (Multiplication Axiom)
PBNC|A)Y=PB|AP(C|BNA)
for all A, B, Cin F.

If P(- | A) is a 1-place probability measure, A will be called normal and
abnormal otherwise. Let '+’ mark exclusive disjunction: A + B =(A - B) U (B
- A). Two facts are worth keeping in mind: If A is normal, so are its supersets
(Fact 1); and If A is abnormal, so are its subsets (Fact 2). In van Fraassen’s
construction the notion of the a priori is the opposite of the idea of abnormality:

notion of ‘practical certainty’. In 3] the two accounts are contrasted. So, the gist of
Kyburg’s solution to his own paradox consist in abandoning the ideal that doxastic
representations should be consistently completable.



(A) A is a priori for P iff P(A | X) = 1{or all X, iff U - A is abnormal for P.

Now we can introduce the notion of superiority:'3
DEFINITION. A >p B iff P(A | A+B) = 1

Armed with this notion we can now introduce the following crucial concept:
K is a belief core (for P) if and only if K satisfies the following axioms:

(Al) K is normal
(A2) If A is a non-empty subset of K while B and K are disjoint, then A >p B

(A3) The complement U - K is normal.

van Fraassen claims in [31] that the following property follows from the con-
ditions A1-A2-A3.

(A4) Finesse: all non-empty subsets of K are normal

Finesse is a rather strong condition. We will rely on it later on. Therefore,
since van Fraassen does not offer a proof of it in his paper, we will prove it here.
This proof is of independent interest. It shows the strength of the definition of
cores — and a variant of it can be used, together with a lemma proved below, to
show an important fact about Kyburg’s paradox (see [3]).

~ Lemma 1. A4 follows from A2 and A3.

Proof. Assume by contradiction that there is a core S and a subset X of S such
that X is abnormal. Then, by (A), X is a priori. Therefore:

P(X | X + S) = 1, by (A) again
But since S is a core A2 gives us:
PX|X+5)=1

A3 gives us that S is normal. Therefore X + S is also normal, by (Fact
1). Therefore P(...} X + S) is a 1-place probability function. But now by finite
additivity we have: )

PU|X+8)=PX|X+ 9 +PX|X+29)

which violates the fact that 0 < P(U | X + S) < 1, by axiom 1.
0

13 van Fraassen traces back such notion to a similar one provided by De Finetti in [10].



The belief cores are nested. They form a chain linearly ordered by set inclu-
sion. This fact can be easily proved by appealing to (A2) and (A4). This is the
proof offered by van Fraassen:

Say that K and K’ are belief cores, then we will show that either K C K’ or
K’ C K. Let A be K - K’ and B = K’ - K. Each set is normal if non-empty, by
(A4). Say that B is non-empty. Then, since A is disjoint from K, it follows (by
(A2)) that B >p A. A similar argument shows that if A is non-empty A >p B.
But we cannot have both unless A + B is abnormal and therefore empty (this is
guaranteed by (A4) and the independent fact that supersets of normal sets are
normal). So, either A or B or both are empty, yielding the desired result (namely
that at least one of K or K’ is a subset of the other).

Now the innermost core (if it exists) can be seen as the strongest proposition
believed by the agent. In other words, fully believed propositions will (intuitively)
be supersets of the innermost core. This picture suggests that the innermost
core represents the ‘belief set’ of the agent, while the remaining cores can be
used to guide the dynamics of this ‘belief set’ — by ordering the several possible
‘contractions’ of this belief set.

Say that an agent’s epistemic state is represented by a probability function
P. Say that P induces a system of cores with non-empty intersection B. One can
intuitively see B as the strongest proposition (fully) believed by the agent. We
will see below that this is the right qualitative model induced by van Fraassen’s
system. But it will take some work to show that. For the moment we cannot
define the full beliefs of an agent as the propositions entailed by the innermost
core of his system of cores (if the agent has cores). In fact, even if the agent has
cores, such an intersection is not obviously guaranteed to exist.

So, the following more cautious definition of full belief (for a given measure
P) can be used.

DEFINITION. A is a full belief (for P) if and only if (I) there is a belief core,
and A >p K for some belief core K; or (ii) there is no belief core and A is a
priori (in the sense that P(A | X) = 1 for all X).

