A realizability interpretation for

classical arithmetic

Jeremy Avigad

July 21, 1999

Technical Report No. CMU-PHIL-86

Philosophy
Methodology
Logic

Carnegie Mellon

Pittsburgh, Pennsylvania 15213



A realizability interpretation for
classical arithmetic

Jeremy Avigad

Carnegie Mellon University™*

Abstract. A constructive realizablity interpretation for classical arith-
metic is presented, enabling one to extract witnessing terms from proofs
of X sentences. The interpretation is shown to coincide with modified
realizability, under a novel translation of classical logic to intuitionis-
tic logic, followed by the Friedman-Dragalin translation. On the other
hand, a natural set of reductions for classical arithmetic is shown to be
compatible with the normalization of the realizing term, implying that
certain strategies for eliminating cuts and extracting a witness from the
proof of a X; sentence are insensitive to the order in which reductions
are applied.

1 Introduction

Even though, as is well known, the classical and intuitionistic versions of first-
order arithmetic prove the same IT, sentences, the two theories are very different
in nature. In particular, the intuitionistic version has a constructive interpreta-
tion which seems to be lacking in its classical counterpart.

Heyting arithmetic, which is based on intuitionistic logic, is perhaps best
represented in a system of natural deduction. In this framework, proofs can be
associated with (or construed as) realizing terms, which come equipped with a
natural set of reductions. These reductions are strongly normalizing, which is to
say that any procedure that applies them repeatedly will eventually reach a proof
that cannot be reduced any further; and they satisfy the Church-Rosser property,
which implies that any two such procedures yield the same normal proof. Given
a normal proof of a X; sentence, one can easily read off a numerical witness to
the existential quantifier.

In contrast, Peano arithmetic is naturally represented in a classical sequent
calculus, to which one can apply cut-elimination to extract numerical witnesses.
Cut-elimination procedures tend to seem less canonical than intuitionistic nor-
malization, and the particular witness extracted from a given proof may depend
on the technical details of the implementation. Alternatively, one can use a
double-negation interpretation followed by the Friedman-Dragalin translation
to translate the proof to one in HA, though, of course, the resulting witness will
depend on the details of the translation.

* Work partially supported by NSF Grant DMS 9614851. To appear in the Proceedings
of Logic Collogium '98.



In this paper I will try to show that, from a constructive point of view,
classical logic is not as bad as it may seem. After some preliminaries in Section 2,
I present a realizability interpretation for classical arithmetic in Section 3; by this
I mean that I provide a procedure for assigning a computational term to each
sequent in the proof of a X; formula, in such a way that the term assigned to the
final sequent yields a witness to the existential quantifier. In Section 4, I show
that this realizability interpretation amounts to nothing more than Kreisel’s
familiar modified realizability, under a novel translation of classical arithmetic
to intuitionistic arithmetic, together with the Friedman-Dragalin translation.

In Section 5, I present set of reductions that one can use to transform any
PA-proof of a XZ; sentence to a cut-free one. I will show that these reductions are
compatible with the normalization of the classical realizing term, which implies
that the final result is insensitive to the order in which the reductions are applied.
Furthermore, the process of reading off a numerical witness corresponds, in a
sense, to the Friedman-Dragalin translation. With a suitable restriction, the
reductions are also strongly normalizing.

In Section 6, I show that these reductions can be used to give Peano arith-
metic a finitary ordinal analysis. The argument is a variation of Gentzen’s origi-
nal cut-elimination procedure [11,25], recast here in a Tait-style setting and with
some additional simplifications. In Section 7, I use a technique due to Mints [16]
to extract reduction sequences of this form from an infinitary cut-elimination
procedure as well. As a corollary of the foregoing analysis, both methods of ex-
tracting numerical witness from proofs of X sentences yield the same result as
the normalization of the classical realizing term. Section 8 closes with some final
remarks.

A brief discussion of the literature might help put the results reported herein
context. In [17], Mints shows that a number of methods of extracting constructive
information from proofs in intuitionistic arithmetic yield the same result. Much
of this paper can be seen as an extension of these results to classical arithmetic,
with the surprising twist that the Friedman-Dragalin translation is implicit in
certain cut-elimination arguments for the sequent calculus.

In [4, 5], Buchholz presents a finitary reduction procedure for classical arith-
metic, obtained using notations for infinitary derivations and Mints’ continuous

" cut-elimination operators. In particular, in [5] one finds another method of ex-

tracting finitary reduction sequences from infinitary cut-elimination arguments,
and an analysis of the relationship between these reductions and the ones used
in Gentzen’s original procedure. Lo - .

Murthy [19] and Parigot [21] show that versions of the double-negation trans-
lation together with the Friedman-Dragalin translation correspond to a certain
computational semantics for various systems of classical deduction. Though the
work here was carried out without knowledge of these two papers, some of the
parallels are striking.

The translation described in Section 4 shows that one can interpret classical
sequent calculi in intuitionistic systems of natural deduction, in such a way
that proofs of sequents in the former correspond to proofs of a contradiction



from suitable hypotheses in the latter. This interpretation may be seen as a
contribution to study of the relationship between sequent calculi and natural
deduction in general, which is also addressed in [10, 23, 30].

Finally, the referee has pointed out that another realizability interpretation
for arithmetic, somewhat different in form and purpose, is given in [20].

I am grateful to Wilfried Buchholz for the observations noted at the end
of Section 6, to Samuel Buss for providing me with the macros that typset
the derivations in this paper, and to the anonymous referee for an extremely
thorough and helpful review.

2 Preliminaries

The primitive recursive functionals were introduced by Gddel in [13], but were
already to some extent implicit in earlier work by Hilbert and Weyl. For a more
detailed discussion than the one which follows, see [2, 15,27, 26].

I will take the finite types to consist of the smallest set containing a symbol
N, and closed under an operation which takes types ¢ and T to a new type o — 7.
In the intended (“full”) interpretation, N denotes the set of natural numbers,
and 0 — 7 denotes the set of all functions from ¢ to 7. A set of terms, PR, is
defined inductively as follows:

1. For each type o, there is a stock of variables z,y, 2,... of type o.

2. 0is a term of type N.

3. S (successor) is a term of type N — N.

4. if 5 is a term of type 7 — o and ¢ is a term of type 7, then s(t) is a term of
type o.

5. if s is a term of type ¢ and z is a variable of type 7, then Az s is a term of
type T = o.

6. If s is a term of type o, and ¢ is a term of type N = (0 — o), then R is a
term of type N — o.

Intuitively, s(t) denotes the result of applying s to ¢, Az s denotes the function
which takes any value of z to s, and Ry; denotes the function defined from s and
t by primitive recursion, with

Rst(o) =3
Ry (z') = t(z, Rt ().

In this last equation, I have adopted the convention of writing 2’ instead of S(z)
and t(r, s) instead of (¢(r))(s). Using these schemata one can define any primitive
recursive function, as well as functions, like Ackermann’s, that are not primitive
recursive. Below when I refer to a primitive recursive relation R, this should be
taken as an implicit reference to its characteristic function xg.

It will be convenient below to augment the finite types with products o x 7,
associated pairing operations (-, ), and projections (-)o and (-);. Product types
can eliminated in the usual way by currying and replacing terms ¢ with sequences
of terms t¢;.



