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1This paper contains a synopsis, we hope an informative and accessible one, of [Sieg 1994]
and our [1996]; however, the synopsis is put to work for a particular interpretation of a brief
remark of Gédel on Turing’s work. For historical and mathematical details we refer the reader
to these papers, but also to [Mundici and Sieg].



Introduction

The notion of effective calculability is central for logic and the philosophy of
mathematics, not to speak of computer science, artificial intelligence, and cog-
nitive science. Turing gave in 1936 what is viewed as the most convincing
analysis of this informal notion?: he was led to the mathematical concept of
computability by idealized machines and to the thesis that every effectively cal-
culable number-theoretic function is computable by such a (Turing-) machine.
In support of the thesis, Turing argued that all processes carried out by hu-
man computors—when effectively calculating the values of a number-theoretic
function—can be performed by his machines. In 1964, Gédel stated briefly and
enigmatically:

Turing’s work gives an analysis of the concept of “mechanical pro-

cedure” .... This concept is shown to be equivalent with that of a

“Turing machine”.?
(We will refer to this statement as (G).) Nowhere in Gddel’s writings is there
an indication of the nature of Turing’s analysis (as leading to a mathematical
concept) or of a proof for the claim that the analyzed concept is equivalent to
that of a Turing machine. We explore Turing’s informal considerations in section
9 of his [1936] and argue that Godel’s schematic description is correct, once it is
properly “triangulated” and explicated. Then we generalize Turing’s conceptual
analysis and describe K-graph machines introduced in our [1996]. Our goal,
very briefly put, is to deepen the understanding of the broad conceptual issues,
which are still quite controversial, and to provide an illuminating historical and
philosophical perspective; cf. also [Soare].

1 Mechanical procedures

In order to give the most general formulation of the incompleteness theorems and
thus to allow for their broadest philosophical interpretation, a general concept
of “formality” is required. For Godel that meant to provide a precise charac-
terization of effective calculability for number theoretic functions. That was a
primary, motivating concern for Godel; cf. [Godel 1951] and [Davis 1982]. To
approach such a characterization, Gédel introduced in his Princeton Lectures of
1934 the class of general recursive functions, i.e., those functions whose values
can be calculated in an equational calculus from basic equations by means of
very elementary rules. Clearly, any system that is adequate for the formulation
of (weak parts of elementary) number theory will allow such calculations. Gédel
noticed in 1936, to his own surprise, that no extension by higher types (even
transfinite ones) would allow the calculation of more functions; this is the basis
for his assertion that the concept of computability has a certain absoluteness:

2Indeed, it can be argued that he gave the only convincing analysis.
3The underlining is ours.



Thus the notion ‘computable’ is in a certain sense ‘absolute’, while

almost all metamathematical notions otherwise known (for example,

provable, definable, and so on) quite essentially depend upon the
~ system adopted. (p. 399)

In his lecture for the Princeton bicentennial conference, Godel re-emphasized
the significance of absoluteness. And yet, Gédel found only Turing’s analysis
convincing and claimed that the latter’s work provides “a precise and unques-
tionably adequate definition of the general concept of formal system” [1964, p.
369]. As a formal system is simply defined to be a mechanical procedure for
producing theorems, the adequacy of the definition rests clearly on Turing’s
analysis of the concept “mechanical procedure”. The analyzed concept must
obviously be a sharp, mathematical notion to enter a rigorous proof showing
its equivalence to the concept of a Turing machine. Thus, there is still a need
for a thesis to connect it to the informal concept; we call that thesis the central
thesis. The methodological point is, for sure, that the central thesis should be
less problematic than the full thesis. Godel’s schematic description, quoted as
(G) in our Introduction, can now be represented diagramatically as in the figure
below; we also say that it can be “triangulated”.

mechanical ~ analyzed
procedure . A notion
central thesis
Turing’s equivalence

Thesis proof

machine
computation

To facilitate the step from the intended informal to the analyzed mathemati-
cal concept, we should first ask: What is the historical and systematic context in
which “mechanical procedures” have been used informally? In a broad sense the
underlying, largely epistemological issues go back to at least Leibniz. In a nar-
rower sense they were emphasized in the logical developments at the turn of the



