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Abstract

It is shown that every (small) topos is equivalent to the category of
global sections of a sheaf of so-called hyperlocal topoi, improving on
a result of Lambek & Moerdijk. It follows that every boolean topos
is equivalent to the global sections of a sheaf of well-pointed topoi.
Completeness theorems for higher-order logic result as corollaries.

The main result of this paper is the following.

Theorem (Sheaf representation for topoi). For any small topos &,
there is a sheaf of categories £ on a topological space, such that:

(i) € is equivalent to the category of global sections of g,
(ii) every stalk of Eisa hyperlocal topos.
Moreover, £ is boolean just if every stalk of £ is well-pointed.

Before defining the term “hyperlocal,” we indicate some of the back-
ground of the theorem. The original and most familiar sheaf representations
are for commutative rings (see [12, ch. 5] for a survey); e.g. a well-known
theorem due to Grothendieck [9] asserts that every commutative ring is iso-
morphic to the ring of global sections of a sheaf of local rings. In Lambek
& Moerdijk [16] it is shown that topoi admit a similar sheaf representation:
every topos is equivalent to the topos of global sections of a sheaf of local
topoi (cf. also [17, II:18]. A topos £ is called local if the Heyting algebra
Subg (1) of subobjects of the terminal object 1 of £ has a unique maximal
ideal, in analogy with commutative rings. It is easily seen that a topos &£
is local iff 1 is indecomposable: for any p,q € Subg(l), if pV ¢ = 1 then
p =1or g = 1. In logical terms, a classifying topos S[T] for a (possibly
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higher-order) theory T is thus local iff the theory T has the “disjunction
property”: for any T-sentences p,q, if THpV gthen THpor Tt ¢ (cf. §3
below for classifying topoi).

A sheaf representation such as those just mentioned yields an embedding
theorem, which in the case of topoi yields a logical completeness theorem
(just how is shown in §3 below). From a logical point of view, however, the
local topoi of the Lambek-Moerdijk representation fall short of being those
of interest for completeness. For, by other methods, one can already prove
logical completeness with respect to a class of topoi that are even more “Set-
like” than local ones, in that the terminal object 1 is also projective. Such
topoi, in which 1 is both indecomposable and projective, shall here be called
hyperlocal. In logical terms, a classifying topos S[T] is hyperlocal iff the
theory T has both the disjunction property just mentioned and the so-called
existence property: for any type X and any formula ¢(z) in at most one free
variable z of type X, if T - 3;.¢(z) then T I ¢(c) for some closed term ¢
of type X. Hyperlocal topoi are called “models” in [17] (see §§17-19 for the
related completeness theorem). In Lambek [15] the above-mentioned logical
shortcoming of the Lambek-Moerdijk sheaf representation is noted, and the
following improvement is given: for every topos £ there is a faithful logical
morphism £ — F into a topos F that is equivalent to the topos of global
sections of a sheaf of hyperlocal topoi. The sheaf representation theorem
of this paper thus fits into this pattern of theorems; it states that every
topos is equivalent to the topos of global sections of a sheaf of hyperlocal
topoi. Moreover, it follows that every boolean topos is equivalent to the
topos of global sections of a sheaf of well-pointed topoi. With respect to
logical completeness, these are the desired results.

The paper is arranged as follows. In §1 it is shown that every topos can
be represented as a sheaf of categories on a Grothendieck site (rather than
a space). The sheaf in question arises most naturally, not as a sheaf, but
as something more general called a “stack.” Most of §1 is devoted to the
technical problem of turning this (or any) stack into a sheaf. In §2 a recent
covering theorem for topoi is used to transport the sheaf constructed in §1
from the site to a space. A comparison of the transported sheaf with the
original one then completes the proof of the sheaf representation theorem.
In §3 several logical completeness theorems are derived as corollaries.

