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Abstract

It is now well known that, on pain of triviality, the probability of a conditional
cannot be identified with the corresponding conditional probability [27]. This sur-
prising impossibility result has a qualitative counterpart. In fact, Peter Gardenfors
showed in [13] that believing ‘If A then B’ cannot be equated with the act of be-
lieving B on the supposition that A.

Recent work has shown that in spite of these negative results, the question ‘how to
accept a conditional?’ has a clear answer. Even if conditionals are not truth-carriers,
they do have precise acceptability conditions. Nevertheless most epistemic models
of conditionals do not provide acceptance conditions for iterated conditionals. One
of the main goals of this essay is to provide a comprehensive account of the notion
of epistemic conditionality covering all forms of iteration.

First we propose an account of the basic idea of epistemic conditionality, by
studying the conditionals validated by epistemic models where iteration is permit-
ted but not constrained by special axioms. Our modelling does not presuppose that
epistemic states should be represented by belief sets (we only assume that to each
epistemic state corresponds an associated belief state). A full encoding of the ba-
sic epistemic conditionals (encompassing all forms of iteration) is presented and a
representation result is proved.

In the second part of the essay we argue that the notion of change involved
in the evaluation of conditionals is suppositional, and that such notion should be
distinguished from the notion of updating (modelled by AGM and other methods).
We conclude by considering how some of the recent modellings of iterated change
fare as methods for iterated supposing.
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1 Introduction

(RT) ’If A, then B’ is accepted with respect to an epistemic state K iff B is
accepted in the minimal revision of K needed to accept A for the sake of the
argument.

RT is a neat and elegant idea.! How to make it precise has been, never-
theless, the object of some controversy. The terms that are left vague in RT
are: ‘epistemic state’, ‘hypothetical revision’, and ‘acceptance’. Different im-
plementations of RT typically disambiguate these terms in different ways. I
- will start by offering a review of some of the basic alternatives.

First consider epistemic states. One common maneuver is to represent them
by closed sets of sentences (theories in logical parlance). For example, the
AGM trio adopted this position. 2 Sentences in those belief sets represent the
sentences that a certain agent is committed to believe at a certain time. This
move is now common in computer science circles, but it is far from being
common in philosophy, where epistemic states are often encoded as probability
functions.

Richer qualitative encodings of states have been proposed by many authors.
Wolfgang Spohn, for example, has advocated in several papers the use of well
ordered partitions (WOP). Epistemic states can also be represented by Grove
orderings (which encode more structure than WOPSs), or by ordinal conditional
functions (which encode more structure than the two previous modellings). ®.

No substantial assumptions about the structure of epistemic states will be
made in this paper, aside from the fact that the belief states associated with
them are belief sets (i.e. closed sets of sentences in a non-modal language).
So, to each epistemic state E correspond a belief set p(E), representing what
is believed by an agent in this epistemic state.

1 This idea is usually atributed to Frank Ramsey. Nevertheless Ramsey never en-
dorsed (RT). For historical and conceptual details related to this issue see [3].

2 See [13] for an introduction to AGM.

3 This way of representing states has recently gained some momentum. Some rep-
resentative examples of this trend are the elaboration of Sphon’s ideas recently
developed by Darwiche and Pearl in [9] as well as the proposal presented by Hans
Rott in [31]

4 Since no further restrictions are imposed until the last section of the paper, we
can have different epistemic states sharing identical belief sets. Many philosophers
require the complete determination of epistemic states by their doxastic compo-
nents. This requirement will be discussed in section 5 of this paper, but the main
representation result proved in Theorem 1 is completely general and therefore it



If E is the current epistemic state and p(E) is its associated belief set, one can
use the notation E*A to indicate the minimal perturbation of E needed to sup-
pose A. Of course with the new state E*A will be associated its coresponding
belief set p(E*A).

What about acceptance? Acceptance of simple Boolean formulae in an epis-
temic state E can now be represented by set theoretical membership in p(E).
Peter Gardenfors proposed, in addition, to represent acceptance of condition-
als with respect to an epistemic state E, by set theoretical membership in its
associated belief set p(E) [13]. These proposals identify acceptance of modal
and non-modal formulae with belief in the truth of the propositions that they
express. This idea, in turn, entails that modal and conditional sentences do
express propositions and are truth value bearers.

(GRT) A > B € p(E) iff B € p(E*A)°®

The view of conditionality induced by GRT is now well known. For example,
we now know that GRT cannot be complemented, on pain of triviality, with
a test for negated conditionals (see [14]):

(GNRT) - (A > B) € p(E) iff B & p(E*A)

If the idea of GRT is to provide acceptance conditions for truth-value bearing
conditionals, such a limitation is not surprising. In fact, GRT and GNRT imply
that A > B is rejected if and only if A > B is not accepted. In other words,
the net effect of complementing GRT with GNRT is to rule out the possibility
of being in suspense about a conditional. But, of course, GRT seems to have
been conceived in order to allow for such possibility.

Peter Géardenfors showed also in [13] that there are no non-trivial conditionals
generated by GRT when * is AGM. Recent refinements of this result seem
to indicate that GRT is incompatible with principles of belief change that
Ramsey explicitly required in his test (see [3] for details). In particular, GRT
is incompatible with the following intuitive condition:

(Consistent expandability) If neither A nor —A is in p(E), then p(E*A) =
Cn(p(E) U {A}), where Cn is a classical notion of logical consequence.

How to interpret these results? Ramsey’s remark in ‘General propositions and

does not depend on such constraint.
5 GRT stands for ¢ Gardenfors’ Ramsey test’.



causality,” can be of some help at this juncture:

Many sentences express cognitive attitudes without being propositions; and
the difference between saying yes or no to them is not the difference between
saying yes or no to a proposition.[30]

Two implications of Ramsey’s important remark are worth detailed consider-
ation. First Ramsey suggests that one can develop acceptance conditions both
for sentences that express propositions, and for sentences that, without being
propositions, are, nevertheless cognitive carriers. This, I think, is one of the
main insights of the program of probabilistic semantics, inititated by Ernest
Adams [1]. Although Adams thinks that conditionals are not truth-carriers, he
nevertheless thinks that it is possible to provide a precise and self-contained
theory of acceptance for them. I do agree with this view, and my ambition
in this and other writings is to help to develop a self-contained theory of in-
terpretation for conditionals and other modals, whose ontological status as
truth-carriers is at least open to question.® From now on I will use the term
‘epistemic’ to refer to these conditionals.”

Secondly, Ramsey suggests that the form of a theory of acceptance for propo-
sitions (in this case conditional propositions) does not need to coincide with
the form of a theory of acceptance for epistemic conditionals. This idea has
been less appreciated by philosophers, logicians and linguists. But I think that
Ramsey’s remark is quite right, and I hope that some of the following results
will contribute to clarify it. In the following sections I will refer to Ramsey’s
proposal as Ramsey’s insight.

We already considered a precise formulation of Ramsey’s test for condition-
als. GRT obviously provides an epistemic test for acceptance of conditional
sentences. But it also seems obvious that this particular formulation of the
test commits us to considering these conditionals as truth value bearing sen-
tences, capable of being the object of belief, disbelief or epistemic suspense. So,
GRT seems to be best seen as delivering acceptance conditions for conditional
propositions.

Conditionals of that sort have been thoroughly (and independently) investi-

61 would like to show also that such a theory can be developed without appealing
to any probabilistic paraphernalia. Moreover, I would like to suggest that a purely
qualitative account can improve the performance of the standard probabilistic the-
ories. In fact, probabilistic theories are typically unable to deliver a satisfactory
account of iteration.

7 Epistemic conditionals can be seen as truth-valued propositions, and can there-
fore be identified with set of possible worlds, as long as the corresponding proposi-
tions are undestood contextually. Such a view has been defended by Lindstrom and
Rabinowicz in [22].



gated with the tools of possible worlds semantics. In [3] it is shown that some
of the standard systems of possible worlds conditionals can be reconstructed
(without appealing to the notion of truth) by supplementing GRT with the
axioms uf a notion of change recently axiomatized by the computer scientists
Alberto Mendelzon and Hirofumi Katsuno [19]. It is not transparent which is
the intended interpretation for such a notion (usually called update), but some
of the possible interpretations seem to have an ontological flavor (for example,
update fails to satisfy Consistent Expandability).®

Therefore, we can conclude that if there are such things as truth-value bearing
conditionals,® GRT delivers acceptance conditions for them. Both negative
and positive reasons support this view. On the positive side one can count the
fact that GRT can be used to provide acceptance conditions for the possible
worlds semantics conditionals. On the negative side, one should count the
impossibility results mentioned above. These results show the impossibility of
reconciling GRT with any theory of change motivated on epistemic grounds.