19th century. They were developed most sharply by Hilbert in the twenties for
metamathematical investigations including the Entscheidungsproblem. Godel
described matters lucidly with respect to the “formalization” of mathematics in
his [19330]:

The first part of the problem [i.e., the reduction of mathematical
proofs to a minimum number of axioms and primitive rules of in-
ference] has been solved in a perfectly satisfactory way, the solu-
tion consisting in the so-called formalization of mathematics, which
means that a perfectly precise language has been invented, by which
it is possible to express any mathematical proposition by a formula.
Some of these formulas are taken as axioms, and then certain rules
of inference are laid down which allow one to pass from the axioms
to new formulas and thus to deduce more and more propositions,
the outstanding feature of the rules of inference being that they are
purely formal, i.e., refer only to the outward structure of the formu-
las, not to their meaning, so that they could be applied by someone
who knew nothing about mathematics, or by a machine. (p. 45)

The implicitly formal character of his theories allowed Godel later to assert the
absoluteness of the concept of computability. This implicit feature was made
explicit in the marvelous analysis of computations in “deductive formalisms”
presented in Supplement II of Hilbert and Bernays’s Grundlagen der Mathe-
matik II: formality restrictions are imposed by “recursiveness conditions”, the
crucial one requiring the proof predicate of deductive formalisms to be primitive
recursive. This analysis can be viewed as providing the proper underpinning for
Godel’s absoluteness, but for sure only relative to the recursiveness conditions.
At issue is then the question, why such conditions should be accepted. The
very same question can be raised with respect to Church’s (semi-circular) argu-
ment for the identification of effective calculability with general recursiveness in
[1936], when requiring the steps in logical calculi to be general recursive.*

We want to emphasize that this work is of real interest, focusing as it does
on one core notion, namely that of a reckonable function. (Hilbert and Bernays
talk of a regelrecht auswertbare Funktion, i.e., a function whose values can be
determined by following rules.) Each of these analyses explicates effective cal-
culability by computability in a “formal calculus”; however, neither argues in
a convincing way for the particular restrictions on the steps that are allowed,
that is, for the central thesis involved. That is particularly evident in those
cases where the restrictions are made only implicitly: in Godel’s proposal only
simple substitution rules are used; in Church’s argument, an unsupported claim
is made that the steps have to be general recursive. Church recognized the
special character of Turing’s proposal immediately in his 1937 review of Tur-
ing’s paper. Church contrasted in it Turing’s mathematical notion for effective

4Church used in his [1936] also a notion of “calculable in a logical calculus” to give an
explication of the informal notion “effective calculability”; to obtain the desired result, he had
to assume, however, that the proof steps in the calculus are recursive; cf. section 7 of [Church
1936] and [Sieg 1994], pp. 85-7.



calculability (via idealized machines) with his own (via A-definability) and with
Godel’s (via the equational calculus); he asserted: “Of these [notions], the first
has the advantage of making the identification with effectiveness in the ordinary
(not explicitly defined) sense evident immediately ....” But neither here nor
anywhere else does Church argue for this immediate evidence.

2 Computors & machines

What is the crucial and novel aspect of Turing’s analysis? Let us emphasize
outright that Turing’s analysis is neither concerned with machine computations
nor with general human mental processes.® Rather, it is human mechanical
computability that is being analyzed, and the special character of this intended
notion motivates the restrictive conditions that are brought to bear by Turing!
To point out vividly the distinguishing feature of Turing’s analysis, we mention
briefly Post’s simultaneous definition of “finite combinatory processes”. In their
description, Post makes use of human workers operating in a “symbol space”
and carrying out, over a two letter alphabet, exactly the kind of operations
Turing machines can. However, the fact that a human being is carrying out the
computation is not used at all in Post’s arguments for his model.® By contrast,
Turing exploits in a radical way that a human computoris performing mechanical
procedures on symbolic configurations: the immediate recognizability of symbolic
configurations is demanded so that basic (computation) steps cannot be further
subdivided. This demand and the evident limitation of the computor’s sensory
apparatus lead to the formulation of boundedness and locality conditions. Less
importantly, Turing requires also a determinacy condition (D), ie., the
computor carries out deterministic computations, as his internal state together
with the observed configuration fixes uniquely the next computation step. The
boundedness conditions can be formulated as follows:

