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Abstract

'We analyze common reasoning about admissibility in the strategic and
extensive form of a game. We define a notion of sequential proper admissi-
bility in the extensive form, and show that, in finite extensive games with
perfect recall, the strategies that are consistent with common reasoning
about sequential proper admissibility in the extensive form are exactly
those that are consistent with common reasoning about admissibility in
the strategic form representation of the game. Thus in such games the
solution given by common reasoning about admissibility does not depend
on how the strategic situation is represented. We further explore the links
between iterated admissibility and backward and forward induction.

1 Introduction

A well known problem with non-cooperative game theory is that Nash
equilibria are seldom relevant for predicting how the players will play. The
equilibria of a game do not represent all the possible outcomes. Rather,
they represent the set of self-enforcing agreements: had the players known
their respective choices before playing the game, then they must have
constituted an equilibrium. Some game theorists have argued that pre-
dictability must involve what Binmore (1987/88) has called an ”eductive”
procedure. When asking how the players’ deductive processes might un-
fold, one must usually specify some basic principles of rationality, and
then examine what choices are consistent with common knowledge of the
specified principles. The advantage of this approach is that it is possible
to refine our predictions about how players might choose without assum-
ing that they will coordinate on a particular equilibrium. Principles such
as iterated strict dominance or rationalizability (Pearce 1984), (Bernheim
1984) are examples of how it is possible to restrict the set of predictions



using rationality arguments alone. In this paper we embrace the educ-
tive viewpoint, and examine the game-theoretic implications of adopting
admissibility as a candidate for a rationality principle. An admissible
choice is a choice that is not weakly dominated, and we take rationality
to coincide with admissibility.

‘We assume admissibility to be common knowledge, and describe play-
ers’ common reasoning about admissibility in the strategic and extensive
forms of a game. Common reasoning about admissibility in the exten-
sive form leads to iterated elimination of weakly dominated strategies
(IWD). There are well known difficulties in reconciling IWD with Bayesian
decision theory (Blume, Brandenburger, and Dekel 1991), (Stahl 1995),
(Ashelm and Dufwenberg 1996). In this paper, we do not take a stance on
this issue; instead, we investigate the consequences of applying iterated
admissibility, as an independent choice principle, to finite games of perfect
and imperfect information. In the last part of the paper we explore the
relationship between IWD in the extensive and strategic forms of a game.
One commonly held disadvantage of IWD is that—unlike iterated strict
dominance—different orders of deletion can result in different solutions.
A standard solution to this problem is to delete at each round all weakly
dominated strategies of all players (Rochet 1980), (Moulin 1986), (Harper
1991). We support this view by arguing that order-independent elimi-
nation of weakly dominated strategies captures common reasoning about
admissibility in the strategic form. In the extensive form of a game, a
strategy may prescribe choices in parts of the tree that will never be
reached if that strategy is played. If we evaluate strategies only with
respect to information sets that are consistent with them (i.e., informa-
tion sets that can be reached if the strategy is played), we are led to
the concept of sequential proper admissibility: A strategy is sequentially
properly admissible in a game tree just in case the strategy is admissible
at each information set that is consistent with the strategy. A striking
result of our paper is that, for finite extensive form games with perfect
recall, the strategies that are consistent with common reasoning about se-
quential proper admissibility in the extensive form are exactly those that
are consistent with common reasoning about admissibility in the strategic
form representation of the game. Thus in these games, the solution given
by common reasoning about admissibility does not depend on how the
strategic situation is represented.

Like iterated strict dominance and rationalizability, application of it-
erated weak dominance (IWD) has the advantage that it does not require
advanced computation of equilibria. It is therefore a more global condition
than backward and forward induction principles, some of whose features
IWD is held to capture. Though backward and forward induction prin-
ciples are understood to be local conditions, in that they provide a test
which can only be applied after the equilibria of a game have been com-
puted, we think that our characterization of IWD captures some crucial
features of both principles. For example, we show that, in generic finite
game of perfect information, common reasoning about weak admissibility



yields exactly the backward induction solution. And in finite games of
imperfect information, common reasoning about admissibility yields typ-
ical forward induction solutions. Thus backward and forward induction
seem to follow from one principle, namely that players’ choices should be
consistent with common reasoning about admissibility. This result may
seem questionable, as it is also commonly held that backward and for-
ward induction principles are mutually inconsistent. That is, if we take
backward and forward induction principles to be restrictions imposed on
equilibria, then they lead to contradictory conclusions about how to play.
‘We show that the problem with the examples one finds in the literature
is that no constraints are set on players’ forward induction “signals”. We
define a credible forward induction signal in an extensive game as a signal
consistent with common reasoning about sequential admissibility. Thus
the examples in the literature which purport to show the conflict between
backward and forward induction principles involve forward induction sig-
nals that are not credible.

2 Extensive Form Games

We introduce the basic notions for describing games in extensive form.
Note that our formalization is limited to finite games, and that we restrict
players to only play pure strategies. A finite extensive form game for
players N = 1,2,...,n is given by a game tree T with finitely many nodes
V, root r, payoff functions u; which assigns a payoff to each player ¢ at
each terminal node in T, and information sets I; for each player ¢. For
each node « in T', I(z) is the information set containing z. A pure strategy
s; for player ¢ in a game tree T assigns a unique action, called a move,
to each information set I; of player i in T. We denote the set of ¢’s pure
strategies in T' by Si(T) (in what follows, the term “strategy” always
refers to pure strategies.) A strategy profile in T is a vector (31, 32, ..., Sn)
consisting of one strategy for each player i. We denote the set of pure
strategy profiles in T by S(T); ie. S(T) = xienS:i(T). We use ‘s’ to
denote a generic strategy profile. It is useful to denote a vector of length
n — 1 consisting of strategy choices by player ¢’s opponents by s—;. We
write S_¢(T) for the set of strategy profiles of {'s opponents, i.e. S_;(T)
= Xjen—{}55(T).