It can be shown that the set of propositions that are superior to a given core
are exactly the propositions that are entailed by the core. So, if an agent has
cores and their intersection is non-empty the former definition is equivalent to
saying that the full beliefs of the agent (in this case) are the propositions entailed
by its innermost core.'4

3.2 Fine-grained opinion and full belief

Summing up:b a belief core is a proposition K such that:

4 One of the surprising results proved below is that the intersection of a non-empty
system of cores always exists. Therefore, we will be able to simplify the definition of
full belief once the relevant result is proved.



(a) K and its complement are both normal; (b) K does not leave open any
abnormal alternatives; (c) any alternatives left open by K are superior to any
alternatives K excludes.

And a full belief is any proposition implied by a belief core (or a priori).

Van Fraassen’s construction is not completely paradox-free. In [3] it is shown
that the lottery paradox reappears in the case of agents devoid of belief cores. But
it can be shown (see also [3] for an explicit proof) that the measure-theoretical
versions of the paradox can indeed be avoided when the underlying probability
function induces at least one core.!® Here we will not focus on the problem of
whether van Fraassen’s construction manages or not to avoid epistemic para-
doxes. Our goal will be to investigate the constraints on supposition and belief
change induced by the proposal.

4 Supposing and qualitative supposing

P(...] ...) is, according to van Fraassen, a quantitative encoding of an elusive and
somewhat neglected aspect of opinion: the notion of supposition. In fact, P(B
| A) represents the subjective grading attributed to B upon supposing A. You
might judge that P(A | U) = 0. For example, in EXAMPLE 2 it is coherent
to say that the hypothesis stating that the exact weight is x (for some value
between .5 and 1) receives probability zero. But one can suppose that the weight
is exactly .5 and in this hypothetical scenario one should be certain that the
weight is less than 1. In this section we will begin to study the constraints on
the qualitative notion of supposing induced by van Fraassen’s model.

First, we will prove a result that will allow us to define full belief in a simpler
manner.

Lemma 2. (Descending Chains). The chain of belief cores induced by a non-
coreless 2-place function P cannot contain an infinitely descending chain of cores.

Proof. Assume by contradiction that there is a 2-place P, such that the chain of
belief cores induced by it contains a core By and a countable chain of cores By,
By, By, ..., By, ..., such that By is the outermost belief core of this subsystem
of cores for P. Consider in addition a set of points z;, with jin N, such that for
every index sand jin N, z; € B;, and z; € By, if j > 4.

For every index m, we have (by axiom A2 of belief cores) that

P({zmi1 } | {Tmt1 } + {zm }) =1

By axiom A4 the 1-place function P(... | {&m+1 } + {zm }) is a probability
function obeying finite additivity. Therefore:

15 3] offers several arguments showing that in order to avoid the paradox one should
adhere to a fully Kolmogorovian version of probability. In particular countable ad-
ditivity should be assumed as a constraint on l-place probability functions. This
assumption might be controversial. Pros and cons are discussed in [3].



(1) P({mm } | {zm+r } + {l‘m =0

Now notice that the Multiplication Axiom guarantees that for all propositions
A, B, C in the sigma-field F

(E)P(A|AUBUC) =0if P(A | AUB) = 0.

To see that E is true it is enough to consider the following instance of the
Multiplication Axiom:

P(AUB)NA|AUBUC)=PAUB}{AUBUC).P(A|(AUB)N(AU
B U Q))

Call C the countable set of points {z¢ , 1 , ..., Zm,...}. Therefore (1) and
(E) guarantee that for every z,, in U:

(1) P({zm } | C) =0

Since C C By, A4 implies that P(... | C) is a 1-place probability function. By
the Multiplication Axiom and the fact that P(... | C) is countably additive we
have the desired contradiction: 1 = P(C | C) = >_P(z; | C) = 0. 0

Remark about Finesse: Notice that Finesse follows from conditions A1-2-3 -
see the proof above. Therefore nothing substantial has been used in the proof
aside form countable additivity. In addition, nothing in the above proof requires
the full force of Finesse. We only need to assume that each pair of points in U
is normal.

