Normal Natural Deduction Proofs
(in classical logic)
by
Wiifried Sieg and John Byrnes
October 1996

< 3 77
Revised June 1977

Report CMU-PHIL-74

Philosophy
Methodology
Logic

Pittsburgh, Pennsylvania 15213-3890

Normal Natural Deduction Proofs
(in classical logic) !

Wilfried Sieg and John Byrnes
Department of Philosophy
Carnegie Mellon University
Pittsburgh, PA 15213

!The work reported here continues the metamathematical investigations basic for the
Carnegie Mellon Proof Tutor, see [Sieg and Scheines]; sections 1-4 are corrected and much
improved versions of [Sieg 1992] and [Sieg 1994], whereas sections 5 and 6 expand that
work and provide the theoretical basis for automated proof search in predicate logic.

We are grateful for the continued, lively discussions in the weekly meetings of the “CPT-
group”, i.e., with J. Hughes, M. Ravaglia, and R. Scheines. We also appreciate the com-
ments of R. Dyckhoff, A. M. Conti, and two anonymous referees which helped us to improve
an earlier version of this paper.

Abstract. Natural deduction (for short: nd-) calculi have not been
used systematically as a basis for automated theorem proving in clas-
sical logic. To remove objective obstacles to their use we describe (1)
a method that allows to give semantic proofs of normal form theorems
for nd-calculi and (2) a framework that allows to search directly for
normal nd-proofs. Thus, one can try to answer the question: How
do we bridge the gap between claims and assumptions in heuristi-
cally motivated ways? This informal question motivates the formula-
tion of intercalation calculi. Ic-calculi are the technical underpinnings
for (1) and (2), and our paper focuses on their detailed presentation
and meta-mathematical investigation in the case of classical predicate
logic. As a central theme emerges the connection between restricted
forms of nd-proofs and (strategies for) proof search: normal forms are
not obtained by removing local “detours”, but rather by constructing
proofs that directly reflect proof-strategic considerations. That theme
warrants further investigation.

1. Proof Search. Natural deduction calculi have been available since the
mid-thirties and reflect “as accurately as possible the actual logical reasoning
involved in mathematical proofs”.? They capture the logical structure of
arguments, in part, by incorporating inferences from and to complex formulas
with characteristic principal connectives. The rules for the “proper” logical
connectives, A, V, —, V, and 3 are consequently divided into “Elimination”,
1.e., proper E-, and “Introduction”, i.e., proper I-rules. Rules for negation
do not fit fully into this schematic approach, in particular not, if they are
formulated in the standard (Gentzen-Prawitz) mould. We use instead a very
symmetric formulation: the first rule for negation, L., is the distinctive rule
of classical logic and is needed, for example, to prove the law of excluded
middle and Peirce’s law;

(=9l [~y

p
(&

the second rule, L;, captures the form of indirect argumentation admitted
also intuitionistically and used, most classically, in the Pythagorean proof of

2Gentzen in his “Investigations into logical deduction”, [Gentzen], p. 74.

- the irrationality of /2.

We consider the rules for negation as both E- and I-rules, but not as proper
E- or I-rules.

Generally, E-rules specify how components of assumed or established com-
plex formulas can be used in an argument; I-rules provide conditions under
which complex formulas can be inferred from already established components.
This leads directly to the formulation of very intuitive strategies. Techni-
cally, the strategies exploit that the structure of nd-proofs can be made to
depend on the syntactic contezt provided by assumptions and conclusions:
the nd-calculi share, as Prawitz [1965] discovered, important metamathemat-
ical properties with sequent calculi. For the statement of the first of these
properties recall that the premise of an E-rule with the characteristic connec-
tive is called the major premise; a proof is called p-normal, when no formula
occurrence in the proof is the conclusion of a proper I-rule or 1. and also the
major premise of a proper E-rule. To be quite accurate, we have to exclude
segments of formula occurrences, such that the first formula in the segment
is the conclusion of a proper I-rule or L. and the last formula the major
premise of a proper E-rule. Here and below we make use of terminology used
by Prawitz—with just one exception, we use ‘branch’ for his ‘thread’. Note
also that we have not yet defined ‘normal’. In order to obtain a definition
matching that of Prawitz, we first define the adjacency condition: the major
premise of a L-rule must not be inferred by a L-rule. A normal proof, then,
is p-normal and satisfies the adjacency condition.

The first central property, the Normalization Theorem, was established
by Prawitz for a restricted language*: (by a sequence of special “reductions”)
any proof of G from « in the nd-calculus can be transformed into a normal
proof leading from o to G, where « is a sequence of formulas®. The sec-

3This term is not related to the term “p-normal” used by Troelstra and van Dalen.

4without 3 and V; L. was applicable only to get atomic conclusions.

SPrawitz’s proof for the intuitionistic calculus can be extended to the full classical case
with the negation rules formulated in the symmetric way as above; that was established
by Byrnes. The strong normalization theorem for the full language (with restricted V- and
J-inferences) was proved by Statman [1974].

ond central property for the nd-calculus concerns the logical complexity of
formulas in proofs: normal proofs ¥ leading from a to G have a (modified)
subformula property; i.e., every formula occurring in ¥ is (the negation of)
either a subformula of G or of an element in «. This is a consequence of the
third central property, a structural feature of paths in (the tree presentation
of) normal nd-proofs: every path contains a uniquely determined E-part and
I-part, consisting only of segments that are major premises of proper E-rules,
respectively premises of proper I-rules; these two parts are separated by the
minimum segment that is the premise of an I-rule.

Despite the naturalness of nd-calculi, the part of proof theory that deals
with them has hardly influenced developments in automated theorem prov-
ing. For that the proof theoretic tradition rooted in Herbrand’s work and
Gentzen’s work on sequent calculi has been more important. The keywords
here are resolution, tablequz, and logic programming. From a purely logi-
cal point of view this is prima facie peculiar: it is after all the subformula
property of special kinds of derivations® that makes resolution and related
techniques possible; normal derivations in natural deduction calculi, as we
just noticed, have that very property with the minor addition mentioned.
Why is it then that nd-calculi have not been exploited for automated proof
search? The answer to this general question seems, in part, to lie in answers
to three crucial questions: (1) How can one specify through a calculus only
normal proofs? (2) How can one construct a search space that allows the
formulation of strategies for finding such proofs? and (3) How can one prove
the termination of search strategies?

In the case of sequent calculi the analogues to these questions have direct
answers: use calculi without the cut rule; invert systematically their rules;
prove their completeness! In this rough description of the theoretical back-
ground for automated deduction based on sequent calculi the syntactic nor-
malization or cut-elimination procedure is not mentioned, since the semantic
completeness proof for the cut-free part is fundamental, not Gentzen’s cut-
elimination procedure. Indeed, algorithms for finding cut-free derivations are
refinements of strategies used in that completeness proof. Such strategies
realize the heuristic idea of searching for semantic counterezamples and yield
trees ¥ such that either one of ¥’s branches allows the definition of a coun-

®Derivations in Herbrand’s calculus and derivations in the sequent calculus without cut
have the (full) subformula property: they contain only subformulas of their endformula,
respectively endsequent.

terexample to “o has GG as a logical consequence” or ¥ constitutes a cut-free
derivation of the sequent —a, G.” In the case of nd-calculi normal proofs
are also sufficient to obtain all logical consequences from given assumptions.
However, this fact has not been established directly: its proof combines the
completeness theorem for the calculus with the normalization theorem. In
order to obtain a direct proof of the fact and an answer to (1), intercala-
tion calculi are introduced. They provide frameworks for answering (2), and
completeness proofs for these calculi answer (3).

The broad problem is this: How can we derive a conclusion or goal G
from assumptions ¢1,...,¢,? or, more vividly: How can we close the gap
between G and the ¢,,.. ., ¢, via logical rules? This question is at the heart
of spanning search spaces via ic-calculi: their basic rules are reformulations
of those for Gentzen’s nd-calculi, but it is the preservation of inferential
information and the restricted way in which the rules are used to close the gap
(and thus to build up derivations) that is distinctive. The ic-calculi provide
the underpinning for specifying informal approaches to proof search: their
rules are used to construct a search space that contains all possible ways of
closing the gap between assumptions and G via the ic-rules. In this space we
search for a gap-closing subspace that determines, in turn, a unique normal or
p-normal nd-proof from the assumptions to G. If the search fails, the search
space contains enough information to yield a semantic counterexample. This
sketch of the completeness proof for ic-calculi shows the family resemblance
to completeness proofs for the sequent calculus without cut. The difference
can be put sharply as follows: In the case of the sequent calculus, one tries
to find a semantic counterezample and, if that search fails, one actually has
found a proof®; in the case of ic-calculi, one tries to find a proof and, if
that search fails, one has a counterezample. Let us turn to the rigorous
metamathematical discussion.

We will discuss at first only classical sentential logic with the connectives
=, A, V, —; however, the considerations will then be extended to predicate
logic and can be used to treat non-classical logics, for example, intuitionistic

"—a consists of the negations of the formulas in a.

8 A sequent proof is far from reflecting the structure of ordinary arguments. Thus, we
have here and in the case of resolution based procedures the non-trivial problem of finding
associated nd-proofs. Cf. Shanin e.a., but also Andrews and Pfenning. The issue is also
addressed in implementations of, e.g., NUPRL and ISABELLE. Bledsoe’s way of using
nd-methods is not systematic in the logical setting. Cf. our remark at the end of section
3 and also note 19.

logic.? The ic-rules operate on triples of the form o; 7G. « is the sequence
of available assumptions; G is the current goal; B is a sequence of formulas
obtained by A-elimination and —-elimination from elements in o!°. To fa-
cilitate the description of rules and parts of search trees let us agree on some
conventions. Lowercase Greek letters «, 3,7, ... range over finite sequences
of formulas; as syntactic variables over formulas we use ¢,), x, ..., and also
G and H; II, X, T, ... range over trees. ¢ € o expresses that ¢ is an element
of the sequence o; «,f or af is short for the concatenation « * 8 of the
sequences a and (; «, ¢ stands for the sequence « * (¢), where (@) is the
sequence with ¢ as its only element. There are three kinds of ic-rules: those
corresponding to the proper E-rules for A, V, —; those corresponding to the
proper I-rules for A, V, —; finally, the rules for negation. Let us list the rules
of the first kind, i.e., |-rules.