Given a strategy profile s, we use s[i] to denote the strategy of player
i in s, and s[—i] to denote the strategy profile of ¢’s opponents in s.

In the games we consider, the root is the only member of its informa-
tion set (i.e. I{r) = {r}), so that a strategy profile s in T determines a
unique maximal path < r,z;,%s,..., 2, > from the root r to a terminal
node z,; we refer to this path as the play sequence resulting from s, and
denote it by play(s). When a strategy profile s in T is played, each player
receives as payoff the payoff from the terminal node reached in the play
sequence resulting from s. With some abuse of notation, we use u; to
denote both a function from strategy profiles to payoffs for player %, as
well as a function from terminal nodes to a payoff for player ¢, and define



u;(8) = ui(z), where z is the terminal node in the play sequence play(s).
For a finite game tree T, the height of a node z in T is denoted by h(z),
and defined recursively by h(z) = 0 if z is a terminal node in T, and
h(z) = 1 4+ max{h(y) : y is a successor of z in T} otherwise.

An important part of players’ deliberation about which strategy to
choose in a given game consists of ruling out possibilities about how the
game might be played. Though players may use different principles to
exclude some plays of the game, any such reasoning will result in a game
tree restricted to those possibilities consistent with the application of a
given principle. The following definitions allow us to describe this notion
precisely.

DEFINITION 1 Restricted Game Trees
o LetT bea ﬁniie game tree for N =1,2,...,n players.

o T|V is the restriction of T to V, where V is a subset of the nodes in
T. All information sets in T|V are subsets of information sets in T.

o T, is the game tree starting at node z (i.e. Ty is the restriction of T
to  and its successors.) If I(z) = {z}, then T is called a subgame.

o If 8; is a strategy for T and T’ is a restriction of T, s;|T' is the
strategy that assigns to all information sets in T' the same choice
as in T. Formally, si|T' (I) = si(L:), where I; is the (unique)
information set in T that contains all the nodes in I}. Note that
s:|T" is not necessarily a strategy in T'; for the move assigned by s;
at an information set I; in T' may be not possible in T".

o If s is a strategy profile in T and T' is a restriction of T, s|T' is the
strategy vector consisting of s[i]|T' for each player i.

o Let S C S(T) be a collection of strategy profiles in a game tree T
with players N. Then a node z is consistent with S if and only
if there is a strategy profile s in S such that = is part of the play
segquence resulting from s, i.e. z € range(play(s)). The restriction
of T to nodes consistent with S is denoted by T|S. We observe that
TIST)="T.

e A node x is consistent with a strategy s: by player ¢ in T just in case

there is a strategy profile s_; in T such that ¢ appears in the play
sequence play(s:,s—i).

3 Common Reasoning About Rational-
ity

We may assume that in deliberating players use some principle to rule
out plays of the game that are inconsistent with that principle. One such
principle is rationality. In the next sections we explore the consequences of

adopting two candidates for a rationality principle: weak admissibility and
admissibility. In the first case, a player never plays a strictly dominated



strategy, whereas in the second case also weakly dominated strategies are
eliminated.

A player who is reasoning, say, with the help of admissibility would not
go very far in eliminating plays of the game inconsistent with it, unless he
assumes that the other players are also applying the same principle. In
the game of Figure 1, for example, player 1 could not eliminate a priori
any play of the game unless he assumed player 2 never plays a dominated
strategy. ! In general, even assuming that other players are rational might
not be enough to rule out possibilities about how a given game might
be played. Players must reason about other players’ reasoning, and such
mutual reasoning must be common knowledge. Unless otherwise specified,
we shall assume that players have common knowledge of the structure of
the game and of rationality, and examine how common reasoning about
rationality unfolds.

3.1 Strict Dominance and Subgame Perfection

This section explores in detail the implications of common reasoning about
weak admissibility, the requirement that players should avoid strictly dom-
inated actions. We show that in finite games of perfect information, com-
mon reasoning about weak admissibility gives exactly the same results as
Zermelo’s backward induction algorithm, which in finite games of perfect
information corresponds to Selten’s notion of subgame perfection . We
then show by examples that the tight connection between common rea-
soning about weak admissibility and subgame perfection breaks down in
games of imperfect information.

‘We define a strategy to be sequentially weakly admissible in a game
tree T if it is weakly admissible at each information set in T'. A strategy
s; for player ¢ is not weakly admissible at a given information set I; if
the strategy is strictly dominated at I;. This means that there is some
other strategy s} that yields i a better outcome than s; at every node «
in I;. For example, in the game of Figure 1, playing right (‘R’) at 2’s
information set is strictly dominated by playing left (‘L’).

The formal definition of sequential weak admissibility is the following.

DEFINITION 2 Strict Dominance and Weak Admissibility in Extensive Form
Games

o Let T be a finite game tree for N =1,2,...,n players.

o We define the payoff to player ¢ from strategy s; and strategy profile
s—i at z, written u; (si, 8—:, ), to be ui(si, s—1, ) = wi(8:|Tz, 5-4|T%).

o A strategy s; is strictly dominated by another strategy s at an infor-

mation set I; belonging to i in T just in case for all strategy profiles
s—¢ in T, and for all y in I;, wi(si, 3—i,y) < ui(si,5-:,9).