It will also be convenient to have disjoint union types o + 7, an element of
which is either an element of o or an element of 7, tagged to indicate which is
the case. That is, for each such type we have insertion operations, inl and inr,
which convert elements of type ¢ and 7 respectively to an element of type o + 7;
predicates isleft(a) and isright(a), which indicate whether a is tagged to be of
type o or 7; and functions left(a) and right(a), which interpret a as an element
of type o and 7, respectively. Using primitive recursion we can define functions

f(a) if isleft(a)
g(a) otherwise

where f is of type ¢ — p for some p, and g is of type 7 — p. References to
such sum types can be eliminated by taking ¢ + 7 to be N x ¢ x 7, defining
inl(a) = (0,a,07), defining inr(a) = (1,07, a), where 0° and 07 are constant zero
functionals of type o, T respectively, and so on.

Finally, to simplify exposition in many of the inductive definitions and proofs
below, it will be convenient to have a trivial type Null with a single element nil.
Ultimately none of the quantifier-free formulae or terms I define will depend on
nil or any variable of type Null, so if we interpret Null x o and Null — ¢ as
o, ¢ — Null as Null, and Vz € Null ¢ as ¢, references to nil and Null can be
eliminated as well.

The realizability interpretation of the next section is designed for classical
arithmetic formulated in a Tait-style calculus. In this system formulae are built
up from atomic formulae A and their negations A using the connectives A, V,
Vv, and 3. If ¢ is such a formula, —¢ denotes the formula obtained by putting
the negation of ¢ in negation-normal form, i.e. replacing every A, V, and A in ¢
respectively with V, 3, and A, and conversely. Other connectives are introduced
via their classical definitions.

Sequents I' consist of sets of formulae {¢1,...,¢x} and are intended to
denote the assertion that at least one of the formulae ; is true. As usual, I will
use I, ¢ to denote I' U {¢}, and if p(y) has been introduced as a formula with
a distinguished variable y, (t) denotes the result of substituting ¢ for y (after
renaming bound variables of ¢ to prevent clashes).

The calculus below is essentially the one found in [24]. In connection with
these rules I will refer to the formulae in I" as the side formulae of the inference,
and the other formulae in the hypotheses and conclusions as the main premises-
and principal formulae respectively. As in [4, 5], a rule of the form “From ... Ij...
conclude I should be read “From subsets of ... I} ... conclude I',” which is to
say, implicit weakenings of the hypotheses are allowed at each stage. For technical
reasons, I need to assume that in the Ezists rule below the main premise () is
always present. The main premises of a cut rule are also called the cut formulae.

1. Propositional rules
(a) Atomic excluded middle: T', A, A
(b) And: From I',¢ and I',% conclude I, o A ¢
(c¢) Or: From either I', or I',% conclude I', o V ¢
(d) Cut: From I',¢ and I',~ conclude I’



2. Quantifier rules
(a) For all: From I, ¢(y) conclude I',Vz ¢(z), provided that y is not free in
any formula of I" or Vz ¢(z)
(b) Ezists: If (y) is any formula, from I',¢(t) conclude I', 3z ¢(x)
3. Equality rules

The equality rules consist of quantifier-free sequents asserting the reflexivity,
symmetry, and transitivity of equality, and the fact that equality acts as a con-
gruence relation relative to all the functions and relations in the language.

In the language of arithmetic, the only atomic formulae are of the form
1 = t2. One obtains the rules for classical (Peano) arithmetic, PA, by adding
the following:

1. Quantifier-free defining equations
2. Induction: From I',¢(0) and I, ~¢(y), o(y') conclude I',Vz ¢(z), as long as
y is not free in any formula of I" or Vz ¢(z)

Note that the induction axiom,

L0(0) A (V2 (p(2) = ¢(2') = Vz o(2),

follows easily from the rule above. As to the “quantifier-free defining equations,”
we could limit ourselves to weakenings of the sequents {z’ # 0}, {z # y,2' = ¢'},
and the recursive definitions of addition and multiplication; but it is convenient
to include the definitions of arbitrary primitive recursive functions and relations
as well.

A variation of the above calculus is obtained if one uses sequents that are
sequences of formulae rather than sets, and makes structural rules (weaken-
ing, exchange, and contraction) explicit. The realizability interpretation in the
next section works equally well in this setting. One can simulate the rules of
Gentzen’s two-sided sequent calculus in this system if one identifies each formula
with its negation-normal form, and replaces sequents of the form o1, ..., px =
¥1,... ,4 with the corresponding sequent =y, ... ,~pk, ¥1,... ,¥.

3 Realizability for classical arithmetic

Assuming one can prove a formula ¢ in PA, using a cut one can also prove the

empty-sequent-from the hypothesis —¢. In particular, from a proof-of 3z-A(z)- - -

for a primitive recursive relation A, we obtain a proof of the empty sequent from
the hypothesis Vz A(z). Our goal is to extract from such a proof a term ¢ in PRY
having type N which satisfies A. In general I will allow A to have parameters
(free variables) other than z, in which case ¢ is a function of these parameters.
By renaming them if necessary, we can assume that none of these parameters
occur in the main premise of a For all rule.

Let us then fix A and consider the proof system PA augmented by the hy-
pothesis Vz A(z). Having added this hypothesis, each sequent I appearing in



a proof can no longer be interpreted as the assertion that some formula in I is
true; instead, we can read it as the assertion that if every formula in I' is false
then the hypothesis is false, and hence 3z A(z) is true. Our strategy will be to
analyze the proof of I for information that will enable us to compute an element
satisfying A from constructive witnesses to the “falsity” of every formula in I".

To every formula ¢ the clauses below inductively associate a type, Type,,
and a predicate, Realizes,, (f), for PR“-terms f of this type whose free vanables
are among those of ¢. For f of type Type, — N the predicate Refutes,(f) is
defined simultaneously, via the equivalence

Refutes, (f) = Vg (Realizes,(g) — A(f(g))).

In words, f maps any g realizing ¢ to an element satisfying A. Note that if ¢ has
free variables then the predicate Realizes,(f) depends on them, in which case
the clauses below should be read as asserting that the corresponding equivalences
hold for every assignment of natural numbers to these variables.

e Type, = Null, if ¢ is an atomic formula or its negation
Realizes, (f) = ¢

¢ Type,yy = Type, + Type, .
Realizes(,v ) (f) = (isleft(f) A Realizes, (left(f)))V
(isright(f) A Realizes, (right(f)))

. Type(p,\,/, = Type_w,v_,,p - N
Realizes,ny (f) = Refutes-py—y(f)

b Typeﬂ:z: o(z) = N x Type(/)(z)
Realizess, () (f) = Realizes, (s (f1)

o Typey, o(z) = Typ’éE,z —o(z) N
Realizesyy () (f) = Refutessg —p(2)(f)

It is easy to verify the following

Lemma 1. If ¢(z) is any formula and t is any term zh- the lanéﬁaée of PA
then Typew(m) is equal to Type o(t)- Purthermore, if F(z) is any PR -term of
‘this type, then F(z) realizes <p(:c) if and only if F(t) realizes ¢(t).

If ¢ is a formula, it will be convenient to use o, to denote a variable of type
Type,,. Below, to every proof d of a sequent I' = {(1,... , ¢k}, I will associate
a term Fy of PRY, with the following properties:

1. the free variables of Fy are among {@-y,,... ,a~y,} and the free number
variables of I" and 3z A(z); and
2. on the assumption that each a-,, realizes ~y;, A(Fy) holds.