Nl a; B7G, gy A g2 € aff = «; 3, $;7G for =1 or 2
Vi o 876G, ¢1V ¢ € af = o, ¢1; 7G AND «, éy; B7G
=t o5 B1G, ¢1 = ¢2 € aoff = a; 7¢1 AND o; 3, $27G

Now we formulate the rules that correspond to inverted proper I-rules, i.e.,
T -rules.

AT ;8701 A o = a; $7¢1 AND o; 876

Vit a; 8761V ¢ = «; B7¢; fore=1or2
=T o; 71 = g2 = o, ¢1; 87¢

Finally, we come to the rules for negation:

Le(F): o5 87G, ¢ € Fa,~G) = o, ~G; f7¢p AND a, =G; B¢

Li(F): a;87-G,p € F(o, G) = o, G; 870 AND «, G; 37—

9That was done for sentential logic by Cittadini in his M.S. thesis written in May 1991;
see [Cittadini 1992]. The case of intuitionistic predicate logic and other non-classical logics
will be considered in a joint paper with Cittadini, “Normal Natural Deduction Proofs (in
non-classical logics)”.

10The reason for this separation is that some important syntactic constructions will refer
only to the available assumptions; for example, concerning the indirect rules and, later on
in predicate logic, concerning the analogue of V-introduction. '

F(v) is obtained as follows. Let F., consist of all proper subformulas of
formulas in v and of all negations occurring in . F(v) then consists of all
unnegated formulas in F., and the unnegated part ¢ of all negations —% in
F,. F(v) is obviously finite; that is crucial for the finiteness of the search
space. Operations O leading to smaller and yet sufficient classes can be
specified; cf. the end of section 3. The different calculi we are considering are
distinguished through the operation O, and we denote a particular calculus
by ICo(0O), or simply IC(O)—as long as it is clear that we are dealing with
sentential logic; the corresponding systems for first order logic will later be
denoted by I1C,(0O).

Remarks. (1) Intuitionistic versions of ic-calculi are obtained by using the
rule ez falso quodlibet o; B7G, ¢ € O(a) = «; B7¢ and «; 87—y instead
of 1.(0). For the classical system IC(F), the rule —| can be weakened
to a; B7G, ¢1 — @2 € aff, ¢1 € aff = «; B, $27G. But this formulation, as
Cittadini noticed, is too weak for intuitionistic logic (and unnatural for proof
search even in the classical case).

(2) We formulated the ic-rules as Post-productions, but they can also
be represented in the standard way with appropriate side conditions; how-
ever, the natural application of these rules is “bottom-up”. Here are three
reformulations:

o; B7¢1 a; 0, 427G

—): o B7G with ¢; — ¢o € af
.o, 015879
- a; B¢ — ¢
. 32 . 37,
Li(F) : G ﬂc.fﬂ‘?—,'g, BT just in case ¢ € F(a,G)

Because of this correspondence we call the consequent(s) of a Post-production,
premise(s) of the appropriate rule. This reformulation brings out the restric-
tive character of the |-rules: the principal formula of a J-inference must
already be in af. '

Next we turn to the construction of the search or problem space, using
these rules; indeed, we shall interleaf the nodes of a tree-like arrangement
of questions with “rule nodes” that provide information on the rule that is
connecting the questions.

2. The Problem Space for Sentential Logic. As an example of how the
ic-rules are used to build up the search space for a question a?G, let us show
the search tree for the question 7PV —P. It is partially presented in Diagrams
1, 1.A, and 1.B of the Appendix. We start out by applying the three possible
ic-rules to obtain new questions, namely, 7P or 7—P or, proceeding indirectly,
—(PV-P)?p and —(PV-P)?—p with each element ¢ of F(—~(PV-P)). Let
us pursue the leftmost branch in the tree. To answer 7P we have to use L.
and, because of the restriction on the choice of contradictory pairs, we have
only to ask ~P?P and —P7-P. In the first case only L. could be applied,
but would lead to the question we just analyzed. Thus we close this branch
with IN. In the second case the gap between assumption and goal is obviously
closed, so we top this branch with Y. No rule is applicable to the question
?-P; so that branch is closed with N as well. The other parts of the tree
are constructed in a similar manner. Each application of L. (L;) is labeled
“Le,d” (“Ly, @), where ¢ is the minor premise of the rule application. The
subtree in diagram 1.A is not full, but at the numbered nodes 1 through 4
the resulting trees do not help in closing the gap. In contrast, the subtree in
diagram 1.B is of interest, and we discuss it below.

The composition of Diagrams 1, 1.A, and 1.B contains enough information
for the extraction of derivations in a variety of styles of natural deduction.
For our calculus we can easily obtain corresponding derivations; namely, first:

[-F]
PV =P [~(PV-P)]
P
PV -P [-(P Vv —P)]

Pv-P

(Here we use square brackets to indicate cancelation of an assumption.) The
second derivation is “dual” to this one with the roles of P and —P inter-
changed. Finally, the derivation that emerges from Diagram 1.B:

[-P] [P]
PV-P [~«(PV-P)] ~PV-P [~(PV-P)
P ~P
PV-P

The proof represented in the second diagram above is p-normal, but it is not
a normal proof, as the major premise =P of the last inference with rule L.

8

has been obtained by ;. (Natural normalization steps reduce this derivation
either to the first derivation or its dual.)

The full search or ic-tree is specified inductively by applying ic-rules to
the initial question or to the “non-terminal” leaves of an already obtained
partial search tree—in all possible ways, unless the application of a rule leads
to a question that is not new for the branch determined by the appropriate
leaf (a; B7G is the same question as o*; 3*?G just in case the sets of formulas
in the sequences a8 and o*F* are identical.) In either case one addresses
questions of the form «; 87G at a particular node:

if G is an element of af, then close the branch determined by the current
question node with Y;

if G is not an element of o and every applicable rule leads to a question
that is not new for the branch determined by the current question node then
close with N;

if G is not an element of af and some applicable rule leads to a new ques-
tion, then extend the tree at the current question node for all such rules by
appropriate rule and question nodes (with a fixed ordering of rules)!!.

For any implementation of a proof search procedure it is crucial to decide
quickly, whether a particular rule will lead, at the current question node, to
a new question or not. A first easy step is to impose local side conditions on
the |-rules that prevent the application of a rule, in case it does lead to the
same question; this can be done, for example, as follows:

Nidi o B7G, 01 Ao € 0, 0; & aff = «; 3, $;7G fori=1o0r2
Vi a; B7G, 01V do € af, g1 € af, 2 & o = a, ¢1; B7G AND a, ¢y; f7G
=t o; B7G, 1 — ¢2 € aff, 2 & B, 1 # G = o; 87¢1 AND o; 3, ¢,7G

Indeed, these local side conditions are now taken as part of the ic-rules. A
second, more intricate step involves a careful analysis of the conditions un-
der which repeated questions can occur. This allows us to avoid checking for
repetitions in many instances. A third step would restrict the application of
the indirect rules: L. is never applied to negated formulas. Thus, to a given

1 For example we could use the order A; |, Az |, =), V I, AT, =%, Vi T, Vo 1, L,
1c. We also need to order multiple applications of each rule, say by the order in which
the formulas to which it is applied appear in af.

question node only one L-rule is applied. We do not pursue such issues in
any systematic way, as we are intending to present only the broad theoret-
ical framework for proof search via ic-calculi; there will be some additional
remarks at the end of sections 3 and 4.

The ic-tree is constructed in the above general way for questions a?G; its
branches determine sequences of subquestions for a?G. Due to the finiteness
of F and the form of the rules, only finitely many different subquestions for
a?G can be formulated. This together with the requirement not to repeat
questions on a branch yields the Proposition: The ic-trees for questions a?G
are finite, and their branches are closed with either Y or N. This assignment
to questions at leaves of an ic-tree can be extended to all questions in the
tree and determines a unique value for the original question a?G; the value
of a question o*; #*7G* is indicated by [a*; 3*?G*]. In the remainder of this
section we will show: if Y is assigned to the root of the ic-tree, then there is
a p-normal proof leading from the assumptions to the goal of the question.
In the next section this fact will be complemented by a second fact: if N is
assigned to the root of the ic-tree, then there is not only no p-normal proof,
but no proof at all; i.e., the ic-tree contains enough information to show that
the inference from « to G is semantically invalid. We will also show that a
certain restricted calculus ICy(Z) is still complete; nd-proofs obtained from
“derivations” in that calculus are actually normal.

We saw through the PV—P example, how an nd-proof can be read off from
a properly chosen partial ic-tree whose root evaluates to Y. To formulate the
underlying general fact properly we define first the notion of an ic-derivation.

Definition. An ic-derivation for the question o; 87G is a subtree T of the
ic-tree X for o; B7G satisfying: (i) a; B7G is the root of T, (ii) all branches of
T are Y-closed branches of £, and (iii) every question node in T (that is not
a leaf) is followed by exactly one rule node (to obtain the next question(s)).

One can easily extract ic-derivations from ic-trees that evaluate to Y. Let ©
be the ic-tree for a?G and assume that [a?G] =Y. We can determine from
¥ a canonical Y-subtree T as f(hg(X)), where hg(X) is the height of ¥ and
f a function defined recursively as follows:

f(0) = o?G
|} e(f(2n)) if some branch of f(2n) can be extended
f@n+1) = { f1(2n) otherwise

10

_ | e(f(2n)) if f(2n+1) # f(2n)
fn+2) = { f(2n) otherwise

[extends the open branches of a partial ic-derivation by their “left-most
Y-expansions” in ¥. More explicitly, the open branches of f(2n) are open
branches of ¥ and are consequently expanded by ic-rules; at least one of
these rules must have a (pair of) premise(s) evaluating to Y; ¢; chooses the
left-most such rule application in each case, and €, expands the tree by the
appropriate question node(s). The main point is that from an ic-derivation
we can construct uniquely an nd-proof'?; indeed, that proof is p-normal.