But the ambition of the probabilistic program in semantics, and its more qual-
itative sequels, has been and still is to develop a self-contained pragmatics,
completely neutral about the ontological status of conditionals. This is prob-
ably the minimal goal of this program. More ambitiously, the idea can be also
expressed as follows: ‘Even if conditionals (or some class of conditionals) lack
truth values at all, they have precise acceptance conditions. The basic idea
of an epistemic reconstruction of conditionality is to make these conditions
explicit.” 1

The basic building blocks of an epistemic semantics for conditionals (of the
kind that we want to consider here) have been developed by J. L. Mackie, Isaac
Levi'! and Peter Girdenfors [13]. I contributed to develop this tradition in a
series of recent papers.'? A book-length defense of this view has been recently

8 Meek and Glymour have suggested in [29] a distinction between conditioning
and intervening that can be used to make sense of update and to understand how
the operation relates to AGM. Most of the examples used to motivate update in
the database literature can be modeled in terms of what Meek and Glymour call
an intervention: i.e. an AGM change not with a proposition E, but with a more
complex proposition I which is an action to bring about E.

9 Many philosophers and logicians have expressed doubts about such a possibility.
Among others, we should count E. Adams, M. Dummett, D. Edgington, A. Gibbard,
L Levi, J.L.. Mackie, etc.

10 One should stress that Ramsey’s idea in his seminal piece is certainly related to
this second project, rather than to the project of providing acceptance conditions
for truth value carriers.

11 Gee [23] and [24].

12 See [4]. Part of the theory has been developed in collaboration with Isaac Levi

[3].



offered by Levi [26].

Some further considerations about GRT can help us to understand how the
new proposal works. One of the main ideas implemented in GRT is that con-
ditionals and Boolean sentences should be treated symmetrically. Since the
conditionals studied by the theory are presystematically understood as propo-
sitions, they are potential objects of belief, and therefore the conditionals gen-
erated by the test are stored in the belief set p(E), together with the Boolean
formulae that the agent in question believes at the time. But, once one aban-
dons the idea that the test treats conditional propositions, and one focuses
on studying the conditionals that merely express the commitments for change
already encoded in E, such a move is no longer methodologically sound. One
can say instead that each epistemic state has an associated belief set, and that
it supports the conditionals generated via Ramsey bridges. But in saying so we
are tacitly introducing subtle changes in Gérdenfors’ formulation of Ramsey’s
test, in such a way that the phrase ‘the conditionals generated via Ramsey
bridges’, has now a new meaning. If s(E) denotes the support set associated
with E, the formulation of the test is now as follows (the tests only apply to
consistent s(E) and unnested conditionals A > B, where both A and B are
purely Boolean):

(SRT) A > B € s(E) iff B € p(E*A).

We should supplement the test with the following three stipulations, explaining
the relations linking s(E) and p(E).

(1) If A is a purely Boolean formula, then if A € s(E), then A € p(E)

(2) s(E) is closed under logical consequence

(3) p(E) < s(E)

The new stratified formulation of the test is now compatible with
(SNRT) —(A > B) € s(E) iff B ¢ p(E*A).

In addition, the notion * that appears in the test is now consistently expand-
able, and the impossibility results are circumvented. Both tests have been used
in order to study the logic of non-nested conditionals and non-monotonic no-
tions of consequence [4]. But they share a limitation with their probabilistic
relatives: they do not offer a theory of acceptance for nested conditionals. Some
researchers have invoked this asymmetry to suggest that there is something
wrong with the epistemic account. The argument goes as follows: ‘we are ob-
viously capable of handling iterated conditionals (of reasonable complexity).



Therefore any adequate theory of acceptance of conditionals has to be able
to provide an idealized account of this ability. Since the epistemic approach
seems unable to do so, we should have suspicions about its general adequacy.’

Responses to this argument have traditionally relied on the denial of its main
premise. Michael Dummett, for example, in [10] says that: ‘we have hardly any
use, in natural language, for conditional sentences... in which the antecedent
is itself a conditional, and hence we cannot grasp (their) content ... Alan
Gibbard argued similarly in [15]: on the one hand we have certain forms of
iteration that we cannot decipher (like iteration to the left). On the other
hand, we have other forms of iteration that we can understand, e.g. condition-
als in consequents. Nevertheless, iterated conditionals of this kind are always
equivalent to sentences without embedded conditionals. In fact, sentences of
the form A > (B > C), should be understood, according to this view, as ab-
breviations of sentences of the shape: (A A B) > C. This position has been
somewhat prevalent among researchers working with probabilistic models of
acceptance of conditionals (like [1]).

I do not think that this response to the realist challenge is fully satisfactory. It
seems that by denying the existence of embedded conditionals we are seriously
crippling a general theory of acceptance of epistemic conditionals. Any theory
of conditionals has to be able to make sense of our capacity to evaluate a
sentence like:

‘If there is no oxygen in the room, then it is not true that if I scratch the
match it will light’, or

‘If the light goes on if you press the switch, then the electrician has finished
his job.’

1.1 Iterated extensions of the Ramsey test

The stratified versions of the Ramsey test avoid paradox by breaking a sym-
metry. While GRT treats both modal and non-modal formulae symmetrically,
SRT fractures this symmetry by producing a more sophisticated picture of
acceptance of conditionals.

One can see this fracture as a cautious treatment of a serious problem. Even
if conditionals are not truth carriers, there is a precise manner in which con-
ditional sentences are supported by epistemic states. If one wants to preserve
caution, support should not be conflated with acceptance understood as belief
in the truth of a conditional proposition. So, the epistemic states used in SRT
are more complex than the ones used in GRT. While the ones used in GRT
have only a doxastic component, the ones needed to formulate SRT have both



a doxastic component (the p-part) and a support component (the s-part).

The apparent strength of GRT resides in its capacity to deal with iteration,
which is formally reflected by the fact that the test can use p-functions in
both sides of the test. As we argued above, one must pay a high price for this
symmetry: either paradox or a change of theme.

Can one improve the stratified tests in order to allow for iteration? In this
essay I would like to consider what I believe is an evident strategy: restoring
symmetry at the level of the support functions. One can appeal to the following
iterated modifications of the stratified tests.

(ISRT) A > B € s(E) iff B € s(E*A).
(ISNRT) ~(A > B) € s(E) iff B ¢ s(E*A).

The tests only apply in the case in which s(E) is consistent and B is in L.,. The
logic of iterated epistemic conditionals can then be studied as usual by appeal-
ing to epistemic models (EM). An epistemic model is a quadruple (E, p, s, *)
= M where * is a belief revision function obeying (ISRT) and (ISNRT), E is
a set of epistemic states closed under revision, p is a belief function, mapping
each member E of E to a belief set p(K), and s a support function, mapping
belief states to the sets of all formulae that these states support. A conditional
sentence C is valid in M if and only if C € s(K), for every K in E.

The main motivation of this article is to use the EMs in order to provide firm
foundations for the study of iterated epistemic conditionals.

1.2 Basic epistemic conditionals

Models of iterated belief revision have recently proliferated. Typically the
AGM framework is either extended or revised in order to accommodate special
axioms that legislate on iterated revisions. Then, the Ramsey schema is used
to study the conditional reflection of the special constraints on iteration.

Perhaps the most controversial models are the ones that allow for conditional
updating. What should count as the minimal perturbation of the current epis-
temic state to ‘suppose’ A > B? Here ‘supposing’ cannot be ‘supposing true’,
because this will commit us to the idea that conditionals are, after all, truth-
bearers. Perhaps ‘supposing’ should be equated in this case with certain kind
of fantasizing according to which the current epistemic state is transformed



into another state supporting the ‘supposed’ conditional.® It is less clear in
what sense this transformation can be constructed as a minimal perturbation
of the current epistemic state compatible with that shift. 14

Even if one focuses only on conditionals iterated to the right, there is lit-
tle agreement about the correct principles of iterated change that go with
the Ramsey test. Most of the theories of iteration in the literature seem too
domain-dependent to be considered as universal constraints on iterated sup-
posing. Actually the very distinction between belief change and change for the
sake of the argument is often overlooked, which makes the matter even more
obscure.

So, our strategy in this paper will follow the cautious line proposed by Brian
Chellas in his paper ‘Basic conditional logic’.'® In this paper Chellas did not
try to provide a substantive theory about some particular kind of condition-
ality — counterfactual or deontic, for example — but to study a basic notion
of conditionality common to all the substantive theories of truth-valued con-
ditionals. Our aim in the following sections will be to study a basic notion of
epistemic conditionality.

2 Basic epistemic conditionals
2.1 Logical preliminaries

Let Ly be a language containing a complete set of Boolean connectives, includ-
ing the falsum and verum constants L and T. The set of wifs of L is defined
in the usual manner. In addition to Ly we consider an operation Cn that takes
sets of sentences in Lg to sets of sentences in Ly. Cn is assumed to be a con-
sequence operation, i.e. satisfying the classical Tarskian properties, ¢ as well
as finiteness, 7 consistency, *® and superclassicality. !* In addition Cn is such

13 We follow here Levi’s idea in [26], page 71.

14 Two (conflicting) models are provided by Hansson in [18] and Boutilier in [5].
Boutilier represents states as ordinal functions, and proposes to construct a condi-
tional shift, as the minimal perturbation of the ordinal function needed to make the
conditional acceptable.