Remarks about the Lemma of Descending Chains: van Fraassen stated in his
paper some related results. For example, [T5.2] sows that the intersection of a
non-empty countable family of cores is a core. But he did not prove the general
result stated in our lemma, from which it follows (in the general case) that if
a function P has cores, then the system of cores has a non-empty intersection.
After reading a previous version of this paper, Wolfgang Spohn pointed out that
he showed a similar result in Lemma 5 of [29]. Although the result resembles the
one presented here, Lemma 5 in Spohn seems to be used to state a different fact
- his chains of ‘cores’ have the structure of Lewis’ system of spheres, while van
Fraassen’s system of cores have a different structure (for example, they are not
closed under unions).*6 '

1 Some special acknowledgments concerning Lemma 2. First, thanks are due to Teddy
Seidenfeld who first suggested to me in conversation the need to prove an important
corollary of the lemma in order to guarantee the existence of the intersection of non-
coreless probability functions. He also emphasized the role of countable additivity in
the proof and gave me hints about the shape of the proof of a (differently stated)
lemma. Thanks are due to Rohit Parikh who detected an error in a previous formu-
lation of the lemma. His comments were crucial to put the result in perspective and
to understand its role in the context of the larger argument offered in the paper.



Now we can provide an alternative definition of full belief. Consider a 2-place
function P. If there are belief cores, let I be the innermost core of a system of
cores induced by P. The former lemma guarantees the existence of I whenever
there are cores (for P). ’

DEFINITION: A is full belief (for P) iff A is entailed by I (or A is a priori).}”

The former lemma does not rule out infinitely ascending chains of cores. For
example, let X = {zg , 1, ...}. Let rank(z;) = 1. Then given A, B, such that A
C B C X, let P(A | B) = 1 if the lowest ranked element of B is also in A; and
let P(A | B) = 0 otherwise. Any set {2 ,..., ,,} is a core.

In the following section we will use the previous lemma to obtain more data
about the constraints on supposition and probability kinematics induced by van
Fraassen’s model.

5 Cumulativity

In the previous section we use the letter I to denote the innermost core of a
system S of cores induced by a function P (for which there are cores). Here it
will be convenient to use a more precise notation. Let IP be the innermost core
corresponding to a function P (for which there are cores).

Say that the 2-place function P represents the epistemic state of the agent
X at time t. Say also that P induces a system of cores with innermost core
IP. Van Fraassen’s account provides a model of the subjective grading that X
will attribute (at t) to any item B conditional on the supposition that A. This
account leaves open an important question. Which is the structure of the (qual-
itative) suppositional state generated by hypothetically perturbing P with A?
One response could be that an item B is fully supposed in the scenario obtained
by hypothetically perturbing P with A if and only if P(B | A) =1. But the idea
that what is fully supposed after supposing A is given by what is maximally likely
given A, is as problematic as the corresponding idea that a sufficient condition
for full belief is maximal unconditional probability.

Here is a natural alternative suggestion for recovering full suppositions out of
2-place functions. Say that P is the current epistemic state and that this state has
cores. Then IP is the state of full belief that correspond to P. The qualitative
counterpart of the result of perturbing P with the supposition that A is the
innermost core of P(— | — N A) - if such function has cores. We can abbreviate
P(- | - N A) by P4. Sequences of hypotheses are indicated as follows: P45

' This definition of full belief is not problem-free. In [2] T argue that when the underly-
ing probabilistic space is countable it has the undesirable consequence of conflating
epistemic impossibility and probability 0, and I consider some natural alternatives.
Nevertheless this article will only focus on van Fraaseen’s proposal. Here we will only
consider the consequences of adopting an unmodified version of van Fraaseen’s own
characterization of full belief.



The previous proposal is the one tacitly used in Popper’s axiomatization of
2-place functions (see, [5]). Also in [5] it is shown that the previous definition
is needed in order to preserve an iterated version of the connection between in-
finitesimal probabilities and 2-place functions proposed by McGee in [24]. More-
over in (5] it is also shown that the notion of supposition embedded in the
probabilistic semantics of conditionals requires the previous proposal for identi-
fying bodies of full supposition. Finally in [5] and [4] it is shown that the only
available axiomatization of qualitative supposing (encoded in 2-place probability
functions) [14] is also compatible with the previous proposal.