We shall have to do with both small elementary topoi and (necessarily
large) Grothendieck topoi. We maintain the convention that “topos” un-
qualified means the former, but we may still add the qualification “small”
for emphasis when called for. We assume familiarity with the basic theory
of Grothendieck topoi, e.g. as exposed in [19].
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1 Slices, stacks, and sheaves

Throughout this section, let £ be a fixed small topos. We begin by defining
the £-indexed category £/ (for indexed categories, see [20], [23]). Recall that
an £-indexed category A is essentially the same thing as a pseudofunctor
A : £%° — CAT, i.e. a contravariant “functor up to isomorphism” on £ with
values in the category CAT of (possibly large) categories. Since the only
indexed categories to be considered here are £-indexed, henceforth indered
category shall mean £-indexed category.
The indexed category

&/ :EP - CAT
is defined as follows. For each object I of £,
(E/) =47 E/T (the slice topos).
For each morphism a: J — I in &, choose a pullback functor
o &I = E/J.

Note that each such functor a* is determined up to a unique natural iso-
morphism as the right adjoint of the composition functor £, : £/J = £/I

along . Thus for any composable pair of morphisms K LA J 3 I, there is
a canonical natural isomorphism

(1) ¢a,,3 : fra* - (aﬁ)*

Furthermore, these ¢, g for each composable pair o, 8 then satisfy the re-
quired coherence conditions (cf. [20]), making £/ an indexed category. Ob-
serve also that since £ is small, each £/I is a small category, and so £/ is a
small indexed category.

An indexed category is called strict if all of its canonical natural isomor-
phisms (1) are identities. Thus a small, strict indexed category is the same
thing as a presheaf of categories on &, i.e. a (proper) functor £°° — Cat.



Now, since £/ need not be strict, it makes no sense to ask whether it is a
sheaf (of categories) for a given Grothendieck topology on £. We shall show,
however, that £/ is equivalent as an indexed category to a strict indexed cat-
egory which, furthermore, is a sheaf. The Grothendieck topology considered
is the so-called finite epimorphism topology, generated by covers consisting
of finite epimorphic families; when we refer to £ as a site we shall always
mean £ equipped with this topology. Recall that given indexed categories
A and B, an indexed functor F : A — B such that F! : AT - B/ is an or-
dinary equivalence of categories for each object I of £ is called an (indexed)
equivalence; and that A and B are said to be equivalent if there exists such
an equivalence (cf. [4, 1.8]). In these terms, our aim in this section is the
following.

Proposition 1. £/ is equivalent to a sheaf.

The proof employs the notion of a stack, which was introduced by Gi-
raud in [8]. Roughly speaking, stacks are to indexed categories what sheaves
are to presheaves. Rather than developing the theory here, we shall assume
familiarity with the treatment of Bunge & Paré [4]. An adjustment of the
definition of stack given there is required, however, to account for the dif-
ference in the Grothendieck topologies under consideration (cf. [14]).

Definition 2. An indexed category A is a stack if it meets the following
conditions:

(S1) For any pair of objects I and J of £, the canonical functor
AT 5 AT x A
is an equivalence of categories.
(S2) For any epimorphism « : J — I in £, the canonical functor
AT - des(a)

is an equivalence of categories, where des(a) is the category of objects
of A’ equipped with descent data relative to o : J —» I (as in [4, 2.1]).

Remark 8. Observe that if A is a stack and B an indexed category equivalent
to A, then B is plainly also a stack.

Proposition 1 resuits directly from the following three lemmas.

Lemma 4. £/ is equivalent to a small, strict indezed category.



Lemma 5. £/ is a stack.
Lemma 6. Any small, strict stack is equivalent to a sheaf.

Proof of proposition 1: £/ is equivalent to a small, strict stack & by
(remark 3 and) lemmas 4 and 5. By lemma 6, £; is equivalent to a sheaf &,
whence £/ is also equivalent to &;. O

As shall be evident, lemma 4 holds equally for any small indexed cate-
gory. Thus we have shown more generally:

Proposition 7. Any small stack (on a topos) is equivalent to a sheaf.
We now proceed to the proofs of the lemmas.