Proposition. For any &, 0, 5,G: if ¥ is an ic-derivation for o; 87G, then
there is a uniquely determined p-normal nd-proof lls. leading from of3 to G.

PROOF. (by induction on the height of). If hg(X) = 1, the ic-derivation
simply consists of the question «; 87G with G € af, as ¥ evaluates to Y. Iy,
is the nd-proof consisting of the node G. —If hg(>) > 1, distinguish cases as
to the ic-rule that is applied to «; 87G in . The induction hypothesis asserts:
for any ic-derivation T with hg(T) < hg(X) there is a uniquely determined
p-normal nd-proof IlT answering the question at the root of T.

A; 41 The immediate subderivation T; of ¥ has root «; 5, ¢;7G; by induction
hypothesis there is a uniquely determined p-normal nd-proof Ilt, leading
from assumptions in af3, ¢; to G. If I, contains occurrences of ¢; as open

$1 N ¢y

assumptions, then replace those occurrences by ———= . The resulting

i

p-normal proof of G from af is the associated nd-proof 5.

V |: The immediate subderivations T; of ¥ have roots a, ¢;; 37G for 1 =
1 or 2; by induction hypothesis there are uniquely determined p-normal nd-
proofs Iy, leading from «, ¢;, 5 to G. The associated p-normal nd-proof Il
of G from «pf is:

[61] [¢2]

Ve G G
G

This construction is proper, as V | has as its major premise an element of
af, and G is the endformula of Ilr,.

12An analogous procedure for the sequent calculus is outlined roughly by Prawitz (p.
91); however, note that no “choices” have to be made in our procedure.

11

—}: The immediate subderivations T; and Ty of ¥ have roots «; 57¢; and
a; B, $27G; by induction hypothesis there are uniquely determined p-normal
nd-proofs IIr, and Ilt, leading from af to ¢, respectively from a3, ¢, to
G. Use Ilt, and the fact that ¢; — ¢2 € af8 to construct a p-normal proof
IT of ¢, from assumptions in af.

¢.1 b1 — 9
b2

If TIt, contains any occurrences of ¢, as open assumptions, then replace
those occurrences by II. This construction yields the p-normal proof Ils, of
G from assumptions in af.

A 11 The immediate subderivations T; of ¥ have roots a;37¢;, for ¢ =
lor2, and G is (41 A ¢2); by induction hypothesis there are uniquely de-
termined p-normal nd-proofs Ilt, leading from af to ¢;. The nd-proof Iy,
is obtained by joining Ilt, and Ilt, via A-introduction.

Vi T: The immediate subderivation T; of ¥ has root o; §7¢; and G is (¢; V
¢2); by induction hypothesis there is a uniquely determined p-normal nd-
proof IIt, leading from af to ¢;. The p-normal nd-proof Ily. is obtained by
V-introduction.

—1: The immediate subderivation T of ¥ has root «, ¢;;87¢, and G is
(¢1 — ¢2); by induction hypothesis there is a uniquely determined p-normal
nd-proof Ilt leading from «, ¢y, 5 to ¢2. The nd-proof Ily is obtained by
—-introduction with ¢, and ¢,.

Finally, we treat the rules for negation.

1;: The immediate subderivation T [T-] of ¥ has root «, v; 37[-]p, where
G is 1 and ¢ € F; by induction hypothesis there are uniquely determined
nd-proofs It and Ilt_ leading from «, 1, 8 to ¢, respectively —p. The nd-
proof Ily is obtained by applying L; to infer G.—The classical rule L. is
treated in the same way as _L;. a

The nd-proof II5; uses exactly the same rules as 3. (One parenthetical remark

is appropriate here: the structural similarity between ic-derivations and nd-
proofs is even more apparent, when the latter are represented graphically by

12

Fitch-diagrams!'3. The ic-derivations can then be viewed as prescriptions for
constructing isomorphic Fitch-diagrams.) Joining the proposition and the
earlier observation concerning the extraction of ic-derivations from ic-trees
we have:

Proof Extraction Theorem. For any a and G: If the ic-tree ¥ for a?G
evaluates to Y, then a p-normal nd-proof of G from assumptions in o can be
found.

It is extremely easy to obtain the interpolation theorem (and other meta-
mathematical results); the argument is a modification of that for the proof
extraction theorem.

Interpolation Theorem. For any a,G: if G s a logical consequence of
o, then there is an interpolating formula ¢ together with p-normal nd-proofs
Iy and I14 g, such that 11, leads from a to ¢, and Iy ¢ leads from ¢ to G.

The theorem follows from the next proposition, when observing (with the
counterexample extraction theorem established in the next section) that—
on account of the fact that G is a logical consequence from a—the ic-tree for
the question a?G evaluates to Y and thus contains an ic-derivation answering
the question a?G.

Proposition. For any ¥, a, 3,G: if ¥ is an ic-derivation for «; 87G, then
there is a uniquely determined interpolant ¢, an nd-proof I14 leading from o
to ¢, and an nd-proof Il ¢ leading from ¢ to G. Furthermore, Ily and I, ¢
are p-normal.

3. Normal Form Theorems for Sentential Logic. By the evaluation
of ic-trees we know that a question a?G obtains the value Y or N. In case
the value is Y we can determine an associated p-normal proof. In case the
question has value N, we have as an immediate consequence: “The search
failed!” But that only means that the particular possibilities of building up
derivations—as reflected in the construction of the ic-tree—do not lead to a

13Prawitz (1965, pp. 98-99) asserts that already Jaskowski introduced this representa-
tion in the late twenties. In any event, for computer implementation Fitch-diagrams are
convenient for the representation of nd-proofs: they reflect dependencies as graphically as
trees do, but are easier to put on a screen and avoid the duplication of parts of proofs
necessary in tree representations.

13

proof establishing G' from assumptions in ««. We will do better: a specially
selected branch in the ic-tree can be used to define a semantic counterexample
to the inference from « to G.

Counterexample Extraction Theorem. For any o and G : If the ic-tree
II for a?G evaluates to N, then it contains a canonical refutation branch P
that determines a valuation v with v |= ¢ for all ¢ € o and v £ G. (That
is, v is a counterezample to the inference from « to G.)

Clearly, if the question a?G evaluates to IN, so does one of the questions
a,G7?¢ and o, G~7¢ for each ¢ € F(a, G™), where we define

¢—:{1/} if = and ¢+:{’(/) if ¢ =0

—¢ otherwise ¢ otherwise

It will be quite direct to see that the following construction leads to a branch
P through IT if F(a, G™) is non-empty. If this set is empty, a, G~ consists
only of sentential letters. The valuation v, defined for sentential letters P
by v = P iff P occurs in «, G, provides a counterexample. If F(a, G™)
is not empty, we need a more sophisticated argument and, naturally, some
auxiliary definitions.

The finite set F(a, G™) for the negation rules can be enumerated (without
repetition) by (H;)icr, where I = {i | 1 < i < n}. Let Hy = G. Define:

K(y,4) = pk.(t <k <nAHg¢&~vyAN-H,¢~) if there is such an Hjy
U=V 0 otherwise -

The sequence of nodes of P* = P*(0), ... is defined as follows:

Qy = «
/\0 =0
/\m+1 = K)(am, Am)
o { H,, if [am?Hy,] = N
™o | =H,y, otherwise
Qpmiy1 = GOy, G'r_n

P*(2m) = an?’G,

P*2m+1) = { thI{Ti\mH

if G,,, is a negation

_— otherwise

Let v be the smallest m with A,,1 = 0. Define P to be P* restricted to
{m | m < 2v}. P is the initial segment of some branch in the search tree;

14

we call the leftmost such branch the canonical refutation branch. Let us
illustrate and clarify this construction through Diagram 2 in the Appendix:
At each step in selecting the next question node of the canonical branch P one
or the other indicated possibility of proceeding must obtain (as long as the
set of assumptions can be properly extended), because not both conclusions
of the appropriate L-rule with the contradictory pair Hy and —H} can be
evaluated as Y. (In case both are evaluated as N, we choose the leftmost.)
The top node of P is ,?G,. Let A = {4 | ¢ € a,,G;}. The set A has
important syntactic closure properties and this can be exploited to define
a valuation that will serve as a model for o, G7, i.e., a counterexample to
« &= G. We establish first the closure properties.

Closure Lemma. For all formulas 9 :

() veA= 9y €A,

(ii) ¢ is a subformula of an element in A => ¥ € A or ™ € A;
(iii) 1 s ~—1, "¢ € A = ¢1 € A;

(IV) ’l/) 18 (¢1 /\(}52), (¢1 /\¢2) cA— ¢i+_ € A and (]5;_ € A,'
¢ iS _1(451 A¢2), "l(¢1/\¢2) & A — ¢1_ & A 07"¢2_ - A,'

(v) Y is (g1 V), (1 Vo) € A= ¢f € A or ¢3 € A;
P is (@1 V ga), ($1V d2) €A = @7 € A and ¢; € A;

(Vl) ’Q/) 18 ((bl —>¢2), (¢1 —-)¢2) cA— (ﬁf c A 07'(/1);_ EA,'
P is (1 — B2), (d1 — ¢2) € A = ¢ € A and ¢; € A.

PRroOF. We assume for simplicity that G, ¢ «,,; thus no question node which
has a,, G, on the left-hand side will repeat a question in P. (If G, € o, and
a,, G, 7G* repeats a question a,,?’G* on P, then the arguments below are
carried out for that earlier question.) (i) Let ¢ € A. If ¥ is not a negation
and -1 € A then the following subtree is in the search space:

15

Y Y
Qy, A‘;?v,/) 0y, G

L9

a,,JG,,
Thus [a,7G,] = Y, contradicting the construction of P. If v is a negation,
the argument proceeds similarly.