15 See [6].

16 For any sets K and H, such that K C Ly and H C Lg, K C Cn(K), Cn(K) =
Cn(Cn(K)), and if K C H, then Cn(K) C Cn(H).

17For all X C Ly, Cn(X) = U{C(X’): X’ is a finite subset of X}.

18 | & Cn(0).

19 Cn(0) contains all substitution instances of classical tautologies.






(c2) p(E) C s(E).
(IRT) (A > B) € s(E) iff B € s(E*A), where E is consistent.

(INRT) — (A > B) € s(E) iff B ¢ s(E*A), where where E is consistent.

For every A € L, and every M = (E, p, s, %), A is satisfiable in M if there is
a consistent B € E, such that A € s(E). A is valid in M if A € s(E) for
every consistent E € E. A is valid in a set of models S iff for every model M
in S, A is valid in M. A is valid if it is valid in all models. Finally A is
epistemi.cally entailed by B in M = (E, p, s, %), iff for every E in E, such that
A € s(E), B € s(E).

Notice that the following constraint is derivable from the previous definition
of conditional support set, given that C is finite (e.g. compact).

2.8 Syntax

First we need to define a conditional language smaller than L-. Let BC be the
smallest language such that if A, B € LO, C,De BC,then A>B,C>D, —
C,CADEeBC.

Consider now the conditional system ECM. ECM is the smallest set of for-
mulae in the language L which is closed under (RCM) and (M), and which
contains all instances of the axioms (I), (CC), (F) and all classical tautologies
and their substitution instances in the language L-.

I A>T

CC (A>B)ANA>C) = (A>(BAO))

F - (A>C) ¢+ (A>-C), where C € BC.
M Modus ponens.

RCM If+-B — Cthent (A>B)— (A>C)

The following completeness result shows the coincidence of the theorems of
the system £CM and the conditionals validated by the EMs.

Theorem 1 A L. formula A is valid iff A is a theorem in ECM

See appendix A for the proof.
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3 Belief Revision Models and Elemental Epistemic Models

Axiom F encodes a property of basic epistemic models that we can call full-
ness. Fullness establishes that rational epistemic agents cannot be in suspense
about conditionals — they cannot reject both a conditional and its negation.
So, fullness should be rejected in any modelling of of truth value bearing condi-
tionals. In fact, such models treat conditionals as any other truth value carrier,
for which suspense should be allowed.?® But, fullness is a typical property of
epistemic conditionals.?! In fact, it is a mandatory property of epistemic con-
ditionals like the ones studied in the previous section, whose negations are
understood in terms of lack of acceptance.

Fullness shoud not be confused with the so-called principle of conditional ez-
cluded middle:

(CEM) (A > B) V (A > — B)

This axiom fails to be validated in our system. Although the agents mod-
elled by our theory are logically omniscient and fully introspective, the theory
does not require the complete determination of the hypothetical state p(E*A)
prompted by supposing A. Such a state can perfectly well be a (hypothetical)
state of partial information. Fullness only reflects at the conditional level the
fact that * is taken to be a universal response sheme to all possible supposi-
tional items.

Axiom F mirrors syntactically the fact that the EMs implement both a test
for acceptance (IRT) and a test for rejection of conditionals (INRT). As we
said in passing in previous sections, one of the advantages of the EMs is that
they allow for the implementation of both tests (in contrast, GRT and its neg-
ative counterpart are, on pain on triviality, inconsistent). Some philosophers
have argued in favor of renouncing this theoretical advantage (see for example
Collins’ treatment of indicatives in [7]). Their argument can perhaps be recon-
structed as follows: ‘“There are some conditionals whose status as truth carriers
is, at least, open to doubt. We think that IRT is a good test of acceptance for
these conditionals. But we also hope that a theory of truth can be given for
them. In other words, we see a theory of acceptance for these conditionals as
a prolegomenon to the construction of this truth-theory (perhaps one can use
similar strategies than the ones that have been used to go from subjective to

20-Suspense here refers to an epistemic scenario where neither a conditional not its
negation are accepted.

21 One might question fullness on the grounds that agents might fail to be aware of
their commitments for change. Nevertheless the theory offered here does not intend
to describe the actual performance of rational agents, but to propose normative
constraints on the behavior of rational agents.
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objective probabilities). Therefore we do not want to assume from the outset
any additional constraint like INRT. In fact, assuming INRT (together with
IRT) will be tantamount to assume that one cannot suspend judgement about
conditionals. And we want to live this option open.’

Such theoretical ideas can be accommodated in our framework by adopting el-
emental epistemic models. They are just basic models where INRT is dropped.

Let CM be the smallest set of formulae in the language L~ which is closed
under (RCM) and (M), and which contains all instances of the axioms (I), (CC)
in L, as well as all classical tautologies and their substitution instances in
the language L. It is easy to see that the formulae validated by the elemental
EMs can be axiomatized by CM.

Moreover, when we complement the elemental models by:

(Reduction) For every epistemic model (E, p, s, ), and every E in E, s(E) C
p(E).

we get exactly Gardenfors’ Belief Revision Models. Gardenfors’ showed that
the syntax validated by his models is (exactly) the one axiomatized by CM
(see [13]).

3.1 Two types of conditionals?

Most contemporary theories of conditionals are bifurcated. Arguments for the
existence of two types of conditionals can be presented concisely as follows:
‘Acceptance conditions for one type of conditionals can be given in terms of
IRT. Acceptance conditions for the other kind of conditionals can be given
in terms of GRT, or what is equivalent, in terms of IRT plus Reduction.
The latter type are clearly truth bearers, and their truth conditions can be
independently delivered in terms of possible worlds semantics. It is not that
clear that the conditionals in the former type are truth bearers, but we hope
that IRT can be used as a heuristic tool to provide truth conditions that suit
them.’

I will refrain from evaluating here the plausibility of this dualism. I would only
like to remark that, even if one adopts a bifurcated theory, such a view seems
to support what I called before Ramsey’s insight. In fact, the previous results
show that the form of a theory of acceptance for conditional propositions
(either in the form of elemental models or in the form of elemental models
obeying Reduction) differs from the form of a theory of acceptance for carriers
of cognitive attitudes like the ones studied by the basic models.

13






The latent differences between the two theories are only reflected syntactically
by languages that allow for iteration. In fact, notice that the axiom F is essen-
tially iterated, in the sense that it has no non-nested instances. But one must
keep in mind that the logics validated by the Belief Revision Models and the
Basic Epistemic Models coincide for non-nested languages (see [4]). 22

4 Extensions of the basic theory

In the following sections I will consider the pros and cons of extending the
basic theory with the constraints of well known notions of belief change.

Due to its centrality in the theory of theory change, I will start with some
important rationality postulates used by AGM.

(Inclusicn) p(E*A) C Cn(p(E) U {A})
(Preservation) If = A ¢ p(E), then Cn(p(E) U {A}) C p(E*A).

Cn(p(E) U {A}) is usually abbreviated as p(E) + A, where p(E) 4+ A denotes
the expansion of the belief set p(E) with the sentence A. Inclusion and Preser-
vation together entail that when a sentence A is consistent with the belief set
p(E), the belief set associated with E*A is just the expansion of p(E) with A.
A weaker condition has also been studied:

(Weak Preservation) If A € p(E), and p(E) is consistent, then p(E) + A C
p(E*A).

There are two questions that one can ask regarding these postulates. One is
purely formal: what are their conditional counterparts? The second is philo-
sophically relevant: are the following postulates adequate to characterize the
notion of iterated supposition involved in the evaluation of epistemic condi-
tionals?

22 One of the advantages of our account is that the differences are also made explicit
syntactically for simpler languages, once the belief revision function used in the
models is supplied with adequate constraints (see [4] and [3]).
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4.1  Weak Preservation and Invariance

The rationality postulates presented in the previous section put some con-
straints on the dynamics of beliefs sets. If A is believed in p(E) and p(E) is
consistent, the former postulates mandate p(E) = p(E*A), although E and
E*A could be different. This is a trivial consequence of the fact that a belief
set B can be associated with different epistemic states. Nevertheless some au-
thors have suggested that such freedom should be curtailed. In fact, one can
assume that there is one and only one epistemic state associated with a given
belief set. Such a constraint can be introduced here via the following principle
of belief preeminence: 23

(BP) If p(E) = p(E), then p(E*A) = p(E'*A).

BP has been assumed in some theories of suppositional or hypothetical change,
like the one presented in [26].2* BP has also been assumed by other theories
modeling ‘real’ change, but we will be mainly concerned here with the former
application.

23 The postulate has been used before under other names. For example, Friedman
and Halpern call it Propositionality in [12].