In short, Fy takes elements realizing the negations of formulae in I" to a witness
for 3z A(z). In particular, if I' is the empty sequent then F depends only on
the free variables of 3z A(z), and for each assignment to these variables, A(Fy)
holds.

Before defining the assignment, we need a few lemmata. In Section 5 we will
see that the first two are analogous to A- and V-inversion lemmata which are
typically found in cut-elimination arguments.

Lemma 2. Suppose a term f realizes ¢ A1). Then

Ay f(inl(a-y))

refutes —p, and

Aa-y f(inr(a-y))
refutes —p.

Proof. If f realizes A1, then it refutes ~¢ V —). Assuming a_, realizes -,
inl(a-) realizes =V -1, and hence A(f(inl(a-,))) is true. So Aa—, f(inl(a-,))
refutes —p.

The argument for Aoy f(inr(a-y)) is similar. a

In much the same way we can prove
Lemma 3. Suppose a term f realizes V& o(z). Then for any t,
Aty F((t amp(r)))
refutes (t).

Lemma 4. Let ¢ be any formula. If f and g are terms such that f refutes =y
and g refutes p, then there is a term Cuty,(f,g) satisfying A.

Proof. If ¢ is atomic or the negation of an atomic formula, “c refutes ¢” means
“f ¢, then A(c).” In that case, use primitive recursion to define

uty(£,0) ={ 4157,

If f refutes —(¢ A1) then it realizes ¢ A1, and if f refutes —Vz ¢ then it real,izes' .

Vz ¢. So define

Cutyny(f,9) = 9(f)
Cutyvy(f,9) = f(9)
Cutvz »(f,9) = 9(f)
Cutaz »(f,9) = f(9)



The assignment of terms Fy to proofs d is done inductively, according to the
last rule of d. In each of the cases below, verifying that Fy satisfies properties
1 and 2 above is straightforward. If I" is the set {¢1,...,%x}, I will use a-r
to denote a sequence of variables ay,, ... ,@-y,. In that case, requirement 2
above is equivalent to the assertion that whenever d is a proof of a sequent I',
and a-r realizes the negations of the elements of I', then Aa-, Fy refutes —.

Quantifier free azioms: Suppose d consists of a single sequent {1, ... ,0x},
corresponding to an equality axiom, an instance of the atomic law of the excluded
middle, or a quantifier-free axiom of arithmetic. Then at least one of the formulae
(p; is true, and hence it is impossible to realize all the ~;’s simultaneously. As
a result, we can simply take

F =0

Or: Suppose d is a proof of I',¢ V 9 obtained by applying the Or rule to
a proof d' of I',¢. Let F' the term inductively assigned to d’. Assuming a-r
realizes the negations of the elements of I" and a-,a-y realizes —p A =), we
have that Aa-, F' refutes - and Aoy, a-pa—y(inl(ay,)) refutes . Define

F = Cuty,(Aa—y F', day ampa-gp(inl(ay,))).

To handle the case where d' is instead a proof of I, 9, replace ¢ by % and inl by
inr. ‘

And: Suppose d results by applying the And rule to proofs dy of I', ¢ and d; of
I',9. Let Fy and F; be the terms assigned inductively to do and d; respectively.
Whenever o realizes the negations of the elements of I', then Ao, Fy refutes
—wp and Aoy Fy refutes . Define

F = cases(Qpv-y; A&~y Fo, Ay F).

Ezists: Suppose d consists of an application of the Ezists rule to a proof d'
of I, p(t). If t has any free variables that do not occur in the conclusion, replace
the corresponding free variables of F' with 0. Then, as in the Or rule, set

F = Cuty(e) Aamp(e) F', Ap(t) @vs ~p(x) ({E: 2o ()))-

For all: If d is obtained by applying the For all rule to a proof d’ of I, ¢(y),
then F' may have y free and whenever a..r realizes the negations of the formulae -
in I', then Ao, (y) F' refutes —p(y). Define ' )

F = (’\yaa—up(y) Fl)((afiz <p(:c))0’ (aaz <p(y))1)'

Cut: Given a proof dy of I', ¢ and a proof dy of I', =y, let Fy and F; be the
corresponding terms. If there are any free variables in ¢ that are not free in I',
replace these variables by 0 in Fy and F;. Define

F= Cut(,,()\a_.,p Fo,)\aq, Fl)



Induction: Suppose do and d; are proofs of I', p(0) and I', ~¢(y), ¢(y') respec-
tively, and let Fy and Fj be the corresponding terms. Use primitive recursion to
define a function h such that

h(0) = Aa~y(0) Fo
h(y') = At (yr) Cuty(y) (R(Y), Aayp(y) F1)-

Note that by Lemma 1 a4, and Q—,(0) have the same type, so this definition
is reasonable. Assuming o realizes the negations of the formulae in I, one can
show by induction that for every natural number n, h(n) refutes ~p(n). Define

F= h((aam —-cp(a:))O’ (aaz —wp(:c))l)-

Recall that by the conventions introduced in Section 2, this is an abbreviation
for (h((aam —up(z))O))((aElm ﬁ(p(:r,))l)‘

This takes care of the axioms and rules of PA. Now, given a proof of {3z ¢(z)},
cutting with the following hypothesis gives us the desired proof of the empty se-
quent.

Hypothesis: To the sequent {Vz A(z)} assign the term

F = az; p@q)-

By definition an element realizing 3z A(z) is just a natural number satisfying
4, s0 if ag, 4(z) realizes 3z A(z), A(F) holds.
Putting this all together yields /

Theorem 5. Suppose PA proves a formula 3z A(z). Then there is a PR -term
t of type N, with the same parameters, such that A(t) holds.

I will use the phrase “provable function” as an abbreviation for “provably total
recursive function,” which I take to be defined in the usual way.

Corollary 6. Every provable function of PA is given by a type 1 primitive re-
cursive functional.

Proof. If PA proves Yy 3z A(y, z) then it also proves 3z A(y, z). Let ¢ be a term
such that A(y,t) holds, and let f = Ay t. O

4 The M-translation

In this section I will describe a variation of the G&del-Gentzen double-negation
translation that is implicit in the realizability interpretation we have just seen.
In contrast to classical logic, I will take the basic intuitionistic connectives to
consist of the symbols V, 3, A, V, —, and L; ~¢ is defined to be ¢ — L. I will
take intuitionistic logic to be given by a system of natural deduction, as in [29],
and take the sequent I" = ¢ to mean that ¢ follows from the hypotheses in I".
For Heyting arithmetic one adds the quantifier-free defining equations for the
basic functions, and an induction rule. In general the law of the excluded middle



¢V ~p is not assumed to hold, although one can use induction in HA to prove
that it holds for atomic formulae.

The double-negation translation maps classical formulae ¢ to intuitionistic
formulae ¢, and is defined inductively as follows: (1 V 6)N is ~(~tpN A ~6N)
(or, which is equivalent over intuitionistic logic, ~~(¢™ Vv 8N)); 3z Y)V is
~Vz ~pN (or, equivalently, ~~3z ¢N); N is ~~tp for atomic formulae ¢;
and the translation commutes with the connectives A and V. Let us consider an
alternative translation, which I will call the M-translation, given inductively by
the following clauses:

AM = A for atomic formulae A
AM — 4

(V)M = oM v yM

(AP = ~(=~p v p)M

(Fz )™ =3z M

(Vz )M = ~(3z ~p)™.