For (ii), let ¢ € A and % a subformula of ¢. Assume as case 1, that
YT =1, If ¢ = ¢, we are clearly done; so suppose 1) is a proper subformula
of ¢. Then either ¢ or ¢~ is an element of F(a,,G,) = F(a,G™). If
Y € a,G~ or ¥~ € a,G~, we are done. Otherwise some G,,, m > 0, is
one of Y, —p, =, =(¢p7). G, isone of v, ()", ¥~ ", (—(p™))". These are,
respectively, ¥, 1,1, 9™, as we are supposing ¥ = 9. Thus, G,, is either
Yt or ¢, and as G, € A, either T € Aor ¢~ € A.

Assume as case 2 now that ¢+ # 1, ie., ¥ = ——x for some ¥, and
¢t = x. Then —y is an element of F(a,,G,) = F(a, G™). If neither —x nor
X is in o, then some G,,, m > 0, is either —x or ——x. G,, is then either x
or —x; the former is 9™, the latter)~. Thus, as before, ¥ € A or ¢~ € A.

For (iii) assume ——¢; € A. By (ii) either (=—¢1)" € A or (=—¢)™ € 4;
by (i) the latter case cannot arise. Thus (——¢1)* € A; (——¢;)T is ¢; and
we can conclude that ¢, € A.

The arguments for the remaining items are similar. We present the ar-
gument only for (iv). First let (¢, A ¢2) € A and assume ¢ ¢ A (the case
#3 ¢ A is symmetric); by (ii) ¢; € A. If ¢ is not a negation, then ¢; = —¢y,
and the following subtree is in the search space:

16

Y
Qy, G;: ¢1?¢1

AN Y

O,/,,,G_? G_?_'¢1

—I—7¢1

a,,fJG,,
so [a,?G,] =Y which contradicts the construction of P. If ¢, is a negation,
then we have a symmetric tree which again yields a contradiction.

Here the application of A | is crucial. To establish the second part of
(iv) A 1 is used analogously. So assume that —(¢; A @) € A, ¢7 € A, and
#5 ¢ A. By (ii) we have that ¢7 € A and ¢F € A. For simplicity’s sake let
us first consider the case that ¢ = ¢;. Then we have:

Y Y
o, G, 7 Olu,! G, 7¢;
AT Y
o, G 71 A ¢ ay, G, 7(d1 A 62)
L,¢1 1A @2

a,,lG,,

If ¢; is =—x; and @3 is ¢y, then the left branch over the question node A 1
has to be replaced by

17

Y Y

Olu7G;7“'X1?X1 auaG;a_'Xl?_‘Xl
J—iaXl

y,, G;?—lﬁxl

The remaining cases ¢7 is ¢, but ¢, is ——xo, and ¢; is ~—y; are treated
similarly. 0O

Now define a valuation by v |= P iff P € A. Using this valuation and the
closure lemma we can prove the proposition: for every ¢ € A, v = ¢. Hence
v is a model for o, G7; this concludes the proof of the theorem concerning
the extraction of counterexamples. Putting these considerations together,
we have a completeness theorem for classical sentential logic in the following
form:

Completeness Theorem. The ic-tree for the question a?G allows us to
determine either a p-normal proof of G from « or a branch that provides a
counterezample to the inference from o to G.

This yields, a semantic proof of the p-normal form theorem for the natural
deduction calculus.

P-Normal Form Theorem. If G can be proved from assumptions in o,
then there is a p-normal proof of G from «.

As a matter of fact, the proof establishes more, as the nd-proofs obtain-
able from ic-derivations are a proper subclass of p-normal derivations; for
example, the following derivations

(1] o1 — &
P2
61— 9

and

DL NPy LA
b1 P2
1 N\ ¢

18

are p-normal, but not obtainable from an ic-derivation. Notice that these
derivations are actually normal and that one can construct such derivations
of arbitrary length. As a matter of fact, the “normal” form can be further
restricted. But before considering such additional restrictions we would like
to re-emphasize one absolutely central point: the normality of the nd-proofs
obtained from ic-derivations is a direct consequence of (the very intuitive
strategy for constructing nd-proofs that underlies) the generation of ic-trees
for particular questions. That intuitive strategy consists of trying to close
the gap between assumptions and conclusion “from above” (by elimination
rules) and “from below” (by inverted introduction rules); if neither works,
one proceeds indirectly. Thus, a J-rule can only be applied to assumptions
or to formulas that have been inferred by |-rule applications; similarly, the
conclusion of L. cannot be the major premise of a proper elimination rule.

Further restrictions on “normal” forms are obtained by restricting the
generation of ic-trees; we discuss this here only for modifications of the 1-
rules. This will lead to normal nd-proofs. In the above discussion we con-
sidered 1. essentially as an I-rule for complex non-negated formulas; to a
formula thus introduced no E-rule can be applied. Why not consider also
negated formulas and disallow subsequent applications of L. (now viewed as
an E-rule)? That excludes then in particular nd-proofs of the form

9] [9]
[~] : :
: X X
¢ —¢
)

'Indeed, this is just a special case: in a normal proof, no major premise of a
L -rule is the conclusion of a L-rule. That the ic-calculus can be restricted in
such a way as to provide only normal nd-proofs (without loss of completeness)
will be a consequence of the subsequent considerations.

For proof search it is important that ic-trees be pruned—without losing
completeness. That can be achieved by restricting the formulas with which
contradictory pairs are formed; one can do this through four successively
more restrictive versions of the operation F(v), namely, M(v), P(v), S(v),
and Z(y). N, (P, S,) consists of all negations that occur as (positive, strictly
positive)* subformulas in v; I, contains exactly the elements of y that are

14These notions are defined in the Appendix.

19

negations. N (v) (P(v), S(v), Z(7)) consists then of the formulas ¢ with —
in N, (P,, S,, I,). The L-rules for these operations are now formulated,
except for Z, as indicated earlier; the L (Z)-rules are given as follows:

Le(T): a; 87G, v € IT(aB, -G) = a, —G; B¢ AND a, ~G; B7-¢
14(Z) is given in a similar way. Clearly, these rules can be reformulated as
Le(@): 087G, ¢ € L(ap, ~G) = o, ~G; f7p

and similarly for 1;(Z); this brings out most clearly that —¢ is “immediately
available” .15

To establish completeness for each of the resulting variations of the ic-
calculus, it suffices to show that the restricted ic-trees (built up by the |-
and f-rules, and the restricted 1-rules) allow the extraction of a counterex-
ample in case [@?G] = N. The construction of a canonical refutation branch
involves now not only the L-rules, but possibly all the other rules. In defin-
ing such a branch one has to make sure that the appropriate version of the
closure lemma can be established. From this fact for IC(Z) we can infer the
normal form theorem below: the adjacency condition is obviously satisfied in
this case, as the major premise o, G~; 87— of the L-rules has an immediate
Y-answer.

Normal Form Theorem. IfG can be proved from assumptions in «, then
there is a normal proof of G from «.

Remark. Before extending our considerations to full predicate logic, let us
return to some general remarks we made in section 1. There we emphasized
the role of the ic-calculus as a technical tool in the search for nd-proofs.
The rules are directly modeled after the I-, E-, and _L-rules of the classical
natural deduction calculus (with a special treatment of classical negation).
However, due to the way in which assumptions are indicated and |-rules are
represented, there is also a certain resemblance with the sequent calculus.!6

Two distinctive features of the ic-calculus were already mentioned in note
10 and remark 2 at the end of section 1. Here we note some additional (and
obvious) differences with the sequent calculus: (i) the ic-calculus always has

15A trivial modification is now needed in the proof extraction lemma.
161f it were just for the first feature, we would have essentially the formulation of NK
as given in [Gentzen 1936], pp. 512-515.

20

exactly one formula on the right-hand side; (ii) every formula on the left-
hand side of a conclusion appears on the left-hand side of the premise(s);
(iii) redundant formulas may not be inferred on the left-hand side; (iv) the
negation rules have been altered. To put it briefly and informally: the ic-
calculus is a special form of natural deduction, where the goal is never left
out of sight!

It has been suggested that the sequent calculus could be used as well as
the ic-calculus in the search for nd-proofs, i.e., one would proceed in two
steps:

(i) search for a proof in, say, Gentzen’s LK (or alternatively in a tableau
system, which can be viewed as a notational variant of LK);

(ii) translate the resulting proof into an nd-proof.

In (i), LK may be restricted so as to make for more efficient search, and,
in addition, allow an easier translation to NK or provide more natural NK
proofs. In (ii), the LK proof itself may be manipulated before translating
to achieve the additional goals just mentioned. (We referred to work along
these lines in note 8, in particular that of Shanin e.a.) From this point of view
one might look at the technical aspects of our paper as imposing particular
restrictions on LK which make search more efficient and translation into NK
trivial.

However, this view is rather forced: it brushes aside not only all differing
“details” of the calculi, but also the strategic use of the ic-calculus for building
up an appropriate search space. The search space should be appropriate for
our main goal, i.e., it should allow us, from the very beginning, to focus
on the question of finding “natural” NK proofs by using “natural” search
strategies.!” The most obvious of these strategies is to work backward from
the goal formula and forward from derived lines, both in a restricted and goal-
directed manner, i.e., to perform sequences of intercalation steps. We try to
find simple representations of the states of the search and of the transition
steps taking us from one state to the next. The representation of the final
state of a successful search must encode a “proof” that can be directly viewed
as an NK proof. This difference in the strategic use of the ic-calculus comes
out clearly in the completeness proof for the calculus presented in this section
(and was emphatically stated in section 1).

1"Indeed, this opens interesting questions for proof theoretic study, e.g., how is the form
of nd-proofs related to the strategies used in their search?

21

4. Normal Form Theorems for Predicate Logic. The metamathemat-
ical considerations for sentential logic can be extended to predicate logic. To
that end we use the following formulation of the E- and I-rules for the quan-
tifiers; note that writing ¢t assumes that ¢ is free for z in ¢z or, alternatively,
that some bound variables in ¢z have been renamed. For V we have the rules:

(Vz)pz Py
™ VE 2)dz VI
Applications of the I-rule must satisfy the restriction that y does not have a

free occurrence in any assumption on which the derivation of ¢y depends.—
For 3 we have the rules:

(6]

. ot
Ggs n Enrrali

n

with the usual restriction on the E-rule, namely, ¥ must not have free occur-
rences in 7 or (3z)¢z nor in any assumption (other than ¢y) on which the
proof of (the upper occurrence of) 7 depends.