24 This statement needs some qualifications. The models of supposition studied in
[26] are pairs (B, M), where B is a set of potential belief sets and M is a probability
measure defined over all potential belief sets in B. Levi uses M to determine a mea-
sure of informational value. M is what Levi calls an informational-value-determining
probability function. Independently of the details of Levi’s construction what mat-
ters for us here is that for every model (B, M), expressions like (K*A)*B are always
well defined in Levi’s theory. In order to calculate (K*A)*B one starts with K. The
fixity of the M function allows us to calculate K*A. Once one is in K*A, again by
appealing to the fixed M-function, one can calculate the next revision. Revisions
are not path-dependent. The result of revising a belief set K does not depend on
its past history. It only depends on K and the M-function used in the model (and,
of course, the particular way in which the M-function is used in order to construct
the change operation *). The unconstrained version of the models considered in this
paper behave in a very different manner. One can perfectly well have a pair of states
E, E’ and a sentence A, such that although p(E) = p(E’), p(E*A) is different from
p(E™*A). For example, if an epistemic state E is modified by adding a sentence A
compatible with p(E), Inclusion and Preservation will leave p(E) unchanged, but E
might change to a different E’. But now, since * is a function that maps epistemic
states and sentences to epistemic states, the outputs p(E¥*A) and p(E'*A) might
differ ~ a concrete example will be considered later in this section. BP imposes a
Markovian condition of path-independence that is a natural feature of the models
used by Levi. It seems therefore that any reconstruction of Levi’s models by appeal-
ing to a framework like the one that we are using in this paper, would require the
imposition of BP.
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Notice that Weak Preservation and Inclusion entail, in the presence of Belief
Preeminence, the following constraint on iterated change

(Invariance) If A € p(E), and p(E) is consistent, then p((E*A)*B) = p(E* B).

Our presentation of rationality constraints in this and the former section is
not standard in the belief revision literature. AGM, for example, models belief
change operations as mappings from belief sets and sentences to belief sets.
The emphasis on this view is to provide one-step postulates which tell us what
properties the next belief set ought to have, given the current belief set and the
current evidence. If the interpretation is suppositional the idea is to provide
postulates which tell us which properties a suppositional state ought to have
given the current belief set and the current supposition. So, if we use B to
denote belief sets, Inclusion and Preservation now look as follows:

(Inclusion) B*¥*A C Cn(BU {A})
(Preservation) If = A ¢ B, then Cn(BU {A}) C B*A.

When belief change postulates are presented in this form Invariance follows
from them as a theorem:

(Invariance) If A € B, and B is consistent, then (B*A)*C = B*C.

Even when the idea of the AGM theory is to study one-step postulates, the
theory does impose some constraints on iteration, like Invariance. The main
goal of this section is to show that Invariance is not a good constraint on iter-
ated supposing. The following example® will help us to make a case against
Invariance:

Consider a spinner and a dial divided into three equal parts 1, 2, and 3. You
(fully) believe that the spinner was started and landed in 1. Then you are
asked to evaluate:

(I) If the spinner lands in an odd-numbered part, then if it is not 1, it is 3.

It seems pretty clear that you should say ‘yes’, i.e. that you should accept (I).
But then it is also obvious that in this situation you should reject:

(II) If the spinner is not 1, then it is 3.

25 The example is inspired by a similar one proposed in [26].
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There are many examples of this kind. They were first brought to the attention
of philosophers by Vann McGee in [28]. The examples are interesting because
of their extreme generality. This is particularly valuable in an area where
not even grammatical classification is uncontroversial. No one seems to agree
about the correct classification of conditionals, and few phenomena seem to
be valid across the different categories available in the literature. The McGee
cases are one of these few phenomena. The impressive battery of examples
exhibited in [28] is enough to convince any skeptic.

Different morals can be drawn from the examples. One particularly uncon-
troversial moral is to see the examples as showing that a rational agent can
perfectly well believe a sentence A as true, and to accept (believe as true) a
conditional of the form A > (B > C), while he or she might find reasonable
to reject the consequent B > C. This epistemic reading?® of the McGee cases
is all that is needed in order to mount a convincing case against the adequacy
of Invariance, and therefore against Weak Preservation.?” Notice that any
invariant extended epistemic model obeys:

(EMP) A, A>(B>C)=B>C

Therefore no Invariant theory of iteration can make sense of the McGee
28
cases.

26 ‘Epistemic reading’ has to be understood here in a very general manner, as ap-
plying both to our analysis and Gardenfors’.

2T Van McGee seems to suggest in his essay that he wants to obtain a more am-
bitious conclusion from his examples. He indicates that his examples show that, if
conditionals are truth value carriers, they do not obey in general the axiom (A >
B) =+ (A — B), where B is itself a conditional. Many objected against this way of
interpreting the examples. Fortunately this strong diagnosis of the examples is not
needed here. We only need the minimal epistemic base used by McGee in order to
construct his more ambitious (and controversial) argument.

28 A standard maneuver in order to dismiss McGee’s examples is to say that — in
these cases — the agent who accepts ‘If A, then if B then C’ does not really accept
the iterated conditional A > (B > C). What he does accept instead is a conditional
with a conjunctive antecedent: ((A A B) > C).

This observation can be interpreted in two possible manners. The first is usual
in the literature on probabilistic semantics of conditionals: the conjunctive re-
interpretation of ‘If A, then if B then C’ is just the symptom of a more generalized
malaise: there are no iterated conditionals at all. This view is coherent, but it seems
too draconian. It was briefly considered and dismissed in the introduction.

There is, of course, a second way of making sense of the rebuttal. There are, after
all, iterated conditionals. A > (B > C) is, under this point of view a legitimate
candidate for acceptance. Then A > (B > C) and its conjunctive re-interpretation
are two syntactic objects used to express certain conditional beliefs. Now we are
invited to consider that every time that an agent faces a McGee case he chooses
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What to give up? One option is to give up Belief Preeminence and to preserve
Inclusion and Preservation. The following section will be devoted to analyze
this option.

More radical conclusions can be obtained by introducing * as a mapping from
belief sets and sentences to belief sets — as is customary in the AGM tradition.
In this case Invariance is a direct consequence of Inclusion and Preservation.
The immediate conclusion is that AGM (in its standard formulation) cannot
be a model of supposition. One should adopt some weakening of the theory in
order to avoid the unpalatable consequences induced by Invariance.

4-2  More about the adequacy of Weak Preservation: supposing vs. updating

Giving up Belief Preeminence is enough to block Invariance. Moreover, some
of the theories that abandon BP, can handle McGee’s cases rather well. An
example is the theory recently proposed by Darwiche and Pearl in [9]. Dar-
wiche and Pearl impose the following postulates on the dynamics of epistemic
states in addition to Inclusion and Preservation:

Basic postulates
(Success) A € p(E*A)
(Consistency Preservation) p(E*A) is consistent if A is.

(Equivalence) If E = E” and A ¢ B, then p(E*A) = p(E™*A)

(Conjunctive revision) If p(E*A)+B is consistent, then p(E*A)4+B = p(E*A
A B)

the sentence A > (B > C) to express a conditional belief that as a matter of fact
is not expressed by this sentence. What happens is that the agent entertains the
conditional belief expressed by ((A A B) > C). Moreover he does not accept the
conditional belief expressed by the sentence used to reveal the conditional belief
that he really has (namely the conditional belief expressed by ((A A B) > C))!
This story is difficut to digest given the systematicity and generality of the McGee
phenomenon. Why this systematic equivocation arises only in McGee cases? It seems
much less problematic to say that the conditional belief expressed by the English
conditional ‘If A, then if B then C’ is always the conditional belief expressed by the
regimented sentence ((A A B) > C). But this bring us back to the first implausible
interpretation of the complaint agains McGee.
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In addition to these basic postulates Darwiche and Pearl impose the following
set of special postulates for iterated revision:

C-postulates
(C1) If A entails B, then p((E*B)*A) = p(E*A)
(C2) If A entails = B, then p((E*B)*A) = p(E*A)
(C3) If B € p(E*A), then B € p((E*B)*A)
(C4) If = B & p(E*A), then — B ¢ p((E*B)*A

Several useful examples are discussed in [9]. For example epistemic states
can be encoded as rankings (or ordinal conditional functions). A ranking is
a function x from the set of all interpretations of the underlying language
(worlds) into the class of ordinals. A ranking is extended to propositions by
requiring that the rank of a proposition be the smallest rank assigned to a
world that satisfies:

k(A) = mingypa K(w).