1Here and elsewhere, the payoff at a terminal node is given as a pair (z,y), where = is the
payoff for player 1 and y is the payoff for player 2.
2¢f. (Osborne and Rubinstein, 1994, Ch. 6).
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o A strategy s; is weakly admissible at an information set I; in T just
in case 8; is not strictly dominated at I;.

o A strategy s; is sequentially weakly admissible in T if and only if s;
is weakly admissible at each information set I; in T that belongs to
playeri. =

Our procedure for capturing common reasoning about sequential weak
admissibility in T is the following. First, eliminate at each information set
in T all moves that are inconsistent with weak admissibility, i.e. strictly
dominated choices. The result is a restricted game tree 7".

Repeat the pruning procedure with T/ to obtain another restricted
game tree, and .continue until no moves in the resulting game tree are
strictly dominated. Note that the recursive pruning procedure does not
start at the final information sets. Qur procedure allows players to con-
sider the game tree as a whole and start eliminating branches anywhere
in the tree by applying weak admissibility. To illustrate the procedure,
look at the game of figure 1. R is eliminated at 2’s information set in
the first iteration, and then ¢ is eliminated for player 1 because, after R
is eliminated, either a or b yield player 1 a payoff of 1 for sure, while ¢
yields 0. The pruning procedure is formally defined as follows. For a given
game tree T, let Weak — Adi(T) = {s; € Si(T) : s; is sequentially weakly
admissible in T}, and let Weak — Ad(T) = x;enWeak — Adi(T) .

DEFINITION 3 Common Reasoning about Sequential Weak Admissibility

o Let T be a finite game tree for N =1,2,...,n players.

o The strategies in T’ consistent with common reasoning about sequen-
tial weak admissibility are denoted by CRw 4(T'), and are defined as
Sollows: ’

1. WAYT) = 8(T).
2. WATTY(T) = Weak — Ad(T|W A(T)).
3. s € CRwa(T) <= Vj : s|[T|WAY(T)] € WA (T).

If T is a finite game tree, the set of strategies for player ¢, S;(T) is
finite, and our procedure will go through only finitely many iterations.
To be precise, let max =3, e |Si]—1; then the procedure will terminate
after max iterations, i.e. for all § > max, WA (T') = WAI(T).

‘We introduce the concept of Nash equilibrium and one of its refine-
ments, subgame perfection, for generic finite games in extensive form. A
strategy 8: in a game tree T' is a best reply to a strategy profile s—; of ¢’s
opponents if there is no strategy s for player i such that wi(s}, s—¢) >
u;i(si,8_i). A strategy profile s is a Nash eguilibrium if each strategy
s[i] in s is a best reply against s[—i]. A strategy profile s is a subgame
perfect equilibrium if for each subgame T of T, (3|T,) is a Nash equilib-
rium of T:. We say that a strategy s; in T is consistent with subgame
perfection if there is a subgame perfect strategy profile s of which s;
is a component strategy, i.e. s; = s[f]. We denote the set of player i’s
strategies in T that are consistent with subgame perfection by SPE;(T),



and define the set of strategy profiles consistent with subgame perfection
by SPE(T) = XienSPE;(T) . Note that not all strategy profiles that
are consistent with subgame perfection are subgame perfect equilibria. In
figure 2, all strategy profiles are consistent with subgame perfection, but
L,ba’ and R, ab’ are not equilibria, since in equilibrium 1 must be playing
a best reply to 2's strategy.

Finally, T is a game of perfect information if each information set I of
T is a singleton. The game in Figure 2 is a game of perfect information.

A standard approach to finite games of perfect information is to apply
Zermelo’s backwards induction algorithm which yields the set of strategy
profiles that are consistent with subgame perfection, i.e. SPE(T) 3, Com-
mon reasoning about weak admissibility, as defined by the procedure W 4,
does not follow Zermelo’s backwards induction algorithm. For example,
suppose that in a game tree a move m at the root is strictly dominated
by another move m' at the root for the first player. Common reasoning
about weak admissibility rules out m immediately, but the backwards in-
duction algorithm eliminates moves at the root only at its last iteration.
Nonetheless, our first result is that in games of perfect information, the
final outcome of the two procedures is the same: In these games, the
strategies that are consistent with common reasoning about. sequential
weak admissibility are exactly those consistent with subgame perfection.

PROPOSITION 1 Let T be a finite game tree of perfect information. Then
a strategy s; is consistent with common reasoning about sequential weak
admissibility in T if and only if s; is consistent with subgame perfection.
That is, CRwa(T) = SPE(T).

In games of imperfect information, the equivalence between strategies
consistent with subgame perfection and those consistent with common rea-
soning about sequential weak admissibility fails in both directions. Figure
1 shows that a strategy profile s may be a subgame perfect equilibrium al-
though s is not consistent with common reasoning about sequential weak
admissibility: The strategy profile (¢, R) is a subgame perfect equilibrium,
but R and (hence) ¢ are not consistent with common reasoning about se-
quential weak admissibility. And in figure 3, a is not strictly dominated
for player 2, but a is neither a best reply to L nor to R. Although a is
not strictly dominated, a seems like a bad choice because it never gives
player 2 a better payoff than the alternatives and sometimes gives her less.
In other words, a is weakly dominated. In the remainder of this paper,
we investigate how players might reason about a game on the assumption
that no player will choose a weakly dominated strategy.

3cf. (Osborne and Rubinstein, 1994, Ch. 6.2).
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4 Sequential Weak Dominance and For-
ward Induction

4.1 Weak Dominance

Informally, a strategy s; is weakly dominated by another strategy s; at
an information I; in a game tree T if s} never yields less to ¢ at I; than s;
does, and sometimes yields more. For example, in the game of Figure 3, a
is weakly dominated at 2’s information set. And in the game of Figure 4,
choosing b is weakly dominated for 2 because a yields player 2 the payoff
2 for sure, while b may yield only 0 if player 1 plays R2. As in the case
of weak admissibility, we call a strategy s; sequentially admissible just in
case 8; is admissible at each information set belonging to player 4.