Proof of lemma 4: Indeed, this is true for any small indexed category A.
For let A’ be the indexed category given by setting

(A")! = ind([7], A),

where ind(—, ?) is the category of indexed functors from — to ? and indexed
natural transformations between them, and the indexed category [I] is the
so-called “externalization” of the object I in &, regarded as a discrete cate-
gory (cf. [23]). Specifically, for each object J in &, the category [I]’ is the
discrete one on the set of objects £(J, I),

(1) = E(J,I),

and [I] has the obvious effect on morphisms. A’ is clearly strict, it is small
since A is, and it is equivalent to A by the indexed Yoneda lemma ([23,
1.5.1)). O

Lemma 5. £/ is a stack.

Proof: Condition (S2) is a special case of [4] corollary 2.6. A proof can
also be given from the descent theorem of Joyal & Tierney [13]. For if a
morphism e : J —» I in £ is epi, then the geometric morphism £/J — £/1
with inverse image e* : £/I — £/J is an open surjection, hence an effective
descent morphism by the Joyal-Tierney theorem.
For (S1), we must consider the canonical functor

EJI+JT)— EJIXEJJ.



This is seen to be an equivalence of categories by considering the quasi-
inverse:

X->L,Y—>J) — (X+Y-I+4+J).

Lemma 6. Any small, strict stack is equivalent to a sheaf.

Proof: Let C be a small, strict stack on &£, regarded as a presheaf of cate-
gories. We shall prove that the canonical functor C — aC to the associated
sheaf aC is an equivalence of indexed categories.

First, recall that aC can be constructed by two successive applications of
the so-called plus construction (cf. [19, IIL.5]). As a functor, the plus con-
struction

op op
* . Setst™ — Sets®

preserves finite limits, and hence also category objects in Sets®””. The
canonical natural transformation with components np : P — Pt for each
presheaf P therefore determines two (internal) functors in Sets®”:

nc :C — C+,
ne+ :CT = Ct1 =4aC,

the composite of which is the canonical functor C — aC. Since the property
of being a stack is inherited along equivalences, it will plainly suffice to show
that nc is an equivalence when C is a stack. '

Next, given any presheaf P on &, recall that Pt is defined by

(2) P+(I) = lim ge (1) Hom(S, P)

for each object I € £, where the Hom is that of the category of presheaves
Sets®”. The colimit in (2) is taken over the set J(I) of all covering sieves S
of I, regarded as subobjects of the representable functor yI = £(—, I), and
ordered by reverse inclusion (“refinement”). For each such sieve S there is
a category Hom(S, C) with objects and morphisms

Hom(S, C)p = Hom(S, Cop),
Hom(S, C); = Hom(S, Cy),



and with the evident structure maps coming from those of C. Since J(I) is
a filter, the colimit in (2) is filtered. Thus C*(I) is the filtered colimit of
the categories Hom(S, C),

(3) C+(I) = liﬂSEJ(I) I‘IO_III(S, C)

Now let K(I) C J(I) be the set of covering sieves R of I for which there
is a finite epimorphic family (o, : A, — I), that generates R. We order
K(I) by refinement too. Since any S € J(I) has a refinement R C S with
R € K(I), from (3) we have:

(4) C*(I) = lim ek (r) Hom(R, C).

We now claim that for each R € K(I), the canonical inclusion R — yl
induces an equivalence of categories

(5) Hom(yI, C) ~ Hom(R, C).

Given this, from (4) and (5) we shall have (isomorphisms and) equivalences:

C(I) = Hom(yI,C) by Yoneda,
& lim peg(r) Hom(yI, C),
=~ lim pe (1) Hom(R, C) by (5),
~ CT(I) by (4).

Whence : C ~ Ct as desired.
The proof of the claim is a lengthy but straightforward descent-theoretic
argument, which the interested reader can find in [2]. a

2 Sheaf representation

As before, let € be a fixed but arbitrary small topos, equipped with the finite
epi topology when regarded as a site. By proposition 1 above the indexed
category £/ is equivalent to a sheaf of categories on £. Let us write

E/]:EP = Cat
for a fixed such sheaf, with
(6) E//T = €T,

naturally in I € £.