- To build up ic-trees one applies now also quantifier rules “to close the gap
between assumptions and conclusion” in the ic-format. In the formulation of
the ic-rules 7(y) denotes the finite set of terms occurring in the formulas of

v.18

V1 a; B1G, (Va)dz € af, t € T(af,G) = o; B, $t7G

31t o; 07G, (3z)¢x € af, y is new for o, (3z)¢z, G = a, ¢y; 7G
V1 a; B7(Va) g, y is new for a, (Vz)dr = o; ¢y

34 o B2(3x)ga, t € T(af, (3z)dz) = o; B74t

Ic-trees are specified inductively: if o*; 8*7G* is an open question, all pos-
sibilities of intercalating formulas are considered as in the case of sentential
logic. Let us just remark that for applications of the 1l-rules we are consid-
ering as (proper) subformulas of quantified formulas all instances with the

18 As in the propositional calculus, we add restrictions to the |-rules which prune the
search space. In the case of 3 |, the restriction is that there is no ¢ such that ¢t € a8; in
the case of V |, we require that ¢t & af.

22

finitely many terms in 7. The resulting calculus is denoted by IC,(0), de-
pending on the set of formulas admitted for the 1 -rules. Branches are closed
with Y and N under the same conditions as before. In general, however,
ic-trees will not be finite. Thus, at every stage of construction there may
be an open question at some leaf; to evaluate finite partial ic-trees ¥ a third
value U is assigned to such a leaf. Given the valuation vy, the value of
the question at ¥’s root is determined by recursion on ¥ following Kleene’s
scheme [p. 334] for three-valued logic: If N is a leaf of &, [N]s = v (),
and in case NV is the unique successor of M, [N]g = [M]s. In case N is at
a conjunctive branching,

Y if for all immediate predecessors M of N: [M]s =Y
[N]z = ¢ N if for some immediate predecessor M of N: [M]z = N
U otherwise

‘and in case IV is at a disjunctive branching,

N if for all immediate predecessors M of N: [M]s =N
[Nls =¢ Y if for some immediate predecessor M of N: [M]z =Y
U otherwise

The full ic-tree ¥ for a?G is defined in stages as follows: 3 is a?G; Xy, 11 is &y,
if [a?G]s, is either Y or N, otherwise ¥, is obtained from X, by expanding
each open branch by all applicable rules. Three possibilities can arise: (1)
for some n € N, [a?G]s, =Y, (2) for some n € N, [a?G]s, = N, and (3)
for all n € N, [a?G]s, = U. In the first case a p-normal derivation can be
associated with a subtree of X,,—by selecting an ic-derivation and by proving
(inductively) that each ic-derivation determines a unique p-normal derivation
of G from elements in a. In the second case we can construct a finite canonical
refutation branch as in sentential logic and define from it a counterexample.
The third case, whose treatment is clearly crucial to complete this sketch of
the completeness proof, requires additional considerations.

Counterexample Extraction Theorem. For any o and G: if the ic-tree
% for a?G is such that for every natural number n [0?G]s, = U, then X
contains an infinite refutation branch P that determines a structure M with
M = ¢, for all ¢ € o, and M = ~G. Thus, M is a counterezample to the
inference from a to G.

23

The extraction of a counterexample from an infinite ic-tree requires some
circumspection: Instead of constructing a refutation branch directly, we de-
termine first a particular infinite subtree ¥* of the ic-tree ¥ and then apply
Konig’s Lemma to this canonical refutation tree. The reason for having to
cut down the ic-tree ¥ to the canonical refutation tree L* is this: Refuta-
tion branches have to satisfy suitable closure conditions, and it is trivial to
construct infinite branches of ¥ that don’t. So we define ©* in such a way
that all of its infinite branches satisfy the closure conditions. The pertinent
considerations extend those for sentential logic with variations on familiar
Henkin and “fair” tableau constructions; thus we emphasize only the crucial
points.

The construction of X* (as a subtree of the ic-tree X) for the question a?G
proceeds in two waves: The first aims for “sub-maximization” with respect
to a given finite set of formulas, whereas the second introduces new subfor-
mulas by witnessing—through instances with new variables—existential and -
negated universal formulas that occur on the Lh.s. of 2. We start out the
construction of the binary tree £* (using conventions and definitions from
the sentential case) with the first wave for the enumeration of the formulas
in (o, G™) as in the sentential logical case with 3*(0) = o?G. For m > 0,
we extend each open branch of ¥*(2m) (i.e., its leaf evaluates to U) with a
rule node of the form 1, ¢

if both questions v7¢ and y7—¢ evaluate to U; if only one of them evaluates
to U, then the branch is extended at just that question. One of these cases
must hold, because the rule node L, ¢ has value U. (Clearly, as before, ¢ is
the first element in the given enumeration that extends v properly.) After
finitely many steps this construction cannot be continued. However, at least
one branch in the tree constructed so far has to be open for extensions by rules
other than the L-rules, as for all n € N [a?G]s, = U. In sentential logic, we
saw, that cannot happen; the resulting set of formulas A is deductively closed
in the sense of the earlier Closure Lemma. Here, some of the A’s associated
with leaves cannot satisfy the closure conditions (3z)¢z € A = ¢Tt € A

24

for some term ¢, and =(Vz)¢pxr € A = ¢t € A for some term ¢. In the first
case the rule 3 | is applicable with a canonically chosen new variable; in the
second case we are able to extend the branch in the following way using also
a canonically chosen new variable:

v?ha

|

V1
v (Vx) oz y?1=(Vx) oz
L, (Vz)¢z

The right extension closes with Y, whereas the left one remains open. This
brings us to the second wave: We apply 3 | in all needed cases and then
perform the above analysis on those —=(Vz)¢z for which no negated instance
is available. The first wave can be repeated now for an extended set of
formulas and so on, obviously! We obtain in this way an infinite subtree
2" of the ic-tree; Konig’s Lemma applied to 3* yields an infinite branch P.
Define Ap = {4 | v occurs on the Lh.s. of ? in some question on P}; this
set has all the appropriate closure properties needed to serve as the basis for
the counterexample definition. Let 7 (Ap) consist of all terms that occur in
some formula of Ap.

Closure Lemma. For all formulas v:
(i) v € Ap = ¢~ ¢ Ap;
(i)
(iii) ¥ is =1, =~d1 € Ap => é1 € Ap;
)

(iV ’(/} 138 (¢1 AN ¢2), ((bl A ¢2) & AP —— QZST € AP and (25;- - Ap,'
P is =(P1 A d2), ~(d1 A o) € Ap = ¢ € Ap or ¢5 € Ap;

(V) '(/) 18 (¢1 V(ﬁz), (Qsl V¢2) € AP = (ﬁi*_ € Ap or QS;_ € Ap,’
P is ~(d1V ¢2), (h1V d2) € Ap => ¢ € Ap and ¢; € Ap;

(Vl) ’l/} 18 ((ﬁ] — ¢2), (qbl — ¢2) € AP —— ¢1_ & AP or (]5;_ € Ap,'
Y is =(d1 — ¢2), (¢ = P2) € Ap = ¢ € Ap and ¢; € Ap

Y 1s a subformula of an element in Ap =—> YT € Ap or ¢y~ € Ap;

25

(vii) @ is (z)dz, (x)dpz € Ap = ¢t € Ap for some term t € T (Ap);
' Y is ~(dz)pz, ~(Iz)px € Ap => ¢t € Ap for all terms t € T(Ap);

(viii) ¢ is (Vz)oz, (V2)dz € Ap => ¢Tt € Ap for all terms t € T(Ap);
Y is ~(Vz)pz, ~(Vz)pr € Ap => ¢t € Ap for some term t € T (Ap).

The definition of a structure M from Ap is now standard, and we obtain a
completeness theorem for classical predicate logic in the form:

Completeness Theorem. The ic-tree for the question a?G determines
either a p-normal nd-proof of G from « or a branch that provides a coun-
terezample M to the inference from o to G.

So we have a semantic argument for the p-normalizability of nd-proofs; and
from ic-derivations we can construct not only p-normal nd-proofs, but also as
in the case of sentential logic interpolants to obtain the interpolation theorem.

P-Normal Form Theorem. If G can be proved from assumptions in o,
then there is a p-normal nd-proof of G from .

The L-rules can be restricted to smaller classes of formulas; that provides
then, as in the case of sentential logic, the argument for the normal form
theorem.

Normal Form Theorem. IfG can be proved from assumptions in o, then
there is a normal nd-proof of G from .

If we were just concerned with establishing normal form theorems, we could
end our paper right here. However, we want to provide the broad theoretical
basis for proof search in first order logic. That requires additional work,
namely, to find the basis for a natural extension of the search algorithm for
sentential logic, as implemented in the Carnegie Mellon Proof Tutor.!?

5. Skolem-Herbrand Expansion. For the search algorithm the language
of predicate logic is expanded by new free variables and Skolem and Herbrand

19Quite sophisticated strategies are involved in the algorithm underlying the Proof Tutor
that searches automatically for nd-proofs in classical sentential logic; that program was
developed by Richard Scheines and Wilfried Sieg with assistance from Jonathan Pressler
and Chris Walton. Presently we are redesigning it in collaboration with Jesse Hughes,
Mark Ravaglia, Richard Scheines, and Frank Wimberly, and we have extended the search
algorithm to predicate logic along the lines sketched here.—Similarly motivated programs
have been developed by Jeff Pelletier and Fred Portoraro; cf. their papers in this volume.