The set of models corresponding to the belief set p(k) associated with a ranking
k is the set {w: k(w) = 0}. Darwiche and Pearl proved in [9] that the following
method for updating rankings satisfy their postulates:

k(w) —k(A) ifw = A

k(w) +1 otherwise

(ko A)(w) = {

It is clear that this method will handle the example of the spinner in a nice
manner. The following picture shows how to encode the epistemic state of a
person that just saw that the spinner landed in 1 — w1 is the ‘world’ repre-
senting the fact that the spinner landed in 1, and the same goes for 2 and
3.

k | Possible worlds
0 wl
1 w2, w3
2

Rest of worlds
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And the next two pictures show how the rankings evolve when updated by the
proposition Odd = {wl, w3} first (1), and then by = 1 = { w2, w3} (3).

k1 | Possible worlds || x5 | Possible worlds

0 wl (|0 |[w3
1 w3 |1l | w2, wl
2 w2 || 2 | Rest of worlds

While obviously, the result of directly updating x with — 1 yields:

k3 | Possible worlds
0 w3, w2
1 wl
2 Rest of worlds

Supposing and updating are different kinds of mental acts. While the notion
of supposing is clearly involved in the evaluation of conditionals, the notion
of updating is involved in the actual process of changing view. The evaluation
of a conditional like Odd > (= 1 > 3) requires us to suppose Odd, not to
actually change our minds in order to accommodate the information that
the spinner landed in an odd number. The latter change might be modeled in
many different ways. For example a body of recent literature on non-prioritized
revision suggests that, depending on the structure of the initial state, not all
revisions need to be successful. 2 But supposing Odd seems to require us to
open a ‘suppositional window’ in which one focuses only on Odd states. This
might be accomplished in many ways, none of which can be encoded via an
invariant AGM method. %

Some notable exceptions notwithstanding the notions of supposing and up-
dating have been usually conflated in the recent literature. This is surprising
because the distinction between these two mental acts has considerable philo-
sophical and formal pedigree. J.L. Mackie, for example, based his account of
conditionals on the notion of supposing, which he carefully distinguished from

2 Statistically inspired models like the method of routine ezpansion developed by
Isaac Levi in [25] are even more liberal. Once an inconsistency is detected, one can
question either the input, or the background or both.

30 If one models change by mapping belief sets and sentences into belief sets; one
can directly conclude that no AGM method is capable of modeling supposing.
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the notion of learning. More recently supposing accounts of conditionals have
been offered by Cross and Thomason, Collins, Levi, Skyrms and others. 3!
Unfortunately there is no consensus about the properties that the notion of
supposing has to have. There is more agreement when it comes to distinguish
supposing from updating (both formally and conceptually).

We already saw that operations like Darwiche and Pearl’s could be used to
model some crucial aspects of supposing. Are they also good models of belief
change? This is a controversial topic that we prefer not to touch here in de-
tail. If one focus on Invariance, for example, the property is not universally
imposed by all the recent theories of iterated change offered in the literature.
For example, Lehmann’s recent revision of belief revision [21] imposes Invari-
ance axiomatically (even when the theory is formulated in a framework where
the postulate could have been abandoned). On the other hand theories like
Darwiche and Pearl’s abandon BP and Invariance.

Consensus about the principles of belief change will be probably hard to obtain
without anchoring the whole analysis on a broader perspective. For example,
some authors have justified their views on the basis of an analysis of what are
(or should be) the aims of inquiry (a Bayesian perspective has been defended
in [25], and a reliability view has been offered in [20]). Alternatively one can
rely on purely pragmatic considerations, rather than on what is in general
required by rationality.

While one could argue about the adequacy of the principles of belief change,
some of these doubts seem highly unmotivated when one focus on suppos-
ing. One might doubt whether update is successful or invariant. Such doubts
seem bizarre in the case of supposing. Failure of Invariance and satisfaction of
success seem constitutive of a reasonable notion of supposing.

We can recapitulate here our account of the role of Weak Preservation (WP).
Let us concentrate first on a formulation of change rules as functions on epis-
temic states. In this case WP entails Invariance in the presence of Belief Pre-
eminence and Inclusion. We just saw one way of blocking Invariance, via the
rejection of Belief Preeminence.

This move is not available to researchers who impose Belief Preeminence, or
that directly model change as functions on belief sets. In this case either WP or
Inclusion should be given up. Some authors have argued in favor of abandoning
WP, by pointing out that there are independent reasons for rejecting it. In fact,
notice that the conditional reflection of Weak Preservation at the unnested
level is:

31 The main references are [26], [8], [7] and [32].
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(WP) (A AB) — (A > B), for A, B € L,

Here is an example presented by Levi in [26] showing the inadequacy of (WP):

Example 2 (Levi): Suppose agent X is offered a gamble on the outcome of
a toss of a fair coin where he wins $ 1,000 if the coin lands heads and loses
nothing if the coin lands tails. Let utility be linear in dollars. The expected
value is § 500. X has to choose between this gamble and receiving $ 700 for
sure. X has foolishly (given his beliefs and values) accepted the gamble and
won $ 1,000. Y points out to him that his choice was foolish. X denies this.
He says: ‘If I had accepted the gamble, I would have won $ 1,000.’

Against intuition, the acceptance of the last conditional is mandated by (WP).
X believes that he accepted the gamble. He also believes that he won $ 1,000.
Therefore, according to (WP), X should accept the conditional in question.
Levi has proposed in [26] a theory that rejects Weak Preservation. The theory
accepts, nevertheless, Belief Preeminence.

There are further reasons not to abandon Inclusion, which we will consider in
section 4.3. Roughly the idea is that one wants the conditional counterparts
of the postulate.

4.2.1 Van McGee on supposing and the role of Consistency Preservation

In the previous sections we saw that the theory proposed by Darwiche and
Pearl can be used to model certain forms of suppositional reasoning. We also
considered a particular method of change satisfying Darwiche and Pearl’s pos-
tulates and we saw how it can be used to deal with McGee cases.

McGee’s own solution to his puzzling examples will be considered in this
section. We will also show that the notion of supposition presupposed by
McGee’s theory cannot be modeled by any method obeying Darwiche and
Pearl’s axioms.

It is a familiar fact that the attitudes expressed by A > (B > C) and its con-
junctive re-interpretation ((A A B) > C) are sometimes difficult to disentangle.
Researchers unconvinced by the theoretical plausibility of nested conditionals
have traditionally appealed to this fact to deny that the acceptance of the
English conditional ‘If A, then if B then C’ is ever related to the acceptance
of any iterated conditional. ‘ If A, then if B then C’ looks like an iterated
conditional, but this is just an accident. The acceptance of ‘ If A, then if B
then C’ can always be explained in terms of the acceptance of ((A A B) > C).

McGee does accept the existence of nested conditionals. But he explains away
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the embedded conditional by postulating that A > (B > C) and its conjunc-
tive reinterpretation really express the same attitude. In other words McGee
postulates the validity of:

(Export-Import) A > (B > C) +» ((A A B) > Q).

Then he proves an interesting result showing that accepting Export-Import
has the consequence that either modus ponens fails for conditionals with con-
ditional consequents or that the conditional ¢ >’ is the truth-functional con-
ditional.

The epistemic counterpart of Export-Import is:
(Export*Import) (E*¥A)*B = E*(A A B). 32

Export-Import has fairly strong consequences. In the presence of Success the
Export*Import postulate entails:

(Cumulativity) A € p((E*A)*B)

In the presence of Success the Export*Import postulate also leads to vio-
lations of Consistency Preservation. In fact, consider the case when A is a
propositional atom and B is = A. Since Darwiche and Pearl’s theory obeys
Consistency Preservation, it is immediate that there is no Export*Import ex-
tension of their theory.

Preserving consistency is indeed one of the main goals of any theory mod-
eling the process of updating epistemic states. But consistency preservation
need not be an ideal governing all forms of suppositional reasoning. Adams,
McGee and others tend to see supposition as a cumulative operation. Accord-
ing to this view (formally expressed by Cumulativity) the act of entertaining
(sequentially) two mutually contradictory suppositional inputs leads to a con-
tradiction, not a case where the first supposition is retracted in virtue of the
new one.3® The following example can help to motivate this and other issues
discussed throughout the section.

Consider an spinner like the one used in the previous examples. Now the
spinner has four numbers: 1, 2, 3 and 4. The initial epistemic state is:

32 Or its more cautions counterpart: p((E*A)*B) = p(E*(A A B)).
33 This view has also been favored by researchers working in inheritance networks.
See section 3 of [8].
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% | Possible worlds
0 wl, w4
1 wl2, w3
2

Rest of worlds

Notice that the e-rule sanctions the acceptability of the following conditional
with respect to this epistemic state:

(1) If the winner lands in an Odd number, then if the number is different from
1, the number is either 3 or 4.

The rule also sanctions the acceptability of:
(2) If the winner lands in an Odd number different from 1, the number is 3.

Some philosophers and logicians® have found reasonable (both systematically
and pre-systematically) to link rigidly the acceptance conditions of (2) and:

(3) If the winner lands in an Odd number, then if the number is different from
1, the number is 3.

But the straight application of the e-rule recommends to accept (2), and (1)
and to reject (3). The acceptance of (1) illustrates a failure of Cumulativity.
‘The supposition Odd is not held fix throughout the evaluation of (1).

The basic idea behind Export*Import is that (2) and (3) express the same
attitude. Notice also how different is (3) from:

(3’) If T were to revise my epistemic state by Odd and then subsequently by
=1, then I would believe that the winner is 3.