DEFINITION 4 Weak Dominance and Admissibility in Extensive Form Games

o Let T be o finite game tree for N =1,2,...,n players.

o A strategy s; is weakly dominated by another strategy s. at an in-
formation set I; belonging to i in T just in case

1. for all strategy profiles s—; in T, and for ally in I, ui(si, s—s,y) <
ui(sﬁ,s_i,y), and
2. for some strategy profile s_; and some node y in I;, us(8:, 8, y) <
ui(séi S—iy y)
o A strategy s; is admissible at an information set I; in T just in case
3; 1s not weakly dominated at I;.

e A strategy s; is sequentially admissible in T if and only if s; is
admissible at each information set I; in T that belongs to i.

‘We define a procedure to capture common reasoning about sequen-
tial admissibility analogous to common reasoning about sequential weak
admissibility. To illustrate the procedure, consider figure 4. Common
reasoning about admissibility rules out b as a choice for player 2 because
b is weakly dominated. Then given that only a remain at 2’s decision
node, R; (strictly) dominates L, for player 1. So the only play consistent
with common reasoning about sequential admissibility is for player 1 to
play R1 and end the game. Note however that common reasoning about
sequential weak admissibility, i.e. the standard backwards induction pro-
cedure, is consistent with both R; and the play sequence Ly, b,Ls. So
even in games of perfect information, common reasoning about sequential
admissibility may lead to stronger results than common reasoning about
sequential weak admissibility.

For a given game tree T, let Seq — Adi(T) = {s;: € S(T) : s is
sequentially admissible in T'}, and let Seq — Ad(T") = xienSeq— Adi(T).

DEeFINITION 5 Common Reasoning about Sequential Admissibility

o Let T be a finite game tree with players N = 1,2, ...n.

11
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e The strategies in T consistent with common reasoning about se-
quential admissibility are denoted by CRgeq(T), and are defined as
Jollows:

1. Seq®(T) = S(T).
2. Seqt1(T) = Seq — Ad(T|Seq’ (T)).
" 8. 5 €CRseq(T) <= Vj : s|[T|Seq’ (T)] € Seqi*1(T).

We have seen that common reasoning about sequential admissibility
can lead to stronger results than common reasoning about sequential weak
admissibility; we next show that the former never leads to weaker results
than the latter. The key is to observe that if a strategy s; is strictly
dominated in a game tree T, s; will be strictly dominated in a restriction
of T. The next lemma asserts the contrapositive of this observation: If a
strategy s; is admissible in a restriction of T', s; is not strictly dominated
in T.

LEMMA 2 If T is a restriction of T' and s; is sequentially admissible in
T, then there is an eztension s of s; to T' such that s} is sequentially
weakly admissible in T'.

This means that our procedure Segq yields, at each stage j, a result that
is at least as strong as that of common reasoning about weak admissibility,
the procedure W A. Hence we have the following proposition.

PROPOSITION 3 Let T be a finite game tree. If a play sequence is con-
sistent with common reasoning ebout sequential admissibility in T, then
that play sequence is consistent with common reasoning about sequential
weak admissibility. That is, {play(s) : s € CRsq(T)} C {play(s) : s €
CRwa(T)}.

4.2 Forward Induction

It is commonly held that iterated weak dominance (i.e., iterated sequen-
tial admissibility) captures some of the features of backward and forward
induction. Fudenberg and Tirole (1993, p.461) thus state that: “Iterated
weak dominance incorporates backward induction in games of perfect in-
formation: The suboptimal choices at the last information sets are weakly
dominated; once these are removed, all subgame-imperfect choices at the
next-to-last information sets are removed at the next round of iteration;
and 50 on. Iterated weak dominance also captures part of the forward
induction notions implicit in stability, as a stable component contains a
stable component of the game obtained by deleting a weakly dominated
strategy”.

Indeed, we have previously shown that, in finite game of perfect in-
formation, common reasoning about weak admissibility yields exactly the
backward induction solution. In this section we show how, in finite games
of imperfect informatjon, common reasoning about admissibility yields
typical forward induction solutions. Thus backward and forward induc-
tion seem to follow from one principle, namely that players’ choices should

13



be consistent with common knowledge of (and common reasoning about)
admissibility. This result may seem questionable, as it is also commonly
held that backward and forward induction principles are mutually incon-
sistent (Kohlberg and Mertens 1986), (Myerson 1991). That is, if we take
backward and forward induction principles to be restrictions imposed on
equilibria, then they may lead to contradictory conclusions about how to
play.

A backward induction principle states that each player’s strategy must
be a best reply to the other players’ strategies, not only when the play
begins at the initial node of the tree, but also when the play begins at any
other information set.? A forward induction principle says that players’
beliefs should be consistent with sensible interpretations of the opponents’
play. Thus a forward induction principle restricts the range of possible
interpretations of players’ deviations from equilibrium play. Deviations
should be constructed as ‘signals’ (as opposed to mistakes), since players
should privilege interpretations of the opponents’ play that are consistent
with common knowledge of rationality. The typical example of a con-
tradiction between backward and forward induction principles would be a
game of imperfect information, where one may apply forward induction in
one part of the tree, and then use the conclusion for a backward induction
argument in a different part of the tree (Kohlberg 1990).

The game of Figure 5 is taken from (Kohlberg 1990, p.10). Since
player I, by choosing y, could have received 2, then by forward induction
if he plays n he intends to follow with T’; but for the same reason 11, by
choosing D, shows that she intends to play R, and hence—by backward
induction— I must play B. What seems to be at stake here is a conflict
between different but equally powerful intuitions. By playing D, player
II is committing herself to follow up with R, and thus player I would be
safe to play y. On the other hand, once player I's node has been reached,
what happened before might be thought of as strategically irrelevant, as I
now has a chance—by choosing n—of signaling his commitment to follow
with T. Which commitment is firmer? Which signal is most credible?