The M-translation is not quite equivalent to the N-translation, but one can
show by induction that the following relationship holds:

Proposition 7. For any formula ¢ in the language of Tait’s sequent calculus,
one can prove

M N
N(p L d NSD .
in intuitionistic logic; in fact, in minimal logic.

By minimal logic I mean the fragment of intuitionistic logic which omits the rule
* “ex falso sequitur quod libet,” i.e. “from L anything follows.” One can think
of the M-translation as a version of the double-negation translation which is
parsimonious with negations, doling them out only when they are absolutely
necessary. In fact, Proposition 7 would still hold if we had defined (¢ A ¥)™ to
be ™ A¢M | in which case the translation would be trivial on formulae without
universal quantifiers.
As a corollary to Proposition 7 we have

Theorem 8. Suppose {¢1,...,¢r} is provable classically, then
(_'(pl)M, (R (_'(pk)M = L

is provable over minimal logic.

In fact, a direct translation of proofs is implicit in the realizability interpretation
of the previous section. For example, writing (—I")™ to denote the M-translations
of the negations of the formulae in I', the cut rule,

I'e I~
r



translates to

(=DM, (~p)M = L (~D)M oM = |
(=DM = ~(—p)M (=M = ~pM
(“lI‘)M =1

This relies on the symmetry of the M-translation, which ensures that either
(—p)™ is the negation of o™, or vice-versa. The A rule,

Iy Iy
oAy

translates to

(_"F)M7 ("SD)M =1 ('_'F)Ma (_|,(/))M =1
DM ()M V ()M = 1

i

and the V rule,
Iy
vy

translates to

DM, ()M = 1L
DM =3 ~EM (M VM) = M
(=DM, ~ (M v M) = L

where in the last derivation one uses a “canonical” proof of ~(M VepM) = ~M .
The quantifier rules are treated similarly. The translation works equally well for
PA and HA, so we have

Theorem 9. If {¢1,...,¢1} is provable in PA, then
(—'301)M7 (KR (ﬁ‘pk)M =1
is provable in arithmetic over minimal logic.

In fact, since in arithmetic every atomic formula has an atoriic “complement,” .
here we can define AM to be A.

We can now employ a trick, due to Friedman [9] and Dragalin independently.
Given a proof in minimal logic, if one replaces L by an arbitrary formula, then
every rule in the original proof remains valid. (If the original proof is in intu-
itionistic logic, one must first replace atomic formulae 6 by 6 v L.) Now, starting
with a proof of 3z A(x) in classical arithmetic, Theorem 9 yields a proof of L
from 3z A(z) — L. Replacing L by 3z A(z) yields a proof of 3z A(z) from
Jz A(z) — 3z A(z), and hence a proof of 3z A(x) outright. This yields



Theorem 10. If PA proves 3z A(z), then so does HA.

Finally, one can apply Kreisel’s modified form of Kleene’s realizability (see,
for example, [28]) to the proof in HA. Roughly speaking, one declares that an
atomic formula is realized if and only if it’s true; a realizer for p A4 is a realizer
for ¢ paired with a realizer for 9; a realizer for ¢ V ¢ is either a realizer for @ or
a realizer for ¢, with a tag to indicate which is the case; a realizer for ¢ — ¢ is a
function(al) mapping any realizer for ¢ to a realizer for 9; a realizer for Vz o(z) is
a function mapping any a € N to a realizer for ¢(a); and a realizer for Iz (z) is
an element a € N paired with a realizer for ¢(a). The result is that from the proof
of 3z A(z) in HA one obtains a witnessing term, providing an alternative proof
of Theorem 5. Or rather, the same proof in disguise: the reader can now check
that the classical realizability interpretation given in the last section is nothing
more than the modified realizability interpretation coupled with the translation
of the classical sequent calculus to natural deduction given by Theorem 9, once
we replace L by 3z A(z). Note that cutting with the hypothesis YV A(z) on the
classical side corresponds to utilizing the canonical proof of 3z A(z) — 3z A(z)
on the intuitionistic side. In sum, we have the following

Theorem 11. Given a proof of 3z A(z) in PA, the witnessing term eztracted
using the classical realizability of Section 3 is the same as the witnessing term
obtained by translating the classical proof to an intuitionistic one using the M-
translation, applying the Friedman-Dragalin translation, and then applying mod-
ified realizability.

At this point it seems worthwhile to mention another interpretation, that is
a little closer to the N-interpretation:

Al = ~~A  for atomic formulae A
Al =~4

(P AP)" =t Ayt

(P V)E = ~(=p A )"

(Vz @)F =Vz "

3z )t = ~(Vz —p)~.

For this translation we have the following

Proposition 12. For any formula ¢ in negation-normal form, one can prove -
ot e ol

n intuitionistic logic.

Had we used the L-translation in the last section, we would have been able to
translate every proof of {¢1,...,¢%} in PA to a proof of L from assumptions
~pf,. . .~pf in HA; but dealing with the extra negation symbol would have
been unwieldy.



5 Reductions for Classical Arithmetic

In this section I will present a set of reductions for proofs in a slight extension of
the system PA defined above. We will see that these reductions are compatible
with the normalization of the term extracted by realizability, in the following
sense: if one reduces a proof d to d', then Fy and Fy convert to the same term. In
the next two sections I will show that these reductions can be used to eliminate
cuts from proofs of X; sentences in PA and extract a witness for the conclusion.
To begin, let us augment the proof system PA in the following two ways:

1. Close the set of axioms under substitution of terms for free variables, and
cut.
2. Add the following “inversion” rules:
(a) Atomic inversion: If ¢ is a true closed atomic formula, from I', g conclude
r.
(b) And inversion: From I', A1) conclude either I, or I, ¢
(c) For all inversion: From I',Vz ¢(z) conclude o(n) for any numeral n.

If the reader is concerned with the loss of transparency due to clause 1, he or she
can insist that these axioms be labeled with a derivation from the original ones.
Since weakenings are allowed, an axiom may contain complex side formulae; I
will take the principal formulae in an axiom to be those that are either atomic
or negation atomic. Though it is a slight abuse of notation I will henceforth use
PA to refer to the system of Section 2 with these modified axioms, and I will
use PA™ to refer to the system with the additional inversion rules.

The realizability interpretation of Section 3 can easily be extended to handle
the new rules. If d is one of the new axioms, we can still take Fy = 0. If d is ob-
tained by an application of the Atomic inversion rule to another proof d', we can
just take Fy = Fy. If d is obtained from d' by an application of And inversion,
as in the proof of Lemma 2 we can take Fy to be either (Aotmgpv-y Far)(inl(a—y))
or (Aa—gv-y Fur)(inr(a-,)) as necessary. Finally, if d is obtained by applying
For all inversion to d', we can take Fy to be (Aazg —p(z)Fur ) ({n, ap(n)))-

Terms in PR come equipped with a natural reducibility relation, under
which (Az t)(s) reduces to t[s/z], Rs:(0) reduces to s, and R (u') reduces to
t(u, Rst(u)). I will write s ~» ¢ if ¢ can be obtained by iteratively applying such
reductions to subterms of s, and t «w s if ¢ and s reduce to a common term,
up to a renaming of bound variables. A term is said to be in normal form if it
cannot be reduced any further. More precise definitions can be found iri [15].