(B.1) there is a fized bound for the number of symbolic configurations a com-
putor can immediately recognize;

(B.2) there is a fized bound for the number of a computor’s internal states that
need to be taken into account.”

For a given computor there are consequently only boundedly many different
combinations of symbolic configurations and internal states. Since his behavior
is, according to (D), uniquely determined by such combinations and associated

5The former mistaken view is taken, for example, in [Mendelson] and also in [Church 1937];
the latter equally mistaken view is propounded, for example, in [Webb] and also in [Gddel
1972).

6The support for his model Post sees as being provided inductively by considering wider
and wider formulations and reducing them to the restrictive formulation given in his [1936];
cf. {Sieg 1994], pp. 91-2.

7This condition (and the reference to internal states) can actually be removed and was
removed by Turing; nevertheless, it has been a focus of critical attention; cf. the Concluding
Remarks.



operations, the computor can carry out at most finitely many different opera-
tions. These operations are restricted by the following locality conditions:

(L.1) only elements of observed configurations can be changed;

(L.2) the distribution of observed squares can be changed, but each of the new
observed squares must be within a bounded distance of an immediately
previously observed square.’

Turing’s computor proceeds deterministically, must satisfy the boundedness
conditions, and the elementary operations he can carry out must be restricted
as the locality conditions require. The detailed conceptual analysis offered by
Turing provides a basis for what Gddel had suggested in conversation with
Church in 1934, namely, “to state a set of axioms which would embody the
generally accepted properties of this notion (i.e., effective calculability), and to
do something on that basis”. The analysis leads convincingly to the conclusion
that every number-theoretic function a computor can calculate is actually com-
putable by a Turing machine over a two-letter alphabet. This explication of
Turing’s analysis allows us to annotate Godel’s triangle in the following way:

mechanical _ computation
procedure . A of a computor
carried out by central thesis satisfying
a computor D, B &L
Turing’s equivalence
Thesis proof

machine
computation

Thus, on closer inspection, Turing’s Thesis that the concept “mechanical proce-
dure” can be identified with machine computability is seen as the result of a two
part analysis. The first part yields axioms expressing boundedness conditions

8This is almost literally Turing’s formulation; obviously, it takes for granted a particular
structure underlying the symbolic configurations.



for symbolic configurations and locality conditions for mechanical operations on
them, together with the central thesis that any mechanical procedure can be
carried out by a computor satisfying the axioms. The second part argues for
the claim that every number-theoretic function calculable by such a computor is
computable by a Turing machine. In Turing’s presentation these quite distinct
aspects are intertwined and important steps in arguments are only hinted at.
Notice also that in the very formulation of the second locality condition, features
of the precise model of computation are appealed to, namely, to express that
the computor’s attention can be shifted only to symbolic configurations that are
not “too far away” from the currently observed configuration.

3 Turing’s analysis sharpened

The central thesis makes use of restrictive boundedness and locality conditions
on computors. However, to formulate these conditions precisely and to make
the further mathematical considerations possible, the symbolic configurations
are taken by Turing to be linear; here are the starting-point and the dimension-
lowering step:

Computing is normally done by writing certain symbols on paper.
We may suppose this paper is divided into squares like a child’s arith-
metic book. In elementary arithmetic the two-dimensional character
of the paper is sometimes used. But such a use is always avoidable,
and I think that it will be agreed that the two-dimensional charac-
ter of paper is no essential of computation. I assume then that the
computation is carried out on one-dimensional paper, i.e. on a tape
divided into squares. [1936; p. 135]

In his further reductive argument Turing constructs machines that mimic the
work of computors on linear configurations directly, and then he observes: “The
machines just described do not differ very essentially from computing machines
as described in §2, and corresponding to any machine of this type a computing
machine can be constructed to compute the same sequence, that is to say the
sequence computed by the computer [in our terminology: computor].” The
more general machines are not described in mathematical detail; if one wants
to do so, it is best to use the presentation of Turing machine programs by Post
production rules. That was done first by Post in his superb 1947 paper, was
adopted by Turing in his 1953 paper “Solvable and unsolvable problems”, and
is presented in Davis’ classical textbook Computability and Undecidability.