The aforementioned connection between conditional reasoning and supposi-
tion is particularly interesting. When a conditional ‘If A, then B’ is fully believed
with respect to the epistemic state characterized by a non-coreless 2-place func-
tion P? An interesting idea is to check whether B is entailed by IP4. If the
answer is yes, the conditional is fully believed (or accepted) with respect to P.
If the answer is no, the corditional is not accepted. The intuition underlying
this test is that the conditional is accepted whenever B is fully supposed in the
hypothetical state IP4 - [1].

The previous idea is not the one usually assumed in the literature on proba-
bilistic semantics [1]. Consider, for example, Van McGee’s Improved Adams hy-
pothesis, which appeals to 2-place functions. According to this variant of Adams
hypothesis the probability of ‘If A, then B’ is determined by a two-place function
P(B | A) - see [24], page 190. But the improved hypothesis is still problematic.
For say that the agent modeled in EXAMPLE 2 has his innermost core in the
real interval {.5, .75] = H. Then the improved thesis requires accepting: ‘If H,
then the weight is given by an irrational number’.!® Such an unintuitive result
might, nevertheless, not be required by the alternative acceptance test suggested
above - as long as I P¥ contains at least a rational number. This new ‘test’ for ac-
ceptance of probabilistic conditionals seems to improve on the ‘Improved Adams
hypothesis’ — see, [2] for a discussion of this topic.!®

The following sections will be devoted to study how bodies of full belief
induced by 2-place functions evolve when perturbed by iterated suppositions. A
definition is needed at this juncture:

DEFINITION: A is sizable (for P) iff there is core C (for P) such that C n A is
non-empty and for every core of the system of cores S (for P) A- (C N A) is
normal.

Van Fraassen’s construction entails that if both A, B and A N B, are sizable
for P:

18 This requires to assume rather mild constraints on P.

19 1t would be nice to know whether there are interesting probability spaces forcing the
collapse of these tests. [2] offers a preliminary result showing the coincidence of the
tests for countable spaces. '



(Cumulativity) IPA4-8 C A?0

The following observations will be useful to prove the above claim.

Proposition 1. If S is the system of cores of P(— | -) and A is sizable for P,
then all the elements of

S’={CNA:CeSand CN A# D}

are elements of the system of belief cores induced by P4.

Proof. Let C be a core for P. Since A is sizable, there is C such that C N A is
non-empty. Consider C N A = C’. We need to show that C’ is a core for P4.

(1) C’ is normal for PA. This is guaranteed by the fact that A is sizable and
by A4 — which says that all non-empty subsets of a core are normal. So

P(- | C’) is a 1-place probability function and PA(- | C’) is also a 1-place
probability function.

(2) Let S be a non-empty subset of C’. Let B be an arbitrary proposition
with empty intersection with C’. We should show that S is superior (modulo
P4) to B.

One should show that

PAS|(S+B)=PS|(S+B)nA)=1.
first subcase: B intersects A. Then:
PA(S](/S+B)):P(S{(S+B)OA)=P(S|(S+(BﬂA))=1

This is so because C is a belief core for P and therefore S is superior to
any proposition outside C. Therefore S is superior (for P) to (B N A), since by
construction B does not intersect C’ and (B N A) cannot intersect C - C’.

second subcase: B does not intersect A. Then,

PAS|(S+B)=PS|(S+B)nA)=PS|S) =1

20 1 follow here the terminology used in [5] and other recent literature on probability
kinematics. Nevertheless I would like to avoid a terminological confusion by dis-
tinguishing Cumulativity from a homonymous property thoroughly investigated in
non-monotonic logic and the theory of theory change. The latter property can be
presented as follows: If IP# C C and IPZ C C, then IPA*? C C. There is certain
consensus about the need for a constraint of that sort in belief revision (see, for
example [20] for a defense of this constraint). But, of course this property is not the
one under investigation here. While the property that we are alluding here under
the name of Cumulativity is not adopted by any of the standard axiomatizations of
belief change, its homonymous counterpart is adopted by almost all of them. It is
therefore of certain interest to show that the constraints on probability kinematics
required by van Fraassen’s construction enforce Cumulativity in the first sense.