It is well known that the reductions just described are strongly normalizing
(i.e. there are no infinite sequences of one-step reductions, so that arbitrary
reduction procedures are guaranteed to terminate) and confluent (i.e. the relation
e~ I8 an equivalence relation). Taken together these imply that every term ¢
reduces to a unique term in normal form. It is easy to check that if ¢ is a closed
term of type N then the normal form of ¢ must be a numeral, for which I will
write ng. Note that if C is a primitive recursive relation and t1,ts,... ,% are
closed terms, then x¢(t1,ts,... ,t;) reduces to either 0 or 1.



Under the conventions described in Section 2, we have the following reduc-
tions:

1. (a) Cutc(a,b) ~ aif C is a false closed atomic formula
(b) Cutc(a,b) ~ bif C is a true closed atomic formula
2. (a) cases(inl(a), f,g) ~ f(a)
(b) cases(inr(a), f, 9) ~+ g(a)
3. (a) ({a,0))o ~ a
(b) ({a,b))1 ~ b

If d is a PA-proof of a sequent I" with free variable =, let d[t/z] denote the
proof of I'[t/x] obtained by inductively replacing « by ¢ in d (barring instances
of z that are not “related” to those in the final sequent). Similarly, if ¢ is a
closed term of type N, let d[t ~» n;] denote the result of replacing ¢ by n;. One
can verify that d[t/z] and d[t ~ n;] are again proofs in PA, and we have the
following

Lemma 13. Fy/,) = Fy[t/z] and Fy ~ Fyjpe,n)-

I will now define a set of transformations with which a proof d in PA* can
be converted to another proof d' having the same conclusion. I will say that d
reduces to d' in one step, written d ~»; d', if d' can be obtained by applying one
of these transformations to a subproof of d; and d reduces to d', written d ~ d',
if @' can be obtained from d by a series of one-step reductions. Finally, say that
d is in normal form if no further one-step reduction is possible.

In illustrating the transformations below, I have chosen instances in which
the hypotheses in the proof on the left are as “large” as possible. But only the
rules are important, which is to say that the same transformations are allowed
when the hypotheses in the proofs on the left are subsets of the ones shown.

The reductions on proofs d are organized according to the last rule of d, as
follows:

1. Principal cuts: Cuts in which the cut formula that is atomic, of the form
@ V 9, or of the form Iz p(x), is principal in the previous inference.
(a) Amiom: if ¢ closed and atomic and the principal formula of the preceding
inference, then that inference must be an axiom.

do dO
L I'p reducesto I'"or I,p
— T T

If ¢ is false then {@} is an axiom, and so I" is also an axiom. If ¢ is true
we can apply atomic inversion to dp.
(b) Or:
do
Fa pV 1:0; ' 4 d
Levy I\~ A=y
T v




reduces to

do dy di
LioVy,p  Iimp A I'i=p A~
I I =
r

First, cut dy against d; ; then invert d; and cut again on a smaller formula.
The case where the Or rule is applied on the right is similar.
(c) Ewmists: if t is a closed term,

do
F’ 3z ‘P(x)’ QO(t) dl
I, 3z o(z) I',-Vz ¢(z)
r
reduces to
dolt ~ 1] di d
I, 3z p(z), p(ne) I'\Vz ¢(z) I'\Vz o(z)
Fa (p(nt) F? (P(n't)

r

This is similar to the last reduction. Here one converts ¢ to a numeral
n¢, and uses n; in the For all inversion on the right.
2. Nonprincipal cuts: cuts in which the cut formula that is atomic, of the form
¢V ¢, or of the form 3z ¢, is not principal in the preceeding inference.
(a) If the preceding rule is And, Or, Ezists, For all, or an axiom, pass the
cut “through” this rule. For example,

d;
I, 3z p(x) . d
I3z o(z) I'Vz —p(z)

I
reduces to

d; d

I3z o(x)  I,Vz —p(z)
T T
r

Note that if I', 3z ¢(z) is an axiom then so is I', and hence I' I} as well.
(b) If the preceding rule is again a cut rule, pass the lower cut through the
one above. For example,
do di
I3z ¢, 0 I3z, -6 da
I3z I'Vz -
I

reduces to



do do di da
'3z ,0 I'Vz —p I3z ¢, 0 IV —p
I6 I,—8
r

. Elimination of unnecessary free variables: If the last inference of d is either
Cut or Egists, and there is a free variable in one of the hypotheses that is
not free in the conclusion, replace that free variable with 0. For example,

dy do[0/y]
I3z o(z),p(t(y)) reducesto I3z o(z),(t(0))
I, 3z o(z) I, 3z ¢(x)

- Principal inversions: These are inversions whose main formula is the princi-
pal formula of the preceding inference.
(a) Atomic inversion:

L, reduces to I’

If ¢ is principal in the previous inference, then that inference must be
an axiom. If ¢ is a true atomic formula, then {} is an axiom, and hence

sois I
(b) And inversion:
dO dl do
oAy, Long,y reduces to LipAy,p
Lwhd. T Te
Iy ’

In words, one simply implies the inversion to the subproof dy. The case
where the inversion is on the right formula 4 is similar.
(c) For all mverszon, where the principal formula is the conclusion of a For

all rule:
do
do[n/y]
LYz o(z), o(y)
reduces to I\Vz o(x), p(n
I Vz o(z) Fw;(;)w( )
I, p(n) ’

In this case, one applies the inversion to do[n/y].”
(d) For all inversion, where the principal formula is the conclusion of the
induction rule:

do dl
L Ve o(z),0(0)  IVz (), (), o(y')
I,Vz o(x)
I, p(n)

reduces to



do d1[0/y]
I'Vz (P(z)a (p(O) I\Vz QO(II?), —|<p(0), ()0(1) dy [l/y]
F, Vz SD(IE), QD(]-) Fa Vz (p(.’l:), _'(10(1)7 SD(2)

I, Vz o(z), ¢(2)

I\Vz w(x), »(n)
T, p(n)

In words, one applies n cuts to do,d1[0/y],...,di[n — 1/y], and then
inverts the result.
9. Nonprincipal inversions: if the last rule is an inversion applied to a formula
that is not principal in the preceding inference, carry out the inversion on
the hypotheses of the preceding rule instead. For example,

d;
I,V o)
IVz o(x)

I, p(n)

reduces to

d;
I3, Vz o(x)
I3, ¢(n)
Iy p(n)

The reductions for the other inversion rules are similar.

Lemma 17 below shows that a proof of a X sentence is normal (irreducible)
if and only if it is cut-free (and this remains true even if reductions of the form 2b
are disallowed). In the next two sections I will present both finitary and infinitary
cut-elimination procedures that use these reductions to transform such proofs to
ones in normal form. This shows that these reductions are weakly normalizing
when applied to proofs of £; sentences. Note that in the presence of rule 2b
they are not strongly normalizing, since this rule makes it possible to pass two
cuts through each other ad infinitum; but Theorem 30 shows that without 2b,
the resulting set of reductions is, in fact, strongly normalizing.

Leaving the issue of normalizability aside for the moment, I will now show
that the reductions above are compatible with the reduction of the realizing term
extracted in Section 3.

Lemma 14. If a proof d is reduced to another proof d' according to any of the
transformations listed above, then Fy e~ Fy.