34 7. Collins, D. Edgington, F. Jackson, V. McGee and M. Woods should be counted
among the theoreticians who have defended the Export*Import rule. Without plung-
ing too deeply into Byzantine grammatical distinctions it should be said that only
a subset of these authors think that the rule applies universally to all kind of condi-
tionals. All of them think that it applies to some classes of conditionals. The scope
of applicability varies according to the classification adopted. The two salient can-
didates are indicatives and hypotheticals. The conditionals used in our example fall
under both categories.
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(3’) should be rejected, but (3) should be accepted (and (1) rejected). The
attitude of supposing that A is the case should not be conflated with the
attitude of supposing that the current view has been updated after learning
A. The second type of suppositional state is needed to evaluate (3’), while the
first is needed to evaluate (3).3°

Here is a different manner of making sense of the acceptability of (3). Say that
the initial epistemic state is k. Then supposing Odd can be modeled as the
act of opening a ‘suppositional window’ that only includes Odd-options. This
suppositional window should preserve as much as possible of the structure
encoded in the initial ranking . For example it does not seem plausible to alter
the ordering of worlds induced by «. So, our first act of supposing will lead us
to focus on:

- k' | Possible worlds
0 wl
1 w3
2

KRest of worlds

Now, when we suppose — 1, with respect to ', we get the desired result.
This way of characterizing the notion of change involved in the evaluation of
conditionals guarantees the property of Cumulativity suggested in the previous
section. The items supposed at any point in a chain of suppositions are firmly
maintained until the end of the process.

In the previous section we defined rankings as mappings from the set of all
interpretations of the underlying language into the class of ordinals. We will
appeal now to a different characterization according to which rankings are
understood as mappings from a set S of interpretations of the language to
the class of ordinals. The ranking induced by the empty set of worlds is the
inconsistent ranking ;.

If SN A # 0 the rank assigned to A-worlds is determined in the usual way
k@A = k(w) - kK(A). No = A world is assigned a rank. If SN A = ), KQA =

Kf.
Of course Consistency Preservation can fail in this setting. Assume that S

is nonempty and A is consistent. Say that our initial epistemic state is a
ranking x such that p(x) is non empty. When S N A = (), k@A = &y, violating

35 Notice also that (3) and (3°) seem to have different logical form. It is very difficult

to turn (3’) into a nested conditional. It seems more natural to see (3’) as a simple
(unnested) conditional with a temporal ‘and then’ connective in the antecedent.
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Consistency Preservation. Moreover, for every sentence B, (k@A)@B = x;.

It is worth noticing that the example considered above illustrates a case where
the suppositional inputs are mutually consistent. Informal analysis of condi-
tionals defending the Export*Import rule tend to focus on cases of these kind.
This might be justified by the empirical fact that nested English conditionals
with contradictory antecedents are rare and hardly intelligible.

5 Hypothetical revision and cumulativity

Before considering the role of Inclusion, we will pause here in order to offer
a more general modeling of the operation of change sketchily characterized
above (hypothetical revision from now on). We will start by offering a non-
syntactic account of Darwiche and Pearl’s notion of change (abbreviated as
DP from now on).

An estended model® of change is a quintuple (E, Q, P*, p), where E is a non-
empty set, {) is a set, P is a field of propositions with respect to ,  is a
function * : E x P — E; and p is a function p : E — 2%

Intuitively E is a set of epistemic states, ( is a set of states or worlds, * maps
epistemic states and propositions to epistemic states, and p maps epistemic
states to their associated belief sets. We will use lower-case letters p, q, ... to
denote propositions. Darwiche and Pearl constrain their extended models by
imposing the following basic postulates:

p(Exp)Cp (Success)
If p(B)Np#0, then p(E)Np = p(E * p) (Preservation)
p(E x p) is consistent if p is. (Consistency Preservation)
If p(E * p) Nq # 0, then

p(Exp)Ng=p(ExpNnq) (Conjunctive Revision)
If p =g, then p(E *p) = p(E * q) (Equivalence)

In addition to these basic postulates, Darwiche and Pearl impose 4 extra C-
postulates. Their translation in this setting is as follows:

(C1) If p C g, then p((E * q) x p) = p(E * p).
(C2) If p C g, then p((E * q) *p) = p(E *p).
36 The reason for calling these models ‘extended’ is that they adopt, unlike AGM,

the view that an operation of change modifies entire epistemic states, rather than
belief sets.
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(C3) If p(E * p) C q, then p((E xq) *p) C q.
(C4) If p(E * p) £ —q, then p((E * q) *p € —q.

In this setting, the Export*Import can be expressed as follows p((E * p) *
q) = p(E * (p A q)). In turn, Cumulativity: p((E * p) * q¢) C p. Clearly, as we
pointed out above, DP does not obey Export*Import. Moreover there is no
consistent Export*Import extension of DP, because Export*Import clashes
with consistency preservation and success. The theory, nevertheless, is less
inadequate than AGM as an account of supposition for reasons that we also
reviewed above.

We can complicate the extended-models in the following way in order to rep-
. resent an operation obeying Export*Import.

A cumulative model of change is a pair ((E,, x, p), ¢), where (E,Q, %, p) is
an extended model and cis a function ¢: E — 2.

While p(F) is supposed to yield the strongest proposition fully believed in state
E, ¢(E) captures the weakest proposition fully believed in E. Two structural
relations are supposed to hold between ¢ and p: first p(E) C ¢(E). Secondly,
c(E) N A = ¢(E * A). The following axioms are naturally motivated:

(6.1c) p(E * p) C p. (Success)

(6.2¢) If p(E)Np # 0, then p(E)Np=p (E *p). (Preservation)
(5.3¢) If If p(E) # 0 and pN c(E) # 0, then

p(E xp) # 0. (Restricted consistency preservation)

(5.4c) ) If p(E) = 0, then p(E*p) = 0. (Fixity )

(5.5¢) p((E xp) xq) = p(E * (pNq)). (Export*Import)

(5. 6¢) If p = q, then p(E % p) = p(E * q) (Equivalence)

Fixity indicates that the ‘absurd’ epistemic state is a fixed point of the update
function, i.e. that the revision of any state whose beliefs are inconsistent yields
in turn a state preserving this feature. This strong condition is compatible
with Cumulativity, but not required by it. As we will see below, Fixity has
been tacitly assumed also in some qualitative modellings of 2-place probability
functions (see Appendix B for details).
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6 Inclusion

What about Inclusion? The natural unnested conditional counterpart of In-
clusion is:

(CMP) A > B — (A — B), with A, B € L,.

Does this run against McGee examples? The answer is no. The McGee cases
show the inadequacy of any theory of supposition inducing the validity of a
conditional axiom of the form CMP where B itself is a conditional. But CMP
is a perfectly sound conditional axiom that one wants to preserve. The axioms
that one does not want to have is:

(IMP) (A > B) — (A — B), with A € Lo, and B € L.\ L.

But it is easy to check that IMP is not validated by Inclusion in the context
of our theory. Moreover in [4] is shown that there are no non-trivial epistemic
models validating IMP. We will see in the following sections that the notion
of acceptance characterized by the BRMs behaves in a very different manner.

6.1 Invariance and Inclusion in the context of the BRMs

The argument of this section can be summarized as follows: the BRMs deliver
an inadequate theory of iteration, because every inclusive BRM also obeys
EMP.

Notice that any notion of change compatible with (GRT) is monotonic:
(K*M) If p(E) C p(H), then p(E*A) C p(H*A).
Consider now the following weak version of Invariance:

p((E*A)*B) C p(E*B), if A € p(E), and p(E) is consistent.

Remark 2 Any monotonic and inclusive notion of change is weakly invari-
ant.

Proof. Assume that A € p(E), and p(E) is consistent. By Inclusion: p(E*A)

C
Cn(p(E) U {A}) = p(E). Therefore, by (K*M), p((E*A)*B) C p(E*B) O
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It is important to notice that all the theories of change that have been pro-
posed in the literature in order to give epistemic models of the possible worlds
conditionals obey (K*M). Good examples are [19] and [7]. These notions of
change are qualitative versions of Lewis’ ¢maging, a notion of change that im-
poses monotonicity at the qualitative level. So, the defenders of (GRT), and
more generally the defenders of imaging, cannot give up (K*M). Then the
only option is to give up Inclusion. But this is tantamount to giving up also:

(CMP) A > B — (A — B), with A, Be L.

The problem is that there is no good reason to do so. Any defender of a
notion of acceptance as ‘believing true’ should say that every rational agent
who believes that both A and A > B are true, should also believe that B is
true. Therefore the account of acceptance of iterated conditionals using BRMs
faces the following dilemma: either the models are constrained by Inclusion
to have CMP, and then they are unable to deal with the McGee cases; or
they are sensible to them, by relinquishing the unnested version of conditional
modus ponens. This is a dilemma that all BRMs face, even the ones that are
not weakly preservative — like the one developed in [7].

It is hard to see how to escape from such a dilemma. It seems that the BRMs
face insurmountable problems to give an adequate analysis of iteration. Ac-
cording to many, the main defect of the epistemic account (using EMs) is its
inability to give an adequate picture of iteration, while the BRMs are nat-
urally suited to deal with iteration. Nevertheless, a more careful analysis of
this idea shows that natural extensions of the stratified tests deliver a more
adequate picture of iteration than the one given in terms of the BRMs.