26

functions as done, for example, in Fitting’s book. It is in this expansion that
quantifiers are eliminated during the search in a “canonical” way. To direct
the search we use heuristics employed for sentential logic together with two
novel features, namely an appropriately narrow concept of “strictly positive
canonical subformula” and a unification algorithm for quantified formulas,
see [Sieg and Kauffmann]. We will come back to these issues at the end of
our paper, briefly. Here we focus on the description of the search space, i.e.,
the generation of appropriate ic-trees.

L, is the language of ICy; the Skolem-Herbrand expansion ICsy has as
its underlying language an expansion Lgg of £i; £; is fixed here to have
just the set X = {z, 2, 21,...} as its set of variables. Lgy has in addition a
set Y of bound variables {y, yo, y1, ...}, a set Z of parameters {z, 2, 21, .. .},
and a set I of function symbols {f, fo, f1,...}. The sets X, Y, and Z are
all disjoint; F' contains infinitely many function symbols for each arity n, n
a natural number; the 0-ary symbols are constants. Terms and formulas of
Lsy are inductively generated as usual. Let us just note that we call a given
variable or function symbol new for a given tree (or set) if that symbol does
not occur in the tree (or set). For a sequence of formulas v, Tsg(7y) is the
set of terms in -y; 71(7y) contains exactly those terms in v which are terms in
L1; T*(v) = Tsu(y) — Ti(v). Similarly we use £L* = Lgyg — £;1. Finally, the
set of parameters of vy is given by FV(vy) = Tsu(y) N Z. The ICgy calculus is
obtained from IC; by replacing the quantifier rules with those which appear
below:2°

V1 a; 67G, (Vz)dx € aff => o; (3, $27G for some new z

i o; 87G, (3r)dz € off, Z =FV(a, (3z)¢z, G) = a, ¢ f(Z); 7G for some

new f
V1 o5 87(Ve)gz, Z =FV(a, (Vz)¢z) = o;87¢f(Z) for some new f
It ; f7(3z)pr = «; ¢z for some new z

Parameters and function symbols are new relative to (partial) icgy-trees.
Such trees are built up in the most straightforward way by using the rules of

20We can, of course, make the same kind of restrictions as before concerning inference
of repeated formulas; cf. note 18. We can also improve efficiency by restricting ourselves
to canonically chosen function symbols (one for each formula up to renaming of variables)
and by taking as parameters for the term only the “relevant” variables—both strategies
are discussed and analyzed for tableaux by Baaz and Fermiiller, 1995.

27

ICsy; what is not as straightforward is the formulation of appropriate closure
conditions. Le., branches will be closed with Y, N, and U under roughly the
same conditions as before, but now we consider also “partial” yes-answers Y,
relative to a “unifying substitution” ¢. The reason is simple, as the question
“a; 87G” is now asking “Is G unifiable with an element in a8?” In case we
find unifying substitutions, we close the branch with a sequence of Y,’s and,
in case other rules can be applied, also with U. In the last case, all other
options of intercalating formulas are used to expand the partial icgy-tree.

Three points have to be taken up: (1) appropriate unification, i.e., a
substitution concept generalized to formulas; (2) evaluation of partial icgy-
trees that uses the unification information properly; (3) extraction of nd-
proofs from icgy-trees. The last issue and normal form theorems will be
addressed in the next section. (2) will be quite naturally resolved, as soon
as (1) is properly set up.

Definition. A term assignment is a mapping o from Z to the terms of Ly
such that sup(o) = {z | 0(2) # 2z} is finite. If sup(o) = {20,...,2,} then o
can be represented by (0(20)/z0,...,0(2n)/2n); () = idz.

Substitutions, based on term assignments, will include a canonical renam-
ing of bound variables. For that we have to consider “modifications” of
term assignments ¢(fo/wo-ta/wn) for variables wy, . . . , Wp € X U Z and terms
to,---,tn € Lsu. The modification is given for w € X U Z by

U(to/wo,...,tn/wn)(w) _Jt if w= W for some i < n
o(w) otherwise

Note that this will not be, in general, a term assignment, as variables from
X may appear in the support. For a given modified term assignment o we
define a family of (4, 0)-substitutions on X U Z as follows: o;[z] = o(z)
and o0;(z] = o(z) in the base case; o; distributes over function and relation
symbols, but also over the sentential connectives. For quantified formulas

(Qw)¢, where Q is V or 3,
o[(Qu)e] = (Qui)ot{*[g].

For a given term assignment o, we write o for o and call any (7, o)-substitution
simply a substitution.

Notice that o[(Vz1)(3ze)Pz1z2] is (Yyo)(3y1)Pyoy1; applying o to (Vz7)
(3zs5)Pzyxs yields the same result; i.e., o literally identifies formulas that

28

are identical only up to renaming of bound variables. It is the canonical
renaming of bound variables that allows us to extend unifiability from terms
to formulas: Two formulas ¢ and v in Lgy are called unifiable iff there is a
term assignment o, such that o[@] = o[1)].2! Let us look at some examples on
how to prove statements in the expanded calculus and motivate the additional
technical steps we have to take.

Example 1. Pat (3z)Pz

Y!'a
Pa?lpzl

3!’]‘
Pa?(3z)Pzx

o is the substitution (a/z;); as example 3 will show, closing with Y, will not
always guarantee success of the proof search.

Example 2. (Vzo)Pzo, (Vz1)Qz1 b (Vz2) Pz A (VI3) Q3

Yl'm 3{@
(Vo) Pz, (‘v’wl?Qxl?(VxQ)sz (Vo) Pxo, (V$1I)Q$1?(V$3)QJC3

A
(Vl‘o)P.’Bo, (‘v’:rl)Qxﬂ(ng)Pa:z A (VZL’3)Q.7)3

This transforms directly into an nd-proof, as we assume the general renaming
rule; cf. beginning of section 6.

Example 3. Closing every branch with a substitution is not enough to
guarantee that a derivation has been found. For example,

(F21)(3za) Pr122, (32)Qz t (F21) (F2) (P12 A Q11).

Consider the following partial icsg-tree (where « abbreviates the appropriate
sequence of assumptions):

#1Standard unification algorithms can be easily adapted to provide a most general idem-
potent unifier; cf. [Sieg and Kauffmann).

29

Y,
|
a, (3372)Pf1752la Pfifa?Pzi2

34 Yn
, (HxQ)P]Iﬁxg?lezg o, Qf'g,?Qzl
34 34
a?PIzlz2 a?gzl
/\:T
(3z1)(3z2) Pz 22, (T:Ix)Qm?lezg A Qz
E!IT
(Fz1)(3zs) P19, (33:)6[,2:1:?(3:)32)(}’21:1:2 A Qz)
HIT

(Fz1)(Fz2) Pz122, (32)Q2? (321) (F22) (P2122 A Q1)

Here, 0 = (f1/71, f2/22) and n = (f3/21). o unifies Pf; f, with Pz 2, and
n unifies @ f3 with Qz;, but applying both of these means that Pf;f, and
@ f3 will be the premises to A 1 with a conclusion which should unify with
Pz12AQz. The only possible conclusion from these premises is P fi foaAQ f3,
which does not unify with Pz;2o A Qz;. Thus the failure of this tree to be
a derivation is not determined at the leaves, but rather when the unification
information is passed down the tree. Note also that in applying 3 | to obtain
Qfs, we introduce a function symbol which is new to the entire tree, not just
to the branch below the rule application. If we required only that these names
were new to the given branch, we could have instantiated (3z)Qz with Q f;.
Doing so would have allowed us to use 7' = (f;/z1). The tree would then be
a “derivation”.

Example 4. (Vz1)(3z2)Pxiz2, (2)Qx + (Fz1)(322) (Px122 A Q1) The
derivation is as follows:

30

Y,
|
a; (3z2) P23x2, P2z fa7 Pz 29

fl Y,
Q; (3.’L‘2)P2{3.’L‘2?PZ122 o Qf|3?Qz1
v 34
af?Plzlzg a?gzl
N
(Vz1)(3xs) P12, (Iax)Qx?PZIZQ A Q=
EIIT
(Vz1)(3zo) P12, (El:v)CiQx?(Elxg)(lexg AQz)
=N

(V1) (3ze) P12, (Eix)Qx’!?(Hxl)(ﬂxQ)(lemz A Q1)

Here o is (23/21, f2/22), and n is (f3/21). In this tree, when passing down the
unifier information, we can “merge” o and 7 to a substitution (f3/z1, f3/23,
fa/22). This substitution will work for the part of the tree where the two
branches merge.

The following considerations serve to make explicit the mechanism under-
lying the “merging” mentioned in example 4. For that purpose we review first
some standard definitions as found, for example, in [Snyder]. We indicate the
composition of two substitutions ¢ and p by op, with op(w) = o(p(w)). A
substitution o is ¢dempotent just in case oo = o. Finally, p < o (“p is more
general than ¢o” or, perhaps better, “p is less specific than ¢”) if and only if
there is a substitution 7, such that np = o. For idempotent substitutions we
note that p < ¢ implies op = ¢. Finally, we come to our crucial definitions.

Definition. (i) For substitutions oy and o2, 0 = 01Voy, is the least (with
respect to <) substitution o such that o; < ¢ and 03 < 0. o is called the join
of o1 and 02. Note that the join is not always defined, and that sometimes
multiple substitutions may be joins for a given pair of substitutions (in which
case we simply pick one). (ii) Substitutions ¢ and p are called consistent
exactly when oVp is defined.

31

Let us consider two examples. If 0 = (a/z1,b/2) and n = {(c/z), then
0[Pz1z; N Qz3) = Pab A Qzz and n[Pz122 A Qz3] = Pczy A Qzs, whereas
oVn is undefined. Now let o = (23/21,b/2) and n = {c¢/z1), then 0[Pz 2z, A
Qz3] = Pz3b A Qzz and n[Pz122 A Qz3] = Pczy A Qzs. In this case oV =
(c/z1,b/ 22, ¢/2z3) and oVn[Pz122 A Qz3] = Pcb A Q.