We must remember that players make their choices about which strat-
egy to adopt after a process of deliberation that takes place before the
game is actually played. During deliberation, we have argued, players will
employ some shared principle that allows them to rule out some plays of
the game as inconsistent with it. A plausible candidate is admissibil-
ity. Let us now see how the ex ante deliberation of the players might
unfold in this game by applying the procedure Seg(T) to the strategies
UL,UR,DL,DR and yT,yB,nT,nB. Note that if we recursively apply
to this game the concept of sequential admissibility presented in the pre-
vious section, we must conclude that the only strategies consistent with
common reasoning about sequential admissibility are UR, and yT. In-
deed, common reasoning about sequential weak admissibility alone yields
this result. For during the first round of iteration, the strategy nB of
player I is eliminated because this strategy is strictly dominated by any

4This principle corresponds to subgame perfection.
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Figure 5: Backward vs. Forward Induction Principles
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strategy that chooses y at I's first choice node. Similarly, the strategy
DL of player II is immediately eliminated because this strategy is strictly
dominated by any strategy that chooses U at the root. So after the first
round of elimination, IT’s second information set is restricted to the node
reached with nT', and her choices at this information set are restricted to
R only. This means in turn that y now strictly dominates nT’ at I's first
information set, and U strictly dominates DR at the root. Finally, the
strategies yB and UL are not strategies in the restricted tree obtained
after the first round of elimination, and therefore they are eliminated.
After the second round of elimination, only UR and yT survive. Thus
we predict that players who deliberate according to a shared admissibility
principle will expect U to be chosen at the beginning of the game.

A brief comment about the intuitive plausibility of our procedure is
pow in order. Note that the procedure we propose does not allow the
players to discount whatever happens before a given information set as
strategically irrelevant. For example, if player II were to choose D, player
I should not keep playing as if he were in a new game starting at his
decision node. We rather suggest that I should expect II to follow with
R, if given a chance. In which case he should play y and player I, who
can replicate I's reasoning, will in fact never play D. On the other hand,
playing D to signal that one wants to continue—if given a chance—with
R would make little sense, since II must know that nB is never going to
be chosen, and R makes sense only if it follows nB. In other words, D
is not a rational move for player II. Similar reasoning excludes nB as a
rational strategy for player I.

The problem with Kohlberg’s and similar examples is that no con-
straints are set on players’ forward induction “signals”. We define the
notion of a credible signal in an extensive form game, and show that the
credible signals are the signals consistent with common reasoning about
sequential admissibility (much as Selten’s subgame-perfect equilibria char-
acterize “credible threats”). Thus the examples in the literature which
purport to show the conflict between backward and forward induction
principles involve forward induction signals that are not credible.

The following definition formulates the notion of a forward induction
signal in general, and a credible forward induction signal in particular.
The idea is this: Let us consider a move m at a given information set I;,
and ask what future moves of player ¢ at lower information sets I! are con-
sistent with sequential admissibility and the fact that m was chosen at I;.
If there are future moves that are consistent with sequential admissibility
and the fact that m was chosen at I;, then we take the move m at I; to be
a signal that player i intends to follow with one of those moves at Il. But
we argue that in order for this signal to be credible to i’s opponents, at
least one of the future admissible moves must be consistent with common
reasoning about sequential admissibility in T

We say that an information set I} in a game tree T is reachable from
another information set I; with a strategy s; if thereis arenodes« € I,y €
I! such that some play sequence that is consistent with 3;|T» contains y.

16



DEerFINITION 6 Let T be a game tree with information set I;. Let T|I;
denote the restriction of T to nodes in I; and successors of nodes in I;.

s A sirategy s; is consistent with forward induction at I; if s; is se-
quentially admissible at I;.

o A move m at an information set I; is a forward induction signal for
S} at a lower information set I (written < I; : m, I} : S} >), where
3 €8 <=

1. s,-(I.-) =m;
2. I is reachable from I; with s;;
8. s; is consistent with forward induction at I;.

o A forward induction signal < I; : m,I] : S > is credible if some
strategy s; in S] is consistent with common reasoning about sequen-
tial admissibility in T, i.e. 8; € CRseq(T)i.

Let us illustrate these concepts in the game of figure 5. According to
our definitions, the only strategy that chooses n at I’s first information set
and is consistent with forward induction is nT. So < II1 i, I12 : {nT} >
is a forward induction signal, where II1 denotes I's first information set
and II2 denotes I's second information set. However, < II1 1n, I12 : {nT} >
is not a credible signal. For nT is inconsistent with common reasoning
about sequential admissibility, since such reasoning rules out L at II's
second information set. Similarly for player II, < 1111 : D, I121 : {DR} >
is a forward induction signal. But it is not a credible signal, since DR is
inconsistent with common reasoning about sequential admissibility. Hence
neither forward induction signal is credible, as "sending” either signal
is inconsistent with common reasoning about sequential admissibility as
defined by CRg.,.

In terms of reasoning about admissibility, the difference between Kohlberg’s
and our analysis is this. Kohlberg applies admissibility once to argue that
D is a forward induction signal for R and n is a forward induction signal
for T. But if we assume that admissibility is common knowledge among
the players, then neither D nor n are credible signals. Indeed, common
knowledge is not even needed to get to this conclusion: it is sufficient to
apply admissibility twice to get the same resuls.