(3) U - C’ is normal for PA. This is guaranteed by the fact that A is sizable
(for P). |

The following observation shows that the qualitative effect of updating P(-
| -) with A is to make all ~A points unfeasible. More technically, let S be the
system of cores of P(~ | —) and S’ the system of cores of P4. Then:

Proposition 2. For any core Cin S, CN —A =0

Proof. Assume by contradiction that S’ contains a core C such that there is a
—A-point zand z € C. Since PA(- | x) =P(-|xNA) =P(~ | §) and P(a | §) =
1, for all o; z is abnormal for P4, and so is any other —A subset of C (all such
subsets are a priori equivalent for P4). But, by Finesse, any subset of a core is
normal. Contradiction! O

The previous observation shows that any proposition entailing —A is imme-

diately non-sizable for P“. This also shows that all propositions are a priori for
pA~A,

Proposition 3. If both A, B and A N B, are sizable for P (and P has cores):
(Cumulativity) IPAF C A

Proof. Let S be the system of cores of P. Since A N B is sizable (for P), there
is a minimal core C of S interesting A N B (this is guaranteed by the Lemma
of Descending Chains). C N A is clearly in S’ (the system of cores of P4). This
is guaranteed by Observation 1. This also guarantees that CI = (C N A) N B
is in §” (the system of cores of P4P). Moreover CI is identical or a superset
of the minimal core in S” (because cores are nested). Of course, the existence
of the minimal core in S” is guaranteed by the Lemma of Descending Chains.

Therefore,
IPAB C CNn(ANB)CA. 0

The role of Cumulativity (C) as a normative constraint on belief change is
somewhat controversial. The standard models of (qualitative) belief change do
not satisfy C — see [5] for a review of several of the possible alternatives. One
of the reasons for this fact is that C introduces certain rigidity on the belief
revision process. Items introduced at some point in a sequence of updates are
rigidly maintained through the process. Of course this rigidity is uncontroversial
when the series of inputs forms a consistent set that is, in turn, consistent with
the initial state of full belief. The standard account of belief change, for example,
presented by Peter Gardenfors in [11} ¢s compatible with this restricted form of
(C). The same holds for standard conditioning. But (C) is a principle of greater
generality explicitly incompatible with the account of belief change offered in
[11]. (C) does allow for sequences of mutually incompatible inputs. And even
in the case that they form a consistent set, they can be incompatible with the
initial state of full belief.

Some authors, ([25], [4]) have argued that C is adequate to represent the
process of suppositional or hypothetical change involved in the acceptance of



some types of conditionals. It should be stressed, nevertheless, that many of the
notions of supposition used in possible worlds semantics are not cumulative — see,
for example, [22]. The same holds for some of the recent attempts to characterize
acceptance of conditionals by appealing to belief revision techniques (see, for
example [20]).

Researchers committed to probabilistic semantics (Adams or McGee are
salient examples) have always defended that ‘If A, then if B, then C’ is equivalent
to ‘If A and B, then C’ (Export-Import principle). Therefore they tacitly accept
(C) — although the acceptance of this principle tends to be justified conceptually
rather than formally (the development of models of iterate probabilistic kine-
matics are rather recent). (Export-Import) is, nevertheless, rejected by almost
all other semantic systems. So, (C) is not universally accepted as an encoding
of the notion of hypothetical change involved in the acceptance of conditionals.

2-place probability functions can be defined in such a way that they do not
enforce cumulativity as a matter of definition.?! But then certain connections be-
tween 2-place functions and non-standard probability measures are lost. In fact,
Vann McGee proved in [24] a theorem establishing a natural correspondence be-
tween 2-place functions and nonstandard probability measures. Nevertheless in
[5] it is shown that such correspondence holds in general only if C is enforced. So,
van Fraassen’s construction possesses the features needed to bridge 2-place func-
tions and non-standard measures, and to validate axioms universally defended in
the literature of probabilistic semantics. Nevertheless, these very same features
do not seem to be universal constraints on a notion of belief change with a wide
application in the formalization of inquiry.

Acknowledgments: Thanks are due to Teddy Seidenfeld for many valuable
comments on previous drafts. Thanks are also due to Isaac Levi, Petr Hijek and
Hans Rott who commented on a previous version of this paper, read at the 1998
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