As the basic operations that modify the tape content lead from letters to
letters, we call the basic Turing machines also letter machines. To formulate and
prove rigorously the more general form of Turing’s Theorem we have to specify
the intended finite symbolic configurations and the mechanical operations that
can be carried out on them. The generalized machines (mimicking the com-
putor’s operation on linear configurations) can simply be given by production
rules that allow the replacement of finite strings by finite strings; such machines



are then called string machines. Thus, the claim really established by Turing
amounts to showing that computations by string machines can be carried out
by letter machines. (For details, we refer the reader to our [1996], pp. 103-4.)

mechanical _ computation
procedure . of a string
carried out by central thesis machine
a computor

Turing’s equivalence

Thesis proof

computation of a
letter machine

In the historical context in which Turing found himself, he asked exactly the
right question: What are the elementary processes a computor carries out (when
calculating a number)? Note that Turing was concerned with symbolic processes,
not—as the other proposed explications—with processes directly related to the
evaluation of (number theoretic) functions. Indeed, the general problematic re-
quired an analysis of the idealized capabilities of a computor, and it is precisely
this feature that makes the analysis epistemologically significant. The separa-
tion of conceptual analysis and rigorous proof is essential for clarifying on what
the correctness of Turing’s central thesis rests, namely, on recognizing that the
boundedness and locality conditions are true for a computor and, also, for the
particular precise, analyzed notion.

4 Turing’s analysis extended

Turing intended in 1936 to give an analysis of mechanical procedures on two-
dimensional configurations; but such processes are not described in detail, let
alone proved to be reducible to computations on strings or letters. In 1953,
Turing considers even three-dimensional configurations and mechanical opera-
tions on them. He starts out with a description of puzzles: square piece puzzles,
puzzles involving the separation of rigid bodies or the transformation of knots;



i.e., puzzles in two and three dimensions. “Linear” puzzles are described as
Post production systems and are called substitution puzzles. They are viewed
by Turing as a “normal” or “standard” form of describing puzzles; indeed, a
form of Turing’s Thesis is formulated as follows: :

Given any puzzle we can find a corresponding substitution puzzle
which is equivalent to it in the sense that given a solution of the one
we can easily find a solution of the other. If the original puzzle is
concerned with rows of pieces of a finite number of different kinds,
then the substitutions may be applied as an alternative set of rules
to the pieces of the original puzzle. A transformation can be carried
out by the rules of the original puzzle if and only if it can can be
carried out by substitutions .... (p. 15)

Turing admits that this formulation is “somewhat lacking in definiteness” and
claims that it will remain so; he characterizes its status as lying between a
theorem and a definition: “In so far as we know @ priori what is a puzzle and
what is not, the statement is a theorem. In so far as we do not know what
puzzles are, the statement is a definition which tells us something about what
they are.” Of course, Turing continues, one could define puzzle by a phrase
beginning with “a set of definite rules”, or one could reduce its definition to
that of “computable function” or “systematic procedure”. A definition of any
of these notions would provide one for puzzles.

In neither place does Turing even try to characterize more general configu-
rations. This gap in Turing’s work was the starting-point of our [1996], which is
sketched in the remainder of this section. The informal idea behind our way of
describing mechanical procedures on general symbolic configurations has three
distinct components: the computor operates on finite connected configurations;
such configurations contain a unique distinguished element (corresponding to the
scanned square of a Turing machine); the operations substitute neighborhoods of
the distinguished element by appropriate other neighborhoods, and such sub-
stitutions are given by a finite list of generalized Post production rules. In this
way, we generalize the notions and yet remain within Turing’s general analytic
framework.