To summarize our discussion (through examples): When asking a ques-
tion in the calculi described prior to ICgsy, closing a branch with Y guaranteed
success along that branch, and succeeding for the whole proof required only
that we succeed on sufficiently many branches to build a derivation. The
above examples illustrate that closing off a branch with a unifier does not
guarantee success on that branch, as it may cause the new free variables oc-
curring in the branch to be instantiated with terms which are not consistent
with the rest of the tree. Thus, a unifier gives us success only modulo its
compatability with unifiers from other branches of the tree. Moreover, at
any stage there may be multiple possible unifiers, any of which may or may
not succeed further down the tree.

In order to keep track of all of these possibilities we modify the valuation
function accordingly. We will introduce the value Y, for every idempotent
substitution o. Roughly speaking, a node N will be given the value Y, if
applying o to the subtree rooted at N will result in a tree having value Y.
To do this rigorously, we first introduce a means for “joining” values, so that
the value for the whole tree can be determined—when the leaves have values,
namely, sets of Y,’s.

Definition. Let A = {Y,,...,Y, .}, B = {Y,,...,Y,.}. AVB =
{Y, 0, | 1<i<m,1<j<n, and p; and o; are consistent}.

The earlier evaluation function [N]y has to be modified, as sets of values
are assigned to nodes. Let X be a partial icgg-tree and vy the valuation
for the leaves of ¥.. In case N is a leaf, say N = o;87G, [N]z = {V, |
o[G] € o[af] and o idempotent}. In case N is the unique successor of M,
[N]s = [M]s; in case N is at a conjunctive branching, i.e., a rule node for a
two-premise rule with M; and M, above N, [N]s = [M;]sV[M:]g; finally,
in case NV is at a disjunctive branching, i.e., a question node with rule nodes
My, ..., Mg above N, [N]s = Uj<i<k[Mi]s. If £ has (question node) N as
its root, we set [£] = [N]s.

6. Correctness of Proof Search (in the SH-Expansion). We consider
the SH-expansion “just” as a convenient technical tool for automated proof

32

search; thus, we ask basic questions a?G only when the elements of « and G
are formulas in £;. Clearly, if we find an icsy-derivation for such a question,
we want to associate with it an nd-proof in £, of G from assumptions in a.
This is immediate with p-normal or normal derivations, as soon as we know
how to transform partial icgg-trees into ic;-trees. For this purpose, we define
a canonical renaming function as follows:

Definition. Let o be a substitution and IT an icgg-tree. Let {¢1,...,t,} =
T*(o[I}). Let z1,...,2, € X be new for II. RY is the tree-renaming gener-
ated by 11 and o.

na)z ifolt]=t,1<i<n
Ryt = { olt] otherwise

R distributes over relation symbols, sentential connectives, and quantifiers.
It is applied to a question node by applying it to every formula at the node,
and to a tree by applying it to every question node in the tree (as well as to
the formulas displayed at L-rule nodes). We abbreviate RI[II] by R,[II].

For such renamings we will show that they associate with partial icgy-trees
partial ic;-trees. Then we will show that an icsy-derivation exists for a given
Li-question a?G if and only if an ic;-derivation exists for a?G. We add
to our formulation of the natural deduction calculus a rule that allows for
renaming of bound variables:

(R) g if o[¢*] = o[¢] for every term-assignment o.

We need to make the corresponding adjustment to ICy, i.e., we close a branch
with leaf node «; 837G with Y whenever G € of up to renaming of bound
variables.

Local Correctness Lemma. Let T be an icsg-tree for ap ?Go—ayq, Gy in
Ly. Then for any substitution o, R,[T] is an ici-tree for oy ?Gy.

PROOF. Fix R = R}; by the definition of R, R[T] has root ay?Gy (since the
support of R is contained in £*). We show now by induction on the height
of IT* that for every subtree II* of T, R[II*] is an ic;-tree. Let a;8?7G be
the root of II and let o/; '7G’ = R[a; 87G]. If «; 87G is a leaf node then
R[o; 7G] is a leaf in £, and hence an ic;-tree. For the inductive step, it will

33

be enough to show: for each rule node r immediately above «; 37G, the tree
II consisting of o; 37G and the subtree of II* with root r above it is mapped
by R to an ici-tree. The tree II is represented by

Yo X
a; B7G
where we allow X; to be empty in case r has only one premise. R[¥] and

R[¥] are ic;-trees by the induction hypothesis. Let ¥ = R[So] and ¥} =
R[X;]. We proceed by case according to the rule 7. Consider A 1; here II is

2 : 2 :
{ a; B¢ { a; B¢
a; 8701 A ¢
If Rlo; B7¢;] = of; 379 for each i = 1,2, then R[o; B7¢1 Ady] = o; B'THL Ny
and R[I] is

26 { , . 211 { :
o 7] o/; B'1¢%
of; B7¢) A ¢y
this is, by A 1, an icy-tree. All other propositional rules follow in a similar
way. Now let us consider the quantifier rules. In the case of V |, Il is

a; B, ¢27G

a; 517G
where (Vr)¢r € aff. Let t = R[z]. If o[z] € L4, then t = o[z] € L1, by the
definition of R; if not, then ¢t = z for some appropriate z € £;. In either
case, t € L1 and R[¥] = X is an ic;-tree for o; 3/, ¢'t?G’. R[I] is then

5 :
o5 0, 176"
a/; IBI?GI
where (Vz)¢'z € ¢/3". By V |, R[] is an ic;-tree. The case for 3 1 is similar.
Finally, consider 3 |; here II is

N { :
a,dfz; B7G
o B7G

34

where (3z)¢z € af and fz & Tsu(aB,G). There is no z € Tsu(aB, G) such
that o[z] = o[fZ], because any such z would be an argument of f.22 Thus,
R[fZ] & Tsu(aB, G). Say R[fz] = z; R[] is now

26 / / : ! !
{ o, d'r; B17G
CYI;/BI?GI

R[II] is an icy-tree by 3 J, since (3z)d'z € o/F, and z is new to o/, G'. The
case for V 1 is similar. O

Having associated with partial icgy-trees partial ic;-trees, we show now that
the “association” preserves global correctness in the sense of the following
theorem:

Valuation Theorem. Let T be an icgy-tree, o a substitution.
(i) If Y, € [T], then [R,[T]] =Y.
(i) If [T] = 0, then [R,[T]] = U or N.

PROOF. Let T and o be given as above; we use R as an abbreviation for
RZ. To establish the theorem it suffices to show by induction on II that for
every subtree II of T (rooted at a question node):

Y, € [II]r for some p < o if and only if [R[II]]zm =Y.

Note, that if Y, € [II]r for some p < o, then R[II] is an ic;-tree by the local
correctness lemma. Let N = «;87G be the root of II. For the base case
assume that N is a leaf node. If Y, € [II]r for some p < o, then choose
¢ € af such that p[g] = p[G]. o[¢] = ap[¢] = o[p[¢]] = o[p[G]] = 0p[G] =
o[G]. Thus R[G] € R[af] up to renaming of bound variables, so [R[II]] = Y.
Conversely, assume [R[II]] = Y. Then R[G] € R[af] up to renaming of
bound variables, so Y, € [o; 87G].

In the inductive step, NV is not a leaf node. For the =--direction, assume
Y, € [N]r for some p < 0. Let M be any node immediately above N such
that Y, € [M]. (Such an M exists by the definition of [N].) If M has a

22Here one uses the fact that, given any term f (#1,...,2n), there is no substitution &
such that o[f(z1,...,2,)] = o[z forany 1 < i < n.

35

single premise My, then Y, € [M;] by the definition of [M]. By inductive
hypothesis, [R[M;]] = Y. Then [R[M]] = Y and hence [R[N]] = Y as
well. If M has two premises, My and M;, then by the definition of [M],
there are py and p, such that Y,, € [M],Y,, € [M;], and p = poVp,. Since
po < p < o, we have py < o and, thus, [R[M]] = Y. Similarly we have
[R[M;]] =Y. But then [R[M]] =Y and hence [R[N]] =Y.
For the <-direction, assume [R[N]] =Y, and choose rule node M imme-
diately above N, such that [R[M]] = Y. If M has only one premise M,
then [R[M;]] = Y. By inductive hypothesis, Y, € [Mq]r for some p < o.
[N] = [M] = [My], so we are done. If M has two premises M, and M,
then [R[Mo]] =Y and [R[M;]] =Y by the definition of [R[M]]. By the in-
ductive hypothesis, choose (for i = 0, 1) p; such that Y,, € [M;] and p; < 0.
Y ,vp € [M] C [N]. Since pp < o and p; < 0, poVp1 < 0; so we are done.
a

The following corollary to this theorem establishes the usefulness of the
1Csy calculus.

Correctness for ICsy. Let o, G be in L1, then there is an icsy-derivation
for o?G if and only if there is an ic,-derivation for o?G.

Indeed, the nd-proofs that are then associated with ic;-derivations are,
depending on the operation chosen in the L-rules, either p-normal or nor-
mal. The SH-expansion is thus a tool that provides correctly nd-proofs.
In the introductory remarks to the previous section we mentioned that the
SH-expansion is to be used for proof search, indeed, proof search that ex-
tends in a most natural way the strategic considerations for sentential logic—
implemented in the Carnegie Mellon Proof Tutor. Those strategic consider-
ations are described in [Sieg and Scheines]; here we review just the coarse
structure of the (very efficient) search procedure. The search for an answer,
i.e., an ic-derivation, to the question a; 3?G involves three distinct compo-
nents: (i) use of J-rules, (ii) use of t-rules, (iii) use of L-rules (with a limited
set of contradictory pairs of formulas). It is step (i) that is central and taken
in a goal-directed way. If the question

(x) Is G a strictly positive subformula of a formula in o3?

has an affirmative answer, this step provides sequences of |-rule applications
that ertract G from strictly positive occurrences of G in elements of 3. The

36

connecting formula sequences consist of the major premises of the |-rules
and require, in general, answers to new questions, namely, those raised in
the minor premises of the rule applications.

It is for the appropriate generalization of this eztraction strategy that the
SH-expansion is absolutely critical. Recall that the question in sentential
logic “Is G an element of af37” is generalized in predicate logic to “Is G
unifiable with an element of a37”. The goal-directedness of applications of
l-rules is now obtained by generalizing the question (x) above to

Is G unifiable with a strictly positive canonical subformula of a formula in

af?