5 Common Reasoning about Admissibil-
ity in the Extensive and Strategic Forms

A game G in strategic form is a triple (N, Sien,uien), where N is the
number of players and, for each player ¢ € N, S; is the set of pure strategies
available to ¢, and u; is player ¢’s utility function. Given a strategy profile
8 = (81,..., 8n),ui(8) denotes the payoff to player ¢ when players follow
the strategies (sy,...,8s). Consider the set of strategy profiles § = §; x
83 X ... X Sn, and two strategies s;, s} € S; of player i. Player i’s strategy
8; is weakly dominated by her strategy s; given S just in case:
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1. for all n — I-tuples s—; thosen by i’s opponents that are consistent
with S, u;i(s:, s—i) < ui(si,s-:) and
2. for ‘at least one n — 1-tuple s_; consistent with §, wui(si,s—:) <
ui (85, 5-i)-

A strategy s; is weakly dominated given S just in case there is a strategy
s consistent with S such that s; weakly dominates s; given S. A strategy
s; is admissible in S just in case s; is not weakly dominated given S. We
denote the strategic form of an extensive form game T by the collection
S(T) of strategies in T', with payoffs defined as in T

Our goal in this section is to determine what reasoning in the strate-
gic form of a game corresponds to common reasoning about sequential
admissibility. To this end we characterize what properties a strategy s:
must satisfy in the extensive form T of a game in order to be admissible in
the strategic form S(T). The key idea is to evaluate a strategy only with
respect to information sets that can be reached by the given strategy. For
example, in the game of figure 4, the strategy (R1Rp) for player 1 yields
the same payoff as (R1Ls). Hence neither strategy weakly dominates the
other in the normal form, although (R3L:) is sequentially admissible and
(R1R2) is not. Evaluating strategies only with respect to information sets
that are consistent with them leads to what we call proper weak domi-
nance, and proper admissibility. So in the game of figure 4, (R1R:) is
properly admissible.

We say that an information set I in a game tree T is reachable with a
strategy s; if some node in I is consistent with s;.

DEFINITION 7 Sequential Proper Admissibility v

o Let T be a finite game tree.

o A strategy s; is properly weakly dominated at an information set
I; belonging to i in T just in case I; is reachable with s; and s; is
weakly dominated at I;.

e A strategy s; is properly admissible at an information set I; just in
case s; is not properly weakly dominated at I;.

o A strategy s; is sequentially properly admissible in T if and only if
s; is properly admissible at each information set I; in T that belongs
to player t.

We define the result of common reasoning about seque!itia.l proper
admissibility in the by now familiar way. For a given game tree T’, let
Seq — PA:(T) = {s:; € Si(T) : s: is sequentially properly admissible in
T}, and let Seq — PA(T) = XienSeq — PA(T).

DEFINITION 8 Common Reasoning About Sequential Proper Admissibility

o Let T be a game tree, with players N = 1,2, ..n.

o The strategies in T consistent with common reasoning about sequen-
tial proper admissibility are denoted by CRpseq(T), and are defined
as follows:
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1. PSed®(T) = S(T). .
2. PSeq ™ (T) = Seq — PA(T|PSeq/(T)).
8. 3 € CRpseq(T) <= Vj: s|[T|PSeq’ (T)) € PSeq’t(T).

The two notions of sequential admissibility are equivalent in terms of
their predictions about how the game will be played. That is, exactly the
same play sequences are consistent with both restrictions.

LEMMA 4 Let T be a finite game tree. Then the play sequences consistent
with sequential admissibility are ezactly those consistent with sequential
proper admissibility. That is, {play(s) : s is sequentially admissible in
T} = {play(s) : s is sequentially properly admissible in T}.

From this fact it follows immediately that common reasoning about
sequential admissibility yields the same predictions as common reasoning
about proper sequential admissibility.

PROPOSITION & Let T be a finite game tree. Then the play sequences con-
sistent with common reasoning about sequential admissibility are ezactly
those consistent with common reasoning about sequential proper admissi-
bility. That is, {play(s) : s € CRseq(T)} = {play(s) : s € CRpseq(T)}.

However, it is not always the case that a strategy that is admissible in
the strategic form of a game is properly admissible in an extensive form of
the game. For example, in the game of figure 6, the strategy L is properly
weakly dominated for player 2 at her information set: at node y, R yields a
" higher payoff than L, and starting at node z, both choices yield the same.
On the other hand, node y cannot be reached when 2 plays L, so that L is
admissible in the strategic form of the game, yielding 2’s maximal payoff
of 1. The game in figure 6 has the strange feature that if 2 plays R at « to
arrive at ¥, she has ‘forgotten’ this fact and cannot distinguish between
z and y. Indeed, this is a game without perfect recall. Perfect recall is
defined as follows.

DEFINITION 9 (KUHN) Let T be a finite game tree. Then T is an extensive
game with perfect recall if and only if for each information set I; belonging
to player ¢, and each strategy s; in T, all nodes in I; are consistent with
s:i if any node in I; is.

We note that if T' is a game with perfect recall, then all restrictions of
T satisfy perfect recall. The next proposition shows that in extensive form
games with perfect recall, the notion of proper weak dominance coincides
exactly with admissibility in the strategic form.

PROPOSITION 6 Let T' be a finite game tree with perfect recall. Then o
strategy s; for player ¢ is admissible in the strategic form S(T) if and only
if 8; is sequentially properly admissible in T'.

Consider a game G in strategic form. We define an order-free iterative
procedure for eliminating weakly dominated strategies. If S is a set of
strategy profiles, let Admiss;(S) be the set of all strategies s; for player i
that are consistent with S and admissible given S, and let Admiss(S) =
X ieNAdmissi(S) .
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Figure 6: A Game Without Perfect Recall
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Figure 7: Order-Free Elimination of Weakly Dominated Strategies

DEFINITION 10 Common Reasoning About Admissibility in the Strategic
Form

o Let the strategic form of a finite game G be given by (N, Sien, tien),
and let § = 81 x 82 X ... X S, be the set of strategy profiles in G.