Now let
a : Sets — Sh(&)

be a geometric morphism into the Grothendieck topos Sh(€) of sheaves on
£, and consider the effect of its inverse image a* : Sh(£) — Sets on the
sheaf £//, or, as we shall say more briefly, the “stalk” of £// at the “point”
a : Sets — Sh(£).

Lemma 8. The category a*(€//) is a hyperlocal topos.

Proof: First note that a*(£//) is a category since £// is a category in
Sh(€) and a* preserves finite limits.
Next, let A : £ — Sets be the (left exact and continuous) composite functor

*

A: €Y ssneE) 2> sets,

where y is the sheafified Yoneda embedding. Given any sheaf F on &, the
stalk a*(F') can be calculated as the colimit

(7) a*(F) = lin ;4 F(I)

over the category [A of elements of A (cf. [19, VIL.2(13)]). Recall that an
object of [A is a pair (I,z) with I an object of £ and z € A(I); and a
morphism « : (I,z) — (J,y) of [A is a morphism a : I — J of £ with
A(a)(z) = y. There is an evident forgetful functor 7 : fA — £. The colimit
in (7) is understood to be the colimit of the composite functor Fr,

(8) limg ;4 (1) = lim( / A5 B Sets )

Since A is left exact, [A is a filtered category. Thus the category
(9) a*(£//) =lim &/ /1

is a filtered colimit (in Cat) of a diagram of topoi and logical morphisms,
which implies that a*(£//) is itself a topos, as the reader can easily check.
To show that a*(£//) is hyperlocal, first observe the following. Since A :
& — Sets preserves covers, if (ay, : C, = I), is a cover of the object I in &,
then the canonical map

(10) (Aom) : [] ACn — AT

is a surjection in Sets. Thus given (I,z) € [A, so z € A(I), for some n
there is an element y € AC, with a,(y) = z. In sum:



(11) For any (I,z) € [A and any cover (ay, : Cp — I)n, for some n
there is a map ay : (Cp,y) = (I,z) in [A.

Now, the following two statements are clearly true.

(12) For any object I of £ and any subobjects p and g of 1 in £//I
with p V ¢ = 1, there exists a cover (o, : C,, — I), such that,
foreachn, afp=1orag=1in E//C,.

(13) For any object I of £ and object X of £//I with X —» 1 epi,
there exists a cover (ay : C,, = I), such that, for each n, there
exists a morphism 1 — o, X in £//C,.

Combining these with (11) then yields:

(14) For any object (I,z) € [A and any subobjects pand gof 1 in
E//I with pV q = 1, there is a map a : (C,y) = (I,z) in [A
such that a*p=1ora*¢=1in £//C.

(15) For any object (I,z) € [A and any object X of £//I with
X —» 1 epi, there is a map o : (C,y) = ([,z) in [A and a
morphism 1 -+ a*X in £//C.

One shows that a*(£//) is local using (14) and that 1 is projective in a*(€//)
using (15). Since the arguments are similar, let us simply show the former:
If p and q are subobjects of 1 in a*(£//) with pV ¢ = 1. Then there are
objects (I, p), (I4,24) € [A and subobjects p’ — 1in€//I, and ¢’ — 1 in
&//1, projecting to p and ¢ respectively in the colimit a*(£//). Since [A
is filtered, there exist an object (I,z) and morphisms (I,z) — (Ip,z,) and
(I,z) = (I4,z4) in [A. Restricting p’ and ¢’ along these morphisms gives
subobjects p”, ¢"” — 1 in £//I, still projecting to p and q respectively. Since
pV g =1 in the colimit, there is some h : (J,y) — (I,z) in [A such that
the restriction h*(p” V¢") =1in £//J. So also k*p" V h*q" = h*(p" V ¢") =
1. Applying (14) gives a morphism o : (C,z) — (J,y) in [A such that
a*h*p" =1 or o*h*q" = 1in £//C. Since a*h*p" also projects to p and
a*h*q" to g, either p=1o0r ¢ =1 in a*(£//). So a*(£//) is local. O

To prove the sheaf representation theorem, we shall make use of the
following covering theorem for topoi, due to C. Butz & I. Moerdijk (see
(5, 6]).