Proof. The proof requires checking each reduction. In each case, I will use d to
denote the proof on the left, d’ to denote the proof on the right, and dy, di, etc.
as in the diagrams above. Similarly, I will write F' instead of Fy, F' instead of
Fy, and so on.

When it comes to the principal cuts, the atomic case la is easy. Consider
case 1b, in which the cut is on a formula of the form ¢ V 9. In this case, F is
given by

()‘awp/\-wb Cuty, (Aa—y Fo, A, a_.(p/\_,,p(inl(a‘p))))()\mpv,/, F).
F' is given by
Cut,, (Aaw (A@agn-y Fo) Aagpvy F1)), Aty ((Matpye Fl)(inl(aw)))).
Both terms reduce to
Cut,, (Aa—«p Fol[(Aapvy Fi)/ampn-y), Ay (Aagvy Fl)(inl(aw))))-

Case 1c is handled similarly.
To handle the nonprincipal cuts, note that in the example shown for 2a, F
is of the form

(/\an —o(2) t(...F;... )) (Aaz, o(z) F) .

where ¢ is a term and the only free occurrences of oy, —p(z) Occurring in ¢ are
those that occur in the terms F;. F' is then given by

t(. . ()\avm —~¢(z) F,;) Az, w(z) ﬁ') cee ) .
Both terms reduce to
(... Fi[Aas, () ﬁ‘/aVz "‘(p((l:)] S

Case 2b is similar.

Since we substituted 0 for extraneous free variables in the defining clauses of
Section 3, the application of a reduction according to 3 leaves the realizing term
unchanged. ’

Checking that the claim holds of -Atomic inversion, 4a, is easy. To handle the
instance of And inversion shown in 4b, note that F is given by

(/\aw,v_,,ﬁ cases(Q—pa—y, Al-g Fo, Ay Fl)) (inl(a-y)),

and that in this expression a..,, occurs both free and bound; to reduce this term,
one must temporarily replace Aa—, Fy by AB-, Fo[B-p/a-,]. F' is given by

(At—gv—y Fo)(inl(a-y,)).



Both F' and F' reduce to the term

Fy[inl(a-y)/ 0-pv-y)-

For all inversion following a For all rule as in 4c is handled similarly. Finally, in
case 4d, where For all inversion follows Induction, F is given by

(AaElz —(z) h((aaz —up(m))O; (aam ﬂzp(z))l)) ((n, aﬁcp(n)))

where h is the function defined in the Induction clause of Section 3. Note that
in general a3, —y(z) Will be free in F and Fi, and Qo (y) and y will be free in Fj.
After renaming some of the variables for clarity, F' is given by

(/\aaz- ~p(z) Clity(n-1) (’\aw(n—l) Cutgnz) (- --
Ai~g(1) Cuty(o) (A-p(0) Fo, Aay(o) Fi1[0/y, apo)/py]) - - )
tpn-1) Filn = 114501/ 2t]) ) (i)
Both terms reduce to

Cuty(n-1) (/\a_.<p(n_1) Cuty(ns)(. .-
Aty (1) Cuty(o) (Adg(oy Fol(n, dap(n)) /@32 —p(2)],
Acy(0) F1[0/Y, 0rp(0) [ 0tp(y) (M) () )/ O3z —p()]) - - - ),
Ap(nm) Filn = 14, @pnm)/ @ty (1r G 032 ()]

The nonprincipal inversions in case 5 are handled in a manner similar to the
one we used to deal with the nonprincipal cuts. ]

Corollary 15. Ifd ~~ d', then Fy e~ Fy.
Before we proceed let me introduce some terminology.

Definition 16. 1. In any cut, the cut formula that is either atomic, of the
form oV 9, or of the form 3z ¢ is called the active premise of the cut. The
corresponding sequent is called the active sequent.

2. A cut is movable if it is subject to a reduction of the form 2a. In other words,
a cut is movable if it is nonprincipal, and the active sequent is an aziom or
the conclusion of an And, Or, Exists, or For all inference.

3. A formula is X if it contazns N0 unwersal quantifiers. A sequent is 3. (resp. - -
closed) if every formula in it is X (resp. closed).

Consider a cut whose conclusion is a closed sequent. Using the terminology
above we can observe that if this cut is neither principal nor movable, then the
active sequent is the conclusion of either an inversion, an induction inference,
or another cut. If the conclusion of the original cut happens to be X, then the
active sequent is L' and the second possibility is eliminated.

The next lemma shows that normal proofs of closed X sequents are cut-free
(even if one omits reductions of the form 2b).



Lemma 17. 1. Ifd is a PA*-proof with an instance of an inversion rule, then
a reduction of type 4 or § applies to d. Hence any normal PA* proof is a
PA-proof.

2. If d is a PA-proof of a closed X sequent whose last inference is a Cut, then
a reduction of type 1, 2a, or 3 applies to d.

3. If d is a normal PA-proof of a closed X sequent, then d is cui-free and every
sequent is X' and closed.

Proof. In each case, the proof proceeds by induction on d. One obtains the first
clause by noting that a reduction of type 4 or 5 can be applied to any inversion
rule, unless the preceding rule is again an inversion.

To handle the second clause, suppose that no reduction of type 1, 2a, or 3
applies to the last cut; in other words this cut is neither principal nor movable,
and there are no unnecessary free variables. Then the active sequent of this cut
is again a closed X' sequent, and the hypotheses imply that this sequent can only
be the conclusion of another cut.

To obtain the final clause, note that by (2) the last inference of d cannot be
a cut, and there are no unnecessary free variables. It follows that the immediate
subproofs of d are again normal proofs of closed X sequents. 1

Corollary 18. Let d be a proof of a sentence Iz A(z) in normal form. Then d
is of the form
A(tr), A(t), ... , A(tg—1), A(te), 3z A(z)
A(tr), A(ta), ... , A(tk—1), 3z A(z)

Alty), Alta), 3z A(z)
A(t1), 3z A(z)
dz A(z)

for some k > 1. Thatis, d consists of an aziom {A(t1), A(ts),... ,AtE)} in
which each term t; is closed, with or without the formula 3z A(z); followed by k
applications of the Exists rule.

Lemma 19. Let d be obtained by combining the proof above with a cut on the
hypothesis Yz A(x). Then F; reduces to fi, where

ng, if Alng,)
N, of A(ne,) and A(ng,)
Nty Zf A(nh)r A(ntz): and A(nta)

o

o

fl =

ng, otherwise

Proof. Note that if d is a proof of whose last inference is an application of the
Ezists rule to a proof d' of I', A(t), then Fj is given by

Cut g5y (Far, 0wy A()())-



This reduces to ay, 4(,)(t) if A(t) holds, and Fy otherwise. Cutting with the
hypothesis involves replacing ay, A(z) by the identity function. The result-follows
easily by induction on k. » O

From Corollary 15 we obtain

Theorem 20. Let d be a proof of a Xy sentence 3z A(z) in PA. Let n; be the
value obtained by extracting a realizing term as in Section 8 and normalizing it.
Let ny be any value obtained by normalizing the proof using the reductions above
and then extracting a witness as in Lemma 19. Then ny = ns.

6 Finitary cut elimination

Following Gentzen’s approach [11, 25], one obtains an ordinal analysis of PA by
assigning ordinals to proofs, and then defining a procedure which transforms any
proof containing at least one cut to another proof with a smaller ordinal. Iterating
this procedure is then guaranteed to yield a cut-free proof. In this section I will
define such an assignment of ordinals, together with an iterative procedure that
relies on the reductions defined in the previous section. The ordinal assignment
and reduction procedure are essentially an adaptation of Gentzen’s (but see the
discussion in Section 8).