¢ The strategies in S consistent with common reasoning about admis-
sibility are denoted by CR44(S), and are defined as follows.

1. Ad%(S)=S5.
2. Ad’Y(S) = Admiss(Ad#(S)).
8. CRaua(S) =7, Adi(S).

The procedure goes through at most Eee n 18i — 1| iterations; that is,
for all § > EiEN |S: — 1], Ad?(S) = AdHY(S) .

For example, consider the game in figure 7. In the first iteration, player
1 will eliminate ¢, which is weakly dominated by b, and player 2 will elim-
inate R, which is dominated by L and M. Since admissibility is common
knowledge, both players know that the reduced matrix only contains the
strategies a,b and L, M. Common reasoning about admissibility means
that both players will apply admissibility to the new matrix (and know
that they both do it), and since now L dominates M, both will know that
M is being eliminated. Finally, common reasoning about admissibility
will leave b, L as the unique })utcome of the game.
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Our main result is that in games with perfect recall, iterated sequential
proper admissibility and order-free elimination of inadmissible strategies
in the strategic form yield exactly the same result.

THEOREM 7 Let T be a finite game tree with perfect recall. A strategy pro-
file s is consistent with common reasoning about sequential proper admis-
sibility in T if and only if s is consistent with common reasoning about ad-
missibility in the strategic form of T. That is, CRpseq(T) = CR4a(S(T)).

It is noteworthy that if the order-free elimination of inadmissible strate-
gies in the normal form yields a unique solution, then that solution is a
Nash equilibrium (Bicchieri 1994).

General existence is now easy to establish.

PROPOSITION 8 For all finite games G with pure strategy profiles S, CRa4(S) #
9.

6 Proof of Results

For the proof of proposition 1, we rely on the well-known one-deviation
property of subgame perfect equilibrium: If it is possible for one player
to profitably deviate from his subgame perfect equilibrium strategy si, he
can do so with a strategy s; that deviates from s; only once.

LEMMA O Let T' be a finite game tree of perfect information. Then s is a
subgame perfect equilibrium in T if and only if for each node =z, for each
player i, ui(s[i), s[—i], £) > ui(s}, s[—i], ), whenever s[i] and s} differ only
atf x. )

Proof. See (Osborne and Rubinstein 1994, Lemma 98.2).

For the next proposition, we note that if T' is finite, then our iterative
procedure goes only through finitely many iterations. In particular, this
means that if a strategy s; is strictly dominated given CRw4(T'), then s;
is not in CRwa(T).

PROPOSITION 1 Let T be a finite game tree of perfect information. Then
a strategy s; is consistent with common reasoning about sequential weak
admissibility in T if and only if s; is consistent with subgame perfection.
That is, CRwA(T) = SPE(T).

Proof. We prove by induction on the height z of each node that
. CRwa(T:) = SPE(T:). The proposition follows when we take « to be
the root of T'.

Base Case, h(z) = 1. Then all successors of z are terminal nodes. Let
player i be the player to move at z. Let max(z) be the maximum payoff
player i can achieve at = (i.e. max(z) = max{u:(y) : ¥ is a successor of
z}). Then s;|T; is consistent with subgame perfection at = if and only if
si(x) yields ¢ the maximum payoff max(z), which is exactly when s;|T; is
not strictly dominated at «.

Inductive Case: Assume the hypothesis in the case when h(y) < h(z)
and consider z.
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(=): Let s be a strategy profile consistent with common reasoning
about sequential weak admissibility (i.e. s € CRwa(T:) ). Suppose that
it is player ¢’s turn at . For each player j,3[j]|T, is consistent with
subgame perfection in each proper subgame T}, of Ts, by the inductive
hypothesis and the fact that s[§] is consistent with common reasoning
about sequential weak admissibility in T,. So the implication (=) is
established if we show that si] is consistent with subgame perfection in
T:. Let y be the successor of x that is reached when i plays s[i] at «.
Let max(y) be the maximum that ¢ can achieve given common reasoning
about sequential weak admissibility when he follows s[i] (i.e. max(y) =
max{ui(s[i], s_i, ¢) : s_; is consistent with CRw 4(T%)}). For each ' that
is a successor of z, let min(y') be the minimum that ¢ can achieve given
common reasoning about sequential weak admissibility when he follows
s[é] in Tyyr. Then we have (*) that max(y) > min(y’) for each successor '
of . For otherwise player ¢ can ensure himself a higher payoff than s[¢]
can possibly yield, by moving to some successor y' of £ and continuing
with s[f]. That is, the strategy s} which moves to ¢’ at = and follows s[3]
below 3y’ strictly dominates s[i] in T:|CRw 4 (T%). But since T and hence
T is finite, this contradicts the assumption that s¢] is consistent with
CRwa(T:). Now by inductive hypothesis, CRwa(T}+) = SPE(T,) for
each successor 3’ of z. So there is a subgame perfect equilibrium smax in
Ty which yields ¢ the payoff max(y) in Ty and in which player i follows
s[f] (i-e. s[i] = smax[f]). Again by inductive hypothesis, for each successor
node 3’ of z there is a subgame perfect equilibrium s’,ﬁin in T+ which gives
player ¢ the payoff min(y’) and in which player ¢ follows s[¢] in T,,. Now
we define a subgame perfect equilibrium s* in T} in which player ¢ follows
s[i}:

1. 5" [1{a)) = slil({=))

2. in Ty,s* follows Smax,

3. in Ty, s* follows .sz;n, where ' is a successor of  other than y.
By our observation (*), there is no profitable 1-deviation from s*
for player ¢ at x, and hence by lemma 0, s* is a subgame perfect
equilibrium in T7.