Butz-Moerdijk covering theorem. Let G be a Grothendieck topos with
enough points. There exists a topological space X and a connected, locally
connected geometric morphism ¢ : Sh(X) — G.



We remind the reader that a Grothendieck topos G is said to have enough
points if the geometric morphisms a : Sets — G are jointly surjective (cf. e.g.
[19, IX.11]); and furthermore that a geometric morphism v : G’ — G between
Grothendieck topoi is called connected if its inverse image v* : G — G’ is full
and faithful, and locally connected if v* has a Sets-indexed left adjoint (cf.
[22]). We make no use here of the local connectedness of the covering map
¢ :Sh(X) — G. ‘

Theorem 9 (Sheaf representation for topoi). Any small topos is equi-
valent to the topos of global sections of a sheaf of hyperlocal topoi on a
topological space.

Proof: As before, we have the small topos £, the sheaf of categories £//
on £ with £// ~ £/, and by the foregoing lemma every stalk of £// is a
hyperlocal topos. Since the topology on £ is generated by finite epimorphic
families, the Grothendieck topos Sh(€) is coherent and so has enough points
by Deligne’s theorem [19, IX]. By the above covering theorem, there is thus
a topological space Xg and a connected geometric morphism

(16) ¢ : Sh(Xg) — Sh(E).

Applying the inverse image ¢* : Sh(€) — Sh(X¢) to £// gives a sheaf of
categories

(17) E =g ¢ (/)

on Xg, which—we claim—is still a sheaf of hyperlocal topoi, and has “the
same” category of global sections as £//, namely £.

First, since ¢* is full and faithful, the unit n of the adjunction ¢* - ¢,
is a natural isomorphism,

1 : lgne) — ¢=9*.

The components of n at £// are therefore an isomorphism of (sheaves of)
categories

(18) El] = g™ (E]))-
Let y : £ — Sh(€) by the sheafified Yoneda embedding. For the category

10



Sh(X¢)(1,€) of global sections of &, we have:

Sh(X¢)(1,€) = Sh(X¢)(¢*1,E)

(
2 Sh(€)(1, ¢€) ¢ ¢
= Sh(€)(1,¢+9™(€//)) by (17)
= Sh(£)(1,€//) by (18)
= Sh(€)(y1,€//)
=E//1 by Yoneda
~¢&/1
=£.

Now consider the stalks of £. A point p € X¢ determines a unique (up to
isomorphism) geometric morphism p : Sets — Sh(X¢) with inverse image

(19) p*(F) = F, (the stalk of F at p)

for each sheaf F' on Xg. Composing with the covering map ¢ : Sh(Xg) —
Sh(€) we obtain a point

(20) ¢p : Sets 25 Sh(Xs) -2+ Sh(€)

of Sh(£). For the stalk gp of £ at a point p € Xg we then have

HZ

*(€) by (19),
“(#*(€/)) by (17),
)" (E//),

the last of which is hyperlocal, since it is a stalk of £// at the point ¢p of
(20). Thus every stalk of £ is indeed a hyperlocal topos, completing the
proof. O

IR

p
p
(¢

We refer the reader to [3, appendix] for an explicit description of the
space X¢ and the covering map ¢ : Sh(X¢) — Sh(€) in the current situation.

Now let us turn to the special case of boolean topoi. The easy proof of
the following lemma is left to the reader.

Lemma 10. A topos is well-pointed just if it is hyperlocal and boolean.

11



Let B be a boolean topos and take the sheaf B on the space Xp, as in
the sheaf representation theorem. Given any point z € Xp, there is then a
canonical logical morphism

(21) e B— Ex

since by (9) the stalk B, is a (filtefed) colimit of slices of B. Thus every
stalk B, of B is also boolean, since it has a logical morphism from a boolean
topos. By lemma 10, then, every stalk of B is in fact well-pointed. Whence:

Coroilary 11 (Sheaf representation for boolean topoi). Any small
boolean topos is equivalent to the topos of global sections of a sheaf of well-
pointed topoi on a topological space.