7 Conclusion

The paper proposes a full treatment of iterated epistemic conditionals. A rep-
resentation result is given for models that allow for iteration, but that do not
prescribe especial constraints on the notion of supposition used in the models.
We verified that even at this basic level, the theory departs from (deceptively)
similar accounts, like the one done in terms of Belief Revision Models.

More substantial remarks about the notion of supposition involved in the evalu-
ation of conditionals are offered in the last section. We concluded that a notion
of iterated supposing (unlike the corresponding notion of iterated update) 7

37 Here ‘update’ refers to the actual process of changing view, not to the method of
change proposed by Katsuno and Mendelzon.
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cannot be Invariant, and we provided several arguments against Weak Preser-
vation.This suggests that notions like AGM are not good candidates as an ax-
iomatization of supposition. Other AGM axioms, like Inclusion, are adequate
in the context of our theory. Surprisingly we verified, that every inclusive BRM
is also invariant. This fact raises doubts about the adequacy of the BRMs for
modelling iterated conditionals.
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A  Proofs

Theorem 1: A L. formula A is valid iff A is a theorem in ECM

Proof.

Soundness: It is immediate to verify the validity of I, CC, and to check that
the rules of inference preserve validity. We will prove F. Consider first Flr = -
(A > C) = (A > — C), where C € BC. We will prove that for every epistemic
model <E, p, s, * >, Flr € E, for every E in E. The proof will be done by
induction on the complexity of formulae of BC.

The basic case is C = D > H, and D, H € Ly. Assume by contradiction that
there is E such that Flr ¢ s(E). Then (A > C) ¢ s(E) and (A > - C) ¢
s(E). Therefore D > H ¢ s(E*A), and = (D > H) ¢ s(E*A), which, in turn,
entails that H ¢ s(E*A*D), and H € s(E*A*D). Contradiction. The proof is
essentially the same when D, H € BC.
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Consider now the case C = = D, where D isin BC. By IH -~ (A > D) — (A
> = D) is valid. Assume by contradiction that there is E, such that = (A > —
D) = (A > - (= D)) ¢ s(E). Since by (¢3), s(E) = C(s(E)), we immediately
have that (A > -~ D) ¢ s(E) and (A > D) ¢ s(E). Therefore - (A > = D) €
s(E). Therefore (A > D) € s(E). Contradiction.

Finally consider the case C = H A D, where H, D are in BC. Assume by
contradiction that (A > C) V (A > - C) ¢ s(E), for some E. Then - C ¢
s(E*A) and C ¢ s(E*A). Therefore (= D V — H) & s(E*A). This, by two
applications of INRT, yields that - (A > = D) € s(E) and = (A > = H) €
s(E). By IH we have that

(A>D)V (A>-D)es(E),and
(A>H)V (A >-H) es(E)
therefore C = (D A H) € s(E*A). Contradiction.

We have to check now Frl = (A > = C) - = (A > C). The basic case and
the case C = — D can be easily verified. For C = H A D, where H, D is in BC,
assume by contradiction that

—“(A>C)V - (A>-C)¢s(E), for some E.

This entails that s(E*A) is inconsistent (both C and — C are in s(E*A)).
Therefore D is in s(E*A). Without loss of generality we can use here the fact
that by IH -~ (A > D) V = (A > = D) € s(E). Therefore - (A > - D) € s(E),
which in turn entails (by INRT) that - D ¢ s(E*A). Contradiction.

Completeness: To show the converse we will assume that a sentence o of L
is not a theorem in £CM and we will show that « is not supported by some
epistemic state E of some epistemic model (E, p, s, *). So, in the following we
will construct explicitly an ECM model (E, p, s, %) and we will exhibit an E
€ E, such that « does not belong to s(E).

Some preliminary terminology: a sentence A is a theorem of a conditional logic
L (usually written ;) A) just in case A € L. A is derivable in L from a set of
sentences if and only if the set contains sentences Ay, ..., 4, (n # 0) such that
and Fy, (A1 A...A A,) — A. A set of sentences in L is consistent just in case
not every sentence is L-derivable from it.

Form now a list of all formulae of L. of the shape =(4 > B): g1, go,..., gn,-..-
We suprose that each L -sentence of the shape - (A > B) occurs at least once
in this list. Now, with respect to this list, we construct an infinite sequence of
sets:
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Io, Ly, I,

as follows. As Iy we take ECM U {—a}. Then, for each positive integer n we
set:

I I;, givq if I;, g;41 is consistent in ECM
i+1 =
I; otherwise

Set now: Cn(@) = C(UI;), where UI; denotes the union of all the infinitely
many sets ;.

The following series of sets of ordered pairs of sets can be constructed. We will
adopt the following notation. Given an ordered pair K = (B, C), where B C
Lyand CC L,: K; =C, K, =B. °

Ky = {{(Cn(0) N Ly, Cn(0))}

K=K, U{{{C€Ly:A>CeK,},{CeL.:A>CeK,}):KeK,,
Ae L.} Uu{(Cn(K,U{A}),C(K;U{A})): K€ K,, A € Ly}

We have now enough elements to define E, and the functions p, s and *.

(1) E=UK;

(2) ForallE € E, p(E) = E,

(3) ForallE € E, s(E) = E;

(4) (B, B) *A=({CelLy: A>C€eE},{CeL,:A>Ce€E,)})

We should verify now that (E, p, s, ) is an EM.

First we will check that for all E € E, s(E) is a consistent conditional support
set containing all the theorems of £C M, and that s(E) is complete with regard
to formulae of the shape A > B € Ly (i.e. for all E € E, either A > B € s(E)
or =(A > B) € s(E)). By construction the claim is true for Kj, which only
contains the pair (Cn(0) N Ly, Cn(0)).

Now suppose that all pair of sets in K, have these properties. Then we want
to show that all pairs in K, also have these properties.

We should check that for all E in K41, s(E) ={{C€L.:A>CeK, ::K
€ Kn, A € L.} is a consistent conditional support set containing all theorems
of ECM, complete with respect of sentences of the shape A > B € L..

First consistency. Assume by contradiction s(E) is inconsistent, for some E €
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Kyy1. Then, C, = C € BC belong to S(E). Therefore A > C, A > = C are
in K, for some K in K. Since by inductive hypothesis (IH from now on) K,
is a conditional support set containing all £CM-theorems, —(A > C) € K,
(axiom F), against the assumed consistency of K.

Secondly we will show that s(E) is a conditional support set. It is easy to see
that s(E) is non-empty (because, by (I), A > T € K,). By (CC) and IH, if
A, B € L belong to s(E), A A B € s(E). Finally if C - B € C(0)) and C ¢
s(E), since A > C € K;, by RCM (and IH) we have that A > B € K, and
therefore B € s(E).

Thirdly for completeness, assume that B > C € L., is such that B > C ¢
s(E). Then A > (B > C) ¢ K,. Since K is complete, - (A > (B > C)) € K,
and since all theorems of ECM are in K, A > = (B > C) € K,. Therefore —
(B > C) € s(E).

Finally we should check that for all 7, such that 7 € ECM, 7 € s(E). Notice
that T — 7 € £CM and that therefore (A > T) — (A > 7) is also an ECM-
thesis. By axiom (I), therefore, A > 7 € £CM. So A > 7 € K, and 7 € s(E)
as one wants.

It is easy to check that for all E in K, p(E) is a belief set (by using appropriate
instances of axioms (I), (CC) and the rule of inference RCM).

It is also easy to check now that the Ramsey clauses are obeyed. If B € p(E*A),
with B € Lo, E € E, then A > B € s(E), and, since s(E) is consistent, = (A

> B) & s(E).

If A > B € s(E), then B € p(E*A), by definition. If = (A > B) € s(E),
consistency requires A > B ¢ s(E) and therefore B ¢ p(E*A). Finally if B ¢
p(E*A), A > B ¢ s(E), and by completeness of s(E) with regard of formulae of
this shape, =(A > B) € s(E). An almost identical strategy is needed to check
the case p = s.

We need now to check that constraint (cl) is satisfied. This also will be done
by induction. K, contains only the pair: (Cn(@) N Ly, Cn()), which satisfies
(cl) by construction.

Assume now, by IH, that (cl) is satisfied by all K € K,,. We will then prove
that the constraint (cl1) is satisfied by all the pairs E in K.

Our first target will be the expansions in EXP = { (Cn(K, U {4}),C(K, U
{A})): K € K,,,A € Ly}. We need to check that for all B € L,, B is in
Cn(K,U{A}) whenever B is in C(K,U{A}). So, assume that B is in C(K,U{A}).
Then (by assumed properties of C) A — B € C(K;) = K,. But then, by IH,
B € K, which, in turn, entails that B € C(K,U {A}), and we are done.
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Secondly we should check the revisions in K, ;. Notice that for all E in Ko,
Cin Ly and Ain L, if C € s(E), then A > C € K,. But then it is immediate,
by construction, that C is in p(E) — because Lg is included in L-.