In order to give precise mathematical shape to these informal ideas, we
introduce K-graph machines, i.e., machines that operate on K-graphs. (K stands
for Kolmogorov, as the essential idea for these machines was extracted from
Kolmogorov and Uspensky’s analysis of algorithms.) K-graph machines do not
just operate on strings of symbols with one scanned element, but on finite
connected and labeled graphs with a single central vertex. The graphs satisfy
the principle of unique location, i.e., distinct paths containing the central vertex
have distinct associated sequences of labels. Operations of K-graph machines
obey the principle of local action, i.e., replace distinguished subgraphs with the
central vertex by finite graphs (also containing the central vertex). A program
is a finite list of generalized production rules specifying such replacements.

The starting-point of Turing’s analysis was (the representation of) algo-
rithms carried out in a “child’s arithmetic book”. K-graph machines capture



it in a most natural way: in [1996] we indicate how the elementary school al-
gorithm for column addition can be directly presented as a K-graph machine
computation. Letter machines are easily seen to be K-graph machines and, that
is the main technical result in our [1996], K-graph machines can be simulated
by letter machines. In triangular terms, K-graph machines take the place of
string machines.

mechanical _ computation
procedure . A of a K-graph
carried out by central thesis machine
a computor
Turing’s equivalence
Thesis proof

computation of a
letter machine

Given this mathematical analysis, Turing’s central thesis is turned into the the-
sis that K-graph machines, clearly satisfying appropriately formulated bound-
edness and locality conditions, do the work of human computors directly. The
theorem thus reduces mechanical processes to Turing machine computations.
The plausibility of Turing’s Thesis rests exclusively on that of the central thesis
involved in its triangulation. The claim, “Mechanical processes are (very easily
seen to be) computations of K-graph machines”, is most plausible.

Concluding Remarks

Gédel, in a Note from 1972, spotted a “philosophical error” in Turing’s work and
claimed that Turing’s argument in the 1936 paper was intended to show that
“mental procedures cannot go beyond mechanical procedures”; he considered
the argument as “inconclusive”. The reference to Turing’s paper is to page 250
and obviously, from Gddel’s subsequent argument, to the passage:

We will also suppose that the number of states of mind which need be
taken into account is finite. The reasons for this are of the same char-
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acter as those which restrict the number of symbols. If we admitted
an infinity of states of mind, some of them will be “arbitrarily close”
and will be confused. Again, the restriction is not one which seri-

" ously affects computation, since the use of more complicated states
of mind can be avoided by writing more symbols on the tape.

Crucial is the remark, “the restriction is not one which seriously affects compu-
tation”; the notion to be explicated is for Turing mechanical computation, not
mental procedure. The charge of a “philosophical error” is particularly surpris-
ing as Turing discusses (on pp. 253—4) a modification of the earlier argument
and avoids altogether the introduction of “the ‘state of mind’ by considering a
more physical and definite counterpart to it”. The further discussion in Turing’s
paper is both amusing and informative:

1t is always possible for the computer [computor, in our terminology]
to break off from work, to go away and forget all about it, and later
to come back and go on with it. If he does this he must leave a
note of instructions (written in some standard form) explaining how
the work is to be continued. This note is the counterpart of the
“state of mind”. We will suppose that the computer works in such a
desultory manner that he does never more than one step at a sitting.
The note of instructions must enable him to carry out one step and
write the next note. Thus the state of progress of the computation is
completely determined by the note of instructions and the symbols
on the tape.

In sum, it is right that Turing does not give a conclusive argument for Godel’s
claim, but it has to be added in all fairness that Turing did not (intend to) argue
for it. Even in his later work, dealing explicitly with mental processes, Turing
does not argue that “mental procedures cannot go beyond mechanical proce-
dures”, when the latter are made precise by (Turing-) machine computations.
But that is a different, exciting topic.
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