Remark 12. (i) A somewhat stronger statement of corollary 11 can be given:
If £ is the sheaf representation of a topos £, then £ is boolean if and only
if £ is a sheaf of well-pointed topoi. For the “if” part, observe that & is
boolean if it has a faithful logical morphism £ — B to some boolean topos
B. The statement therefore follows from (lemma 10 and) the following.

(i) If £ is. the sheaf representation of a topos £, then the canonical logical
morphism

(22) (7T:c>a:€Xg 1€~ H gx

z€Xg

is faithful. Here each of the maps 75 : £ — E,} is as in (21) above. The
functor (22) is faithful simply because £ ~ I'(£), and for any sheaf F' the
canonical map I'(F') — [],cx Fz is injective.

3 Logical completeness

In this section we assume some familiarity with topos semantics for higher-
order logic, e.g. as in [2]. By way of review, recall that a (higher-order,
logical) theory consists of a finite list of basic type symbols, basic constant
symbols, and (possibly higher-order) sentences in these parameters. Let T
be a theory. For any topos &£, there is a category Modr(E) of T-models
in £ and their isomorphisms; furthermore, any logical morphism f: & — F
of topoi induces an evident functor Modr(f): Modt(£) — Modr(F) by
taking images. Moreover, there exists a (higher-order) classifying topos S[T],
determined uniquely up to equivalence by the natural (in &) equivalence of
categories

(23) Log(S[T},€) ~ Modr(€),

12



where Log(S[T}],€) is the category of logical morphisms S[T] — £ and
natural isomorphisms between them.

As objects of the classifying topos S[T] one can take equivalence classes of
closed terms of the form {z|p} in the language of T, identified under provable
equality T F {z|p} = {y|¢} (similarly, morphisms are suitable equivalence
classes of provably functional relations). In particular, the Heyting algebra
Subgr)(1) of subobjects of 1 in S[T] is just the Lindenbaum-Tarski algebra
of T-sentences. Thus the universal T-model Uy in S[T], which is associated
to the identity morphism S[T] — S[T] under (23), has the property that for
any T-sentence o:

(24) Urlo iff Tho.

Observe that (23) and (24) together entail the soundness and completeness
of higher-order, intuitionistic deduction + with respect to topos semantics:
M = o for every T-model M just if T  o. Finally, a theory T is called
classical if T - V,,.p V —p, which is the case just if the classifying topos S[T]
is boolean.

Now let us say that a collection E of topoi suffices for a collection T of
theories if, for any theory T € T and any T-sentence o, M k= o for every
T-model M in every topos £ € E implies T + ¢. The idea, of course, is that
E provides complete semantics for the theories T. For example, the com-
pleteness of topos semantics just mentioned says that (small) topoi suffice
for theories in intuitionistic logic, and (small) boolean topoi for classical the-
ories. In these terms, by the sheaf representation theorems of the previous
section, one then has the following.

Theorem 13 (Strong completeness). Hyperlocal topoi suffice for theo-
ries in intuitionistic logic, and well-pointed topoi for classical theories.

Proof: Let T be a theory and S[T] its classifying topos. Identifying a T-
sentence o with the subobject of 1 in S[T] that it determines, for any logical
morphism f: S[T] — £ to a topos £, we have:

(25) fUr) o if fo=1,

where f(Ur) = Modr(f)(Ur) € Modr(€) is associated to f via (23).
Now let S[T] be a sheaf representation of S[T] on a space X, and consider
the faithful logical morphism

(ma)eex : SIT| = [] SIT,
zeX

13



of remark 12(ii) above. For each point z € X, there is a T-model 7(Ur) €
Modr(S[T],) in the (hyperlocal) stalk of S[T] at z. If the T-sentence o
is such that % = o for any hyperlocal topos #, then for each z € X,
7z (Ur) [= 0, and so mzo = 1 by (25). But then o = 1 in S[T}, since {7 )zex
is faithful. So Ur |= o by (25) again, whence T - o by (24). Thus hyperlocal
topoi suffice. .