A subformula is considered to be a canonical one, if quantifiers are instan-
tiated by terms that match the |-quantifier rules of ICgy, i.e., those terms
would be used, if the formula were “extractable” by |-rules.—This natural
extension of the sentential logical search satisfies three important desiderata:
(1) logical truths of sentential logic, e.g., instances of the law of excluded
middle with complex formulas of £;, are recognized without appealing to
quantificational rules; (ii) the selection of terms for V | and 3 1 is delayed;
(iii) extractability is the central feature of the search. The details of our
approach to automated proof search will be presented in a later publication
(together with a discussion of benchmark examples).

7. So what? This work is to address, ultimately, the question of finding
proofs in mathematics with logical and mathematical understanding. If one
looks at Georg Polya’s writings on mathematical reasoning and heuristics one
realizes quickly that his most general strategies for argumentation are simple
logical ones. Clearly, logical formality per se does not facilitate the finding
of proofs. Logic within a natural deduction framework does help, however,
to bridge the gap between assumptions and conclusions by suggesting very
rough structures for arguments, i.e. logical structures that depend solely on
the syntactic form of assumptions and conclusions. This role of logic, though
modest, is the starting-point for moving up to subject-specific considerations
that support a theorem.

Proofs provide explanations of what they prove by putting their conclu-
sions in a context that shows them to be correct. The deductive organization
of parts of mathematics is the classical methodology for specifying such con-
texts. This methodology has two well-known aspects: the formulation of
principles, i.e. axioms, and the reasoning from such principles; the latter is

37

mediated through logical inferences and subject-specific lemmata. Heuris-
tic considerations and “leading mathematical ideas” for particular parts of
mathematics have to be found and properly articulated. Saunders MacLane
(1934) suggested to include in the scope of logic such a structure-theory of
proofs: this extension of the traditional role of logic and, in particular, of
proof theory interacts directly and, we are convinced, fruitfully with a so-
phisticated, automated search for humanly intelligible proofs.

38

Appendix

In this appendix we give first a definition used at the end of section 3; then
two diagrams are drawn that complement the text of sections 2 and 3.

Positive and strictly positive subformulas of a given formula are defined
by induction; indeed, for the first concept one defines simultaneously, when
¢ is a positive subformula of ¥[¢p € P(v)] or ¢ is a negative subformula of
Y[¢ € N(v)], namely by the rules,

(i) pis = ¢ € P(¢)

(i) (a) ¥ is 4y, ¢ € N(¢)
b) ¥ is =, ¢ € P(¢p1) = ¢ € N(¢)

a) ¥ is ¥ Ahy, ¢ € P(11) U P(1ha) = ¢ € P(9)

) = ¢ € P(y)
)
(a))
(b) ¥ is o Athy, ¢ € N(th) UN (b)) = ¢ € N(¢)
))
))
) ¥
)

(
(
(iid)

(iv) (a) ¥ is 1 Vb, ¢ € P(3h1) U P(thy) => ¢ € P(t)
(b) Y is 1 Vb, ¢ € N(th) UN(th) = ¢ € N(¢)
(a) ¥ is ¥ — 2, ¢ € P(thy) => ¢ € P(1))
(b) ¥ is P — by, ¢ € N(th) = ¢ € P()
(c) ¥ is 1 — 1y, ¢ € P(thy) UN(hg) => ¢ € N(¢)

Finally, ¢ is a strictly positive subformula of ¥[¢ € S(v)] if and only if it can
be obtained by just the rules (i), (iii)(a), (iv)(a), and (v)(a).

(v)

a

Diagram 1 illustrates the construction of an ic-tree in an interesting case,
namely the proof of tertium non datur. Diagram 2 illustrates the construction
of canonical refutation branches discussed in section 3.

39

-P?P -~P?-P
Le, P N
P 7-P

v1T V T2 @)

?PV P

Diagram 1.

Diagrams 1.A and 1.B expand nodes A and B, respectively.

40

OQ?‘IP
(5] 7P

ag?—1P

a3?P

N

a2?"|(P vV —|P)
PV =P

-P Qg !

ag?=(PV)

a3?PV =P

\/ -

3
15, P
1e,PV P

al?—|P
al?P

Y
t V1o 4

VT1

Y

' Y
VT2
VT

x "l 1- P
1 V P o F b |

le, PV P
o] = 'ﬂ(PV‘!P)
1 —_—
=~(PV~P),P
Go =

Diagram 1.A.
[0 (\%),
3

41

~(PV —P)?P ~(PV —~P)?-P

\/

1o, P

Diagram 1.B.

The question nodes above are expanded in exactly the same way as the
corresponding questions in diagram 1.A.

42

‘?-—.H/\u
Q!
aV?H)\V

NS

-LaH/\g

‘?ﬁ]{/\2
[e 4
Olz?H)\z

NS

I —L, H)\z

?—|H)\l
aq!
al?H)\l

NS

J_,H,\l

. e
1.e. «f
Olo?H(),

Diagram 2.

43

References

[1] P. Andrews. Transforming matings into natural deduction proofs. In 5th
Conference on Automated Deduction, pages 281-292, New York, Berlin,
1980. Springer-Verlag.

[2] M. Baaz and C. G. Fermiiller. Non-elementary speedups between dif-
ferent versions of tableaux. In Baumgartner et al., editors, Theorem
Proving with Analytic Tableauz and Related Methods, pages 217-230.
Springer, 1995.

(3] W. Bledsoe. Non-resolution theorem proving. Artificial Intelligence,
9:1-35, 1977.

[4] W. Bledsoe. The UT natural-deduction prover. Technical Report, De-
partments of Mathematics and Computer Science, University of Texas,
April 1983.

[5] S. Cittadini. Intercalation calculus for intuitionistic propositional logic.
Carnegie Mellon Technical Report PHIL-29, Philosophy, Methodology,
and Logic, 1992.

6] R. Constable et al. Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, Englewood Cliffs, NJ, 1986.

[7] F. B. Fitch. Symbolic Logic: An Introduction. Ronald, 1952.

8] M. Fitting. First-Order Logic and Automated Theorem Proving.
Springer-Verlag, New York, Berlin, 1990.

[9] G. Gentzen. Untersuchungen iiber das logische Schliefen i,ii. Math.
Zeitschrift, 39:176-210, 405-431, 1934, 1935. English translation in [11].

[10] G. Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie. Math-
ematische Annalen, 112:493-565, 1936. English translation in [11].

[11] G. Gentzen. The Collected Papers of Gerhard Gentzen. North-Holland
Publishing Company, Amsterdam, 1969. Edited by M. E. Szabo.

[12] J. Herbrand. Logical Writings. Cambridge, Harvard University, 1971.
Edited by W. Goldfarb.

44

[13] S. Jaskowski. On the rules of suppositions in formal logic. Studia Logica,
(1), 1934.

[14] S.C. Kleene. Introduction to Metamathematics. Wolters-Noordhoff Pub-
lishing, Groningen, 1952.

[15] S. MacLane. Abgekiirzte Beweise im Logikkalkiil. PhD thesis, University
of Gottingen, 1934.

[16] S. MacLane. A logical analysis of mathematical structure. The Monist,
pages 118-130, 1935. The paper was read to the American Mathematical
Society on December 28, 1933.

[17] A.J. Nevins. A human oriented logic for automatic theorem proving. J.
ACM, 21:606-621, 1974.

[18] L. Paulson. Logic and Computation: Interactive Proof with Cambridge
LCF. Cambridge University Press, 1987.

[19] J. Pelletier. Automated natural deduction in Thinker. This volume.

[20] F. Pfenning. Proof Transformations in Higher-Order Logic. PhD thesis,
1987. Carnegie Mellon University. -

[21] F. Portoraro. Strategic construction of Fitch-style proofs. This volume.

[22] D. Prawitz. Natural Deduction: A Proof- Theoretical Study. Almqvist &
Wiskell, Stockholm, 1965.

[23] N.A. Shanin et al. An algorithm for a machine search of a natural logical
deduction in a propositional calculus. In Siekmann and Wrightson, edi-
tors, Automation of Reasoning, vol. 1, pages 424-483. Springer-Verlag,
New York, Berlin, 1983. Reprinted from Izdat. Nauka, Moscow, 1965.

[24] W. Sieg. Mechanisms and Search: Aspects of Proof Theory. Associazione
Italiana di Logica e sue Applicazioni, Padova, 1992.

[25] W. Sieg. Intercalation calculi for classical logic. Carnegie Mellon Tech-
nical Report PHIL-46, Philosophy, Methodology, and Logic, 1994.

[26] W. Sieg and B. Kauffmann. Unification for quantified formulae. Carnegie
Mellon Technical Report PHIL-44, Philosophy, Methodology, and Logic,
1993.

45

[27] W. Sieg and R. Scheines. Searching for proofs (in sentential logic). In
L. Burkholder, editor, Philosophy and the Computer, pages 137-159.
Westview Press, Boulder, San Francisco, Oxford, 1992.

[28] W. Snyder. A Proof Theory for General Unification. Birkhiuser, Boston,
Basel, Berlin, 1991.

[29] G. Stalmarck. Normalization theorems for full first order classical nat-
ural deduction. J. Symbolic Logic, 56:129-149, 1991.

[30] R. Statman. Structural Complezity of Proofs. PhD thesis, Stanford,
1974.

[31] A. S. Troelstra and D. van Dalen. Constructivism in Mathematics: An
Introduction. North Holland, Amsterdam, 1988.

46

byrnes@ ANDREW.CMU.EDU

Jun 12

Jun12 byrnes@ANDREW.CMU.EDU

For: byrnes@ ANDREW.CMU.EDU on tetrad.andrew.cmu.edu

File: IC.ps
Printing date: Thu Jun 12 10:51:10 1997

Printer: grunbaum / Philosophy1 (interpreter version 2014.108)

egie
0N

Computing Services