The ordinal € is defined to be the limit of wp,w;,ws, ... , where wg = 1 and
Wn41 = w“". As usual, 2% denotes ordinal exponentiation to the base 2, and 22
denotes the iterated exponential defined by 2% = o and 25 = 222, Any ordinal
o can be written uniquely in the form > <k 2%, where a, > ag—1 > ... > ap.
If o is of this form and, similarly, 8 is equal to i 26 then the symmetric
sum of a and f, denoted a#p, is given by 3, <k41 27, where the sequence (v;)
lists the elements of (o;) and (8;) in decreasing order.

The essential property of the symmetric sum is that it is monotone in both
arguments, and the essential property of base 2 exponentiation is that whenever
a; and ap are less than a, 2%1#2°2 is less than 2%. In fact, since aj,as < «
implies 2/,,2/*%, < 2{ ;, we have that 2/ #202 < 2% for every [ greater than
or equal to one.

Define the rank of a formula to be the number of logical connectives it con-
tains; that is, rank(B) = rank(B) = 0, rank(3z ¢) = rank(Vz @) = rank(p) +1,
and rank(p V) = rank(pAy) = rank(p) +rank(t) + 1. The rank of a Cut infer-
ence is defined to be the rank of its cut formulae, and the rank of an Induction
inference is the rank of the induction formula ¢ (y). }

If we imagine each derivation D to be given by a tree growing upwards from
the conclusion to the axioms, the height of a node o in D, denoted height (e, D),
is defined to be the supremum of the ranks of all the cut and induction inferences
encountered as one travels along the path from ¢ down to the root of D. (This
terminology is due to Gentzen, and should not be confused with the height of
the proof tree.)

I will now assign an ordinal ord(D) to each PA-proof D, by inductively
assigning a value ord(c, D) to each node o of D and then taking ord(D) to be



the value assigned to the root. Using D, to denote the subproof of D rooted at
o, the assignment is defined as follows:

1. If D, is a proof consisting of a single axiom, then ord(e, D) = 1.

2. If D, is obtained from subproofs D,, using an inference of the form And,
Or, For all, or Eists, then ord(c, D) = sup({ord(r;, D)}) + 1.

3. If D, is obtained by applying a Cut rule to subproofs D, and D, let I =
height(o, D) and let m = height(r, D) = height(p, D). Then

ord(s, D) = 2:‘1(17')D)#0!'d(p’1))
where “~” denotes truncated subtraction.

4. If D, is obtained by applying an Induction rule to subproofs D, and D,,
then

rd(r,D)#ord(p,D)-
OI‘d(O’, D) — 2;)71*([7' )#ord(p,D)-w
where | and m are as above.

One can extend this to PA* proofs by simply ignoring the inversion rules:

5. If D, is obtained by applying an Inversion inference to D, set ord(o, D) =
ord(r, D).

In the end, ord(c, D) depends only on the subproof D, rooted at ¢ and the
height of ¢ in D. In other words, one can define another function o(d,!) such
that for any proof d and node o,

ord(e, D) = o(D,, height(c, D)).

In particular, ord(D) = o(D, 0). The function o(d 1) is defined for every [ simul-
taneously, by the followmg clauses:

1. If d is an axiom, o(d, =1

2. If d is obtained from subproofs d; using an rule of the form And, Or, For all,
or Ezists, o(d, 1) = sup({o(d;,1)}) + 1.

3. If d is obtained by applying a Cut of rank m to subproofs dy and dy, then

O(d, l) = 2?7510{‘“3"‘("‘11))#0((11,ma.x(m,l)) '

4. If d is obtained by applying an Induction of rank m to subpfoofs do and dy,
then

do,max(m,l}}#ord(d; ,max(m,l)) -w
O(d,l)=23r5+°z ax(m,l)) (dy,max(m,l))w

5. If d is obtained by applying an Inversion to do, o(d,!) = o(do,1).

The reduction procedure for PA-proofs can now be described in rough terms,
as follows:



1. Keep applying reductions of the form 2a, until there are no more movable
cuts.

2. Keep applying reductions of the form 3, until there are no unnecessary free
variables.

3. Apply a reduction of the form 1 to a suitable principal cut, and then ap-
ply certain reductions of the form 2b to guarantee that the ordinal of the
resulting proof decreases.

4. If the previous step introduced an Inversion inference, apply reductions of
the form 4 and 5 to remove it.

The following lemmata spell out the details. The first shows that the ordinal of
a proof D decreases if we apply an appropriate reduction to a subproof D,,.

Lemma 21. Let D be any proof in PA* and let o be a node of D. Let D' be
a proof obtained by replacing D, with another proof, D, of the same sequent.
If ord(o, D') = ord(o, D) then ord(D’') = ord(D), and if ord(e, D') < ord(s, D)
then ord(D’) < ord(D).

Proof. By induction on the length of the path from o to the root of D. O

The next three lemmata allow us to carry out the first two steps of the proce-
dure described above, eliminating movable cuts and unnecessary free variables.

Lemma 22. Let d be a PA-proof in which there are no movable cuts except at
the last inference. Then there is a PA-proof d' of the same sequent, such that d'
has no movable cuts and for every l, o(d',1) < ord(d, ).

Proof. By induction on the height of the proof tree. If the active sequent of the
cut is the conclusion of subproofs d;, and the non-active sequent of the cut is
the conclusion of subproof d, apply reduction 2a to pass the cut through this
inference, and then inductively apply the lemma to any subproof in which the

" cut is still movable. Then we have

6(d', 1) < sup({o(d;, )#o(d,1)}) +1
= sup({o(di, ) + 1})#o0(d, 1)
= o(d, ).
Oa

Lemma 23. Let d be any PA-proof. Then there is a PA-proof d' of the same
sequent, such that d' has no movable cuts and for every l, o(d,l) < o(d',1).

Proof. By induction on d; keep applying Lemma, 22. O

Say that a proof d’ “has no unnecessary free variables” if reduction 3 cannot
be applied to d'.

Lemma 24. Let d be any PA-proof. Then there is a PA-proof d' of the same
sequent, such that d' has no unnecessary free variables and for every l, o(d,l) <
ord(d',l). Furthermore, if d has no movable cuts, then neither does d'.



Proof. Inductively apply reduction 3 to the last inference of d, if necessary, and
then the immediate subproofs. - O

Suppose that D is a PA proof of a sentence 3z A(z), and that D has no mov-
able cuts or unnecessary free variables. If D is cut-free, we are done. Otherwise,
if the last inference of D is not a cut, then it can only be an instance of the
Ezists rule. In the latter case, if the preceeding inference is also not a cut, then
it is again an instance of the Fzists rule, and so on. In other words, for some
J» D ends with j applications of the Ezists rule preceded by a cut. Now, if this
cut is not principal, then its active sequent is again the conclusion of a cut; and
again this argument can be iterated. In short, D must have the following form:

F,el,---,é’lﬂ? Fyel""’el;_'n .
T.61,....6, I61,... 61,0,

I‘yola'-- agl—l
F,e]_ F,—'Hl
r
Az A(z)

In this derivation every sequent is closed, I' is of the form
{A(tl)a e vA(tj)7 Iz A(z)}

(or, possibly, of this form but without the formula 3z A(z)), the cut on 7 is
principal, and each 6; is closed and either atomic, of the form « V 3, or of the
form Jz a.