If T is classical, S[T] is boolean and so each stalk S[T],, is well-pointed. The
result then follows similarly. 0

The existence of a logical embedding of any boolean topos into a product
of well-pointed topoi was established already in [7]. It is of interest to note
that well-pointed topoi arise independently, both as models of Lawvere’s
categorical set theory [18], and as models of a certain well-known fragment
Z~ of Zermelo-Fraenkel set theory, called variously bounded (or weak) Zer-
melo set theory or Mac Lane set theory ([19, 11, 21] and the references
there). The classical part of the foregoing strong completeness theorem can
therefore also be stated in terms of models (of theories) in models of Z7: a
sentence in the language of a classical theory T is provable if it is true in
every T-model in every model of Z~. There is also a more or less obvious
proof-theoretic statement of this situation.

We conclude by indicating how to pass from the strong compleness
theorem to the classical higher-order completeness theorem using “non-
standard” models in the single topos Sets, in the style of Henkin [10]. First,
observe that any well-pointed topos W has a canonical faithful functor into
Sets, namely the global sections functor

I'=wW(@1,-): W — Sets.

Lemma 14. For any well-pointed topos W, the global sections functor T’
has the following properties:

(i) T is left-ezact and continuous for the finite epi topology;
(i1) T preserves finite coproducts and the internal first-order logic of W;

(#i3) for any objects Y and Z of W there is a canonical inclusion

rz¥) c rztv.

Proof: The proof of statement (i) is straightforward, and (ii) results from

14



(i) and the fact that W is boolean (cf. [3] for details). For (iii), we have

(z¥)=w(,z"),
= W(Y, Z),
C Sets(I'Y, I'Z) T is faithful,
VAR

Note that by (ii) and (iii) one also has a canonical inclusion
(26) INPX) =T(2%) cr2lY =Y ~ p(rx)

for any object X, its power object PX, and the powerset P(I"X).

Now, given a model M of a classical theory T in a well-pointed topos W,
the image of M under I' is a Henkin model of T (a general model in the sense
of Henkin [10]; cf. [1] for a recent treatment). More precisely, recall that such
a Henkin model 91 consists of sets Xoy, ... (interpreting the basic types of
T), plus subsets (PZ)gn C P(Zgy) for each type Z (interpreting the power
types of T), plus distinguished elements con, ... of these sets (interpreting
the basic constants of T), and satisfying suitable closure conditions ensuring
that there are enough sets to interpret the logical operations (zNy € (PZ)gpn
if z,y € (PZ)gn, and so on). Given a model M in W, in virtue of (26) we
then have the Henkin model I'M with

Zrm =T(Zun)
CrpM = F(CM)

for each type Z and each basic constant c. Moreover, since T is faithful,
'MEo justif MEo

for any T-sentence o.

Combining this last equivalence with theorem 13 plainly yields the classi-
cal higher-order completeness theorem with respect to Henkin models, which
was our objective. .

Just to wrap things up, take a stalk S[T], of the sheaf representation
of a classifying topos for a classical theory T, and consider the composite

functor

——

(27) S[T] 2 S[T], - Sets,
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where the logical morphism 7, : S[T] — S[T], is as in remark 12(ii) and I’
is the global sections functor as before. By (i) of lemma, 14, this composite
is then left exact and continuous. And indeed, every left exact, continuous
functor A : S[T] — Sets arises in this way as the global sections of a stalk

of S[T]. For we can take a : Sets — Sh(S[T]) to be the associated point of
Sh(S|[T]) and we then have the stalk a*gﬁf]. The displayed composite (27) is
then (isomorphic to) A just if the stalks agree, inasmuchas gﬂf]z o~ a*gﬁ].
In particular, then, we see that the image of the universal model Ur under.
any left exact, continuous functor A : S[T] — Sets is (the global sections

of) a standard model in a well-pointed topos, and is thus a Henkin model.
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