The constraint (c2) is trivially guaranteed by construction in the case of
the revisions in Kpi;. With regard to expansions, take any E = (Cn(K, U
{A}), C(K;U{A})). By IH K, C K,. But by the monotonicity of the underly-
ing notion of consequence C: p(E) = Cn(K, U {A}) = C(K, U {A}) C C(K,
U {A}) = s(E). O

B Alternative models of suppositional reasoning

In the previous sections, we presented a theory of supposition (hypothetical

revision), and we showed that some of its most fundamental axioms are in-
compatible with AGM and DP (Darwiche and Pearl).

Cumulativity also collides with other theories of supposition. Here we will
briefly consider three different theories of supposing, none of which is cumu-
lative.

When conditionals are considered as propositions, the fact that they are be-
lieved as true with respect to a view K can be represented as follows:

Suppositional construal of conditional belief (SCCB)
KCp>qiff K#pCyq.

The notion of change # satisfying SCCB has been proposed as an account
of supposition by Skyrms in [32]. In addition David Lewis proposed a proba-
bilistic version of # in [27]. Lewis’ name for this operation (imaging) is now
more or less standard in this field. In [3] it is shown that # is a notion of
change independently proposed by the computer scientists H. Katsuno and
A. Mendelzon [19] (under the name of update). Such a notion is incompatible
with AGM and fails to satisfy Cumulativity and Preservation.

Instead of Preservation, # requires Inclusion and :

(P") If K C p, then K C K#p.
This in turn requires:

If K =0, then K#p = 0. (Inconsistency Preservation)
A recent theory of supposing proposed by Hajek and Harper also implements

(P")—see their postulate (2), [16, p. 3]. We will consider this theory below.
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The # operator not only fails to obey Preservation, it also fails to satisfy:
If KZ pand K € —p, then K#p = K Np. (Open Revision)

Isaac Levi argued in [25] that satisfying Open Revision is a necessary condition
of adequacy for theories of supposing that extend the views first suggested by
F.P. Ramsey in [30]. He offered in [26] a theory of supposition that does obey
Open Revision, and fails to obey Preservation (Ramsey revision). He also
defendert the appropriateness of using such a notion to provide acceptability
conditions for conditionals. As in the case of #, Levi’s notion of change fails
to obey Cumulativity.

It is not the purpose of this Appendix to review the details of either imaging
or Ramsey revision. This would require a long detour that we prefer not to
take here. We only want to make explicit the salient features of other theories
proposed in the literature in order to model supposition. We also want to point
out that they are incompatible with hypothetical revision.

[3] offers a detailed account of the crucially different features of an epistemic
model of truth-value bearing conditionals as opposed to a pure epistemic model
(that at best remains neutral with regard to the status of conditionals as
truth carriers). This article is also in part devoted to stress such differences.
Therefore it should not be surprising that the dynamic properties of these two
types of modelling diverge as well.

Imaging can be seen as a form of supposition related to the suppositional
construal of conditional belief, while other notions of supposition might not
be committed to the fact that conditional acceptance is a form of conditional
belief. The schema ‘accepting p is believing that p is true’ might not be uni-
versally valid. In fact we can have acceptability conditions for sentences that
fail to express propositions. The probabilistic models of conditionals (for ex-
ample the ones advocated by Adams and Levi) start with the assumption that
conditionals do not express propositions at all.

Hypothetical revision is not the only notion of supposition left available to
researchers that are at least skeptical about the status of conditionals as truth
carriers. Ramsey revision is an alternative option. Both notions should share,
in turn, the basic properties encoded in ECM (or CM).38

In the coming section we will consider another notion of supposition proposed
in the literature. Unlike the previous two theories of suppositional reasoning,

38 Both imaging and Ramsey revision share crucial properties with hypothetical
revision (both Ramsey revision and hypothetical revision are preservative, while
imaging obeys fixity). But hypothetical revision has properties that none of the
rival notions have (like Cumulativity or the Export*Import condition).
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a suitable reformulation of this remaining proposal can indeed be rendered
compatible with hypothetical revision.

B.1  Hajek and Harper on supposition

Hajek and Harper defend in [17] the appropriateness of extending conditional
probability as a representation of conditional belief by taking full belief as
primitive and defining extended conditional probability as coherent degree of
belief relative to suppositions. This idea prioritizes, in the order of explanation,
full belief and supposition over conditional probability. 3

A basic model of supposition is a triple (2, F, ), where { is a set of states, F is
a field of propositions with respect to 2 and * is a function * : 2% x F — 29
obeying the following constraints. Subsets K of §) represent bodies of full
belief.

(k1) Kxp Cp.

(k2) If K C p, then K = K *p.

(k3) fpCqgand KxqNp#0, then K xp= K % ¢ Np.
(k4) If p C q and K*q=0), then K % p = ().

The view of supposition encoded by the former postulates is incompatible with
AGM and Ramsey revision. In fact, it satisfies Inconsistency Preservation
(which is entailed by (k2)); a postulate inconsistent with both AGM and
Ramsey revision. The notion does not fit the idea of supposition encoded by
# either. In fact, k3 entails Preservation, while the crucial idea of # is to
construct a non-Preservative notion of change.

Moreover, Hajek and Harper’s postulates do not seem apt to model a well-
motivated notion of supposition,*® unless we confine our attention to non-
nested conditionals. In fact, the Postulate (k2) entails Invariance. But the no-
tion proposed by Hajek and Harper is almost right, as we will see. Invariance
can be circumvented by adopting an axiomatization of the type advocated by
Darwiche and Pearl (and adopted in our presentation of Hypothetical revi-
sion).

(E1) p(E *p) Cp.
(E2) If p(E) C p, then p(E) = p(E * p).
(E3) If p C g and p(E + q) Np # 0, then p(E x p) = p(E * g) N p.

39 Their notion of change is explicitly conceived as the qualitative counterpart of
the notion of supposing encoded in non-iterated Popper functions.

%0 Or to model the notion of supposition required by McGee’s extension of Adams’
program.
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(E4) If p C ¢ and p(E * q) = 0, then p(E * p) = 0.

This presentation of the axioms advocated by Hajek and Harper is indeed
entailed by the axioms of hypothetical revision.

Lemma B.1 E2 follows from (5.2¢c) and (5.4c).

Proof. If p(E) # 0, E2 follows immediately from (5.2c). If p(E) = 0, then
p(E*p) = 0, by (5.4c).

Lemma B.2 E3 follows from (5.2¢), (5.5¢) and (5.6¢)

Proof. Assume p C q and p(E*q) N p # 0. Now, by (5.2¢) p(E*q) N p =
p((E*q)*p). (5.5¢) yields p((E*q)*p) = p(E* (g N p)). Now, by the hypoth-
esis and (5.6¢c) we get that p(E* (q N p)) = p(E*p).

Lemma B.3 E4 follows from (5.5¢) and (5.6¢).

Proof. Assume the antecedent of E4. Since p C q, p = p N q, (5.6¢) guar-
antees that p(E*p) = p(E * (pNg)). By (5.5¢), p(E*p) = p(E*q)*p. Since
p(E*q) = 0, then, by (5.4c), p(E*q)*p = 0

So, although the unmodified version of Hajek and Haper method does conflict
with the notion of hypothetical revision advocated by Adams and McGee,
there is a natural way of reformulating the theory in such a manner that it
becomes a particular case of hypothetical revision. It is reasonable to suppose
that it is this reformulation what the authors intended. In fact, their mod-
elling appeals to Invariance, a property denied by McGee, Adams and other
practitioners of the program of probabilistic semantics.

It seems safe to conclude that hypothetical revision is the notion of supposition
(tacitly) defended by Adams, McGee, Edgington, Hajek, Harper and others
supporters of the program of probabilistic sematics initiated by Adams. Given
the centrality of cumulativity in the probabilistic representation of belief dy-
namics this fact should perhaps not be seen as surprising. ! Cumulativity,
nevertheless, is far from being universally adopted in the literature on be-
lief change, either in order to model supposition of to model ‘real’ changes of
view. Perhaps a case can be made for the use of hypothetical revision as a tool
for modelling suppositional reasoning. It is less clear whether such a notion
models accurately other forms of belief change. Both Skyrm’s notion (later on

41 See [2] for a careful substantiation of this claim. The crucial problem linking prob-
ability kinematics and belief change is how to relate (in a non-trivial or obviously
problematic manner) static belief and probability. [2] focuses on recent proposals
for deriving belief out of 2-place probability measures, and shows that the existing
models are cumulative.
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adopted by David Lewis under the name of imaging) and Levi’s notion are on
the record as alternative modellings of suppositional reasoning.

In the light of the arguments presented in the last section of this piece (sec-
tions 5-1 and 5-2) we can shrink the family of admissible notions to two:
Levi’s Ramsey’s revision and hypothetical revision.*? Both notions are able
to accommodate the available data.
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