Lemma 25. Let D be a PA-proof of the above form. Then there is a PA* proof
D' of the same sequent, such that ord(D') is less than ord(D).

Proof. If 17 is atomic or negation atomic, apply a reduction of the form la. Tt is
not difficult to show that the resulting ordinal decreases.

Suppose 7 is of the form ¢ V 1 or ¢ A 1. Without loss of generality, we can
assume the former, since otherwise we can consider -5 instead. '

Note that I',0,,...,6;,m and I, 6y,... ,6;,—n have the same height; call this
height n. Note also that the height of I" is 0, and the heights of the sequents
I',60:,...,0; are nondecreasing in . Choose k such that I',6;,... ,6; is the first
sequent below I', 6., ... ,6;,17 whose height is strictly less than n; if this sequent
is I', take k to be 0.

Writing I for I,6,,... 6k, we have the following proof d as a subproof of
D:



diyy

I'\8ks1,e.. 00,0V d;
IOy, 01,0V I 0kq1,eee 00,m0 A dia
I ki1, .00 I Okq1ye 011,60,

I\ 8rq1,e 0121

: di
F’,0k+1 F’y"'ek+1
Fad

In this diagram the height of I in D is some value m that is strictly less than
n, and the height of every other sequent shown is n.
Let eo be the proof of I'', p obtained by omitting the top Or inference, and

cutting dy4q with dy, ... ,dy, as follows:
digy d;
I 0kt1yee 00,0V I 0kq1sen 00,0 A diy
I Brg1,.. 00,0 I Oks1ye 011,76

I Oy s0i—1,00

: di
I'\Bri1,0 I\ =61
'

Let e1 be the proof of I, ~¢ obtained by inverting d;, and then cutting it with
di—1,...,dy, as follows:

d;
I \Orgayenn 1A : diy

I \Org1ye. 01,00 I'\Okg1,e,00-1,=6;

I Okq1se 011,

: d
F’,9k+1,—l§p [","’ak—f-l

F’,“V’
Finally let d' be the proof obtained by cutting ey with e;:

€9 €1
I'g Iy
I"Il

Note that d' is exactly the proof obtained from d by applying reduction 1b to
the principal cut on ¢ V 6, and then applying reduction 2b [ times to bring each
of the cuts on 6, ... ,0,41 through the resulting cut on ¢.

Let D' be the proof that results from replacing d by d' in D. Since the height
of I'" is m in both D and D', I only need to show that o(d’,m) is strictly less
than o(d, m).



Since the height of every sequent in d other than the bottom one is n, we
have

i+2 n
o(d,m) = 21(5;::: o(d:,n))+1

where X denotes a summation using the symmetric sum: Notice that the “+1”
comes from the application of the Or rule. Let p be the height of I,y in D'.
Since the rank of ¢ is strictly less than n, we have m < p < n. Calculating the
ordinal assigned to d', we find that

Tit2 o(aim), Titl o(dgm)

#2,23

Since n — p greater than or equal to 1 we have

142 i 41 ) i+2 .
25:_;;-1: o(d‘,11):"‘7‘1__255;0 o{d:,n) < 2£L§im=k o(d;,n))+1
The desired inequality comes from applying 2,_m, to both sides.
This completes the case in which 7 is of the form ¢ V 4 or ¢ A ). The case
in which 7 is of the form 3z ¢ or Vz ¢ is handled similarly. |

Finally, we have

Lemma 26. Let d be a PA™-proof with no inversion rules ezcept at the last
inference. Then there is a PA-proof d' of the same sequent, such that for every
I, o(d',1) <o(d,l).

Proof. An easy induction on d; keep applying reduction 4 and 5. O

We now have the desired cut-elimination procedure: given a proof D that is
not cut-free, apply Lemma 23 to eliminate movable cuts, apply Lemma 24 to
remove unnecessary free variables, apply Lemma 25 to reduce one principal cut
and lower the ordinal rank, and, finally, apply Lemma 26 to remove the inversion
that the previous step.has introduced.

With a reasonable arithmetization of proofs and ordinal notations, steps 1-4
above are clearly primitive recursive. This yields the usual results of an ordinal
analysis:

Theorem 27. The proof-theoretic ordinal of PA is bounded by €, in all of the
following senses:

1. Every provable function of PA is <eg-recursive.

2. Primitive recursive arithmetic, together with the assertion that every de-
scending sequence of notations below €q terminates, proves the I-consistency
of PA.

3. Let PA(f) denote the theory obtained by adding a new function symbol to PA
and allowing it to appear in induction inferences. Suppose < is any primitive
recursive relation that PA(f) proves to be a well-ordering, in the sense that
it proves 3m (f(m') A f(m)). Then the order type of <, in the standard
model, is less than €.



Proof. The first two are standard; details and definitions can be found in, say, [4,
22]. To obtain the third clause, suppose that PA proves that < is well-ordered
in the above sense. From the procedure above we can obtain a <eg-recursive
functional F' such that for every function f,

FEE)) A FEFEE).

If the order-type of < is greater than &g, then there is an isomorphism g of
notations below ¢ with an initial segment of <. We can use this to obtain a <eg
recursive functional F'(g, f) such that for every f,

F(E(g, N £ fF(FE(g, 1)),

where “<” refers to the ordering on eg-notations. Using the normal-form theo-
rems of [6], this can be used to obtain a universal function for go-computable
functions relativized to g. But now an easy diagonalization yields a contradiction.
O

Of course, corresponding “lower bounds” can be obtained by developing a
theory of ordinals below £q within PA.
As a corollary to Theorem 20 we obtain

Theorem 28. Let d be a proof of a £y sentence 3x A(x) in PA. Let ny be the
value obtained by extracting a realizing term as in Section 3 and normalizing
it. Let ny be the witness obtained from the finitary cut-elimination procedure
described above. Then ny = na.

Wilfried Buchholz has pointed out to me that one can extract additional
information from the proof above. First, using modifications similar to the ones
described in [25, pp. 116-117], one can obtain sharp ordinal bounds on the
strength of the fragments of arithmetic 7X%. More specifically, one has to alter
the induction rule so that it reads “from I, ¢(0) and I, —p(z), p(z') conclude
I, ¢(t) for arbitrary terms ¢.” Then one has to augment For all inversion to
accomodate arbitrary terms ¢, and modify the reduction rules accordingly. Given
a proof d in X}, one carries out a finitary “partial” cut elimination, so that in
any cut one of the cut formulae is the principal conclusion of an instance of the
induction rule. The one uses the ordinal assignment above, but redefining the
rank of a formula to be number of logical connectives in the formula minus one.
The treatment of cuts that previously had rank one has to be. sultably modified;
for example, given an inference

do
I3z B(z), B(?) &
I',3z B(z) I\Vz B(z)

r

in which B(t) is closed and atomic, one cuts do against d; and then applies
atomic inversion, if B(t) is false; or one applies two inversions on dy, if B(t) is
true. When all is said and done, we have



Theorem 29. The proof-theoretic ordinal of 1%}y, is wry1.

A second observation is that with a more liberal assignment of ordinals one
can obtain a stronger normalization theorem. Let g, ¥1,(2