(<) Let s be consistent with subgame perfection in T».. Let ¢ be the
player moving at . Consider any strategy s[j] in s, where j # 4. Since
J is not moving at 2, s[j] is consistent with common reasoning about se-
quential weak admissibility in T% if and only if s[§]|Ty is consistent with
common reasoning about sequential weak admissibility in each subgame
Ty of T. Since s is consistent with subgame perfection in T, there is a
subgame perfect equilibrium s* in T in which j follows s[j}. Since s* is
subgame perfect, s*|T; is subgame perfect in Ty. Hence s[§]|Ty = s*[5]|Ty
is consistent with subgame perfection in 7). By inductive hypothesis, this
entails that s[j]|Ty is consistent with common reasoning about sequential
weak admissibility in Tj. Since this is true for any subgame T} of T, s[j]
is consistent with common reasoning about sequential weak admissibil-
ity in T>. Next, consider s[¢], the strategy followed by the player who

23



is moving at z. We just established that for each iteration WA?(T) of
common reasoning about weak sequential admissibility, s*[—¢] is consis-
tent with W A (T'). Since s* is a subgame perfect equilibrium in Tz, s*[4]
is a best reply against s*[—4] in T and each subgame of T;;. So in each
subgame T} of T (including T%) and at each iteration WA(T"), s*[4] is a
best reply against some strategy profile of his opponents consistent with
W A?(T), namely s*[—i]|T;, and hence s*[i] is sequentially weakly admis-
sible given W A?(T). Since CRwa(T) = W A*(T’) for some k, because T
is finite, $*[i] is consistent with common reasoning about sequential weak
admissibility. This shows that all strategies in the strategy profile s are
consistent with common reasoning about sequential weak admissibility in
T., and completes the proof by induction.O0

LEMMA 2 If T is a restriction of T' and s; is sequentially admissible in
T, then there is an extension s, of s; to T’ such that s; is sequentially
weakly admissible in T".

Proof. We construct s; as follows. At each information set I; in T"
such that I; contains a node in T, s} = s;. At all other information sets
I;, s follows a strategy that is weakly admissible at I;. We claim that 3]
is sequentially weakly admissible in T”; let I; be any information set in T”
belonging to 4. '

Case 1: I; contains a node = in T. Since T is a restriction of T”,
I; contains all nodes in Iy(z), where Ir(z) is the information set in T'
containing z. So if s; is strictly dominated in T' at I;, then s; is strictly
dominated in T at Ir(z), contrary to the supposition that s; is admissible
at It (:c)

Case 2: I; contains no node z in T.By construction, s; is weakly
admissible at I;.0

PROPOSITION 3 Let T be a finite game tree. If a play sequence is con-
sistent with common reasoning about sequential admissibility in T, then
the play sequence is consistent with common reasoning about sequential
weak admissibility. That is, {play(s) : s € CRseq(T)} C {play(s) : s €
CRwa(T)}.

Proof. We prove by induction on j > 0 that for each j, T|Seq’ (T) is a
restriction of T'|W 4%(T).

Base Case, j = 0. Then Seq®(T) = W A%(T), so the claim is immedi-
ate.
. Inductive Step: Assume that T|Seq’(T) is a restriction of T'|W A (T,
and consider j + 1. Choose any strategy profile s in Seq’™'(T). By
lemma 2, extend each s[i] in s to a strategy s'[¢] that agrees with s[i] on
information sets that have members both in T|Seq’ (T) and T|W A7(T),
and is sequentially weakly admissible in T|W A7(T). Call the resulting
strategy profile s'; s’ is in WAt(T). Clearly s and s result in the
same play sequence, i.e. play(s’) = play(s), because the same actions
are taken at each information set. So all nodes that are consistent with
Seq’+t}(T) are consistent with W A/ (T, which means that T|Seg’ ™' (T)
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is a restriction of T|W A7*!(T). This completes the proof by induction.
O

LEMMA 4 Let T be a finite game tree. Then the play sequences consistent
with sequential admissibility are exactly those consistent with sequential
proper admissibility. That is, {play(s) : s is sequentially admissible in
T} = {play(s) : s is sequentially properly admissible in T'}.

Proof. (2) Let s be a sequentially properly admissible strategy profile
in T, and let = be any node reached in play(s) such that I(z) belongs
to player ¢. Then s[i] is admissible at I(z) since I(z) is consistent with
s[t]. Now we may modify s to obtain a strategy profile s*, in which each
player ¢ follows s[¢] at any information set containing a node in play(s),
and follows an admissible strategy at every other information set. Then
s* is sequentially admissible, and play(s*) = play(s).

(€) This is immediate because all sequentially admissible strategies
are sequentially properly admissible.0]

PROPOSITION 5 Let T be a finite game tree. Then the play sequences con-
sistent with common reasoning about sequential admissibility are ezactly
those consistent with common reasoning about sequential proper admissi-
bility. That is, {play(s) : s € CRseq(T)} = {play(s) : s € CRpseqe(T)}.

Proof. We prove by induction on j that for each j > 0,T|Seq’ (T) =
T|PSed’ (T).

Base Case, j = 0. The claim is immediate since Seq®(T) = PSeq®(T) =
S(T).

Inductive Case: Assume that T|Seq’ (T) = T|PSeq’(T), and consider
j + 1. The claim follows immediately from lemma 4.0

PROPOSITION 6 Let T be a finite game tree with perfect recall. Then a
strategy s; for player ¢ is admissible in S(T) if and only if s; is sequentially
properly admissible in T'.

Proof. Suppose that a strategy s; in S(T') for player ¢ is weakly dom-
inated in S(T). Then there is a strategy s} consistent with S(T') such
that

1. for all strategy profiles s_; consistent with S(T"), ui(s¢, s—:) < ui(s}, $-:),
and

2. for some strategy profile s, consistent with S(T'),ui(ss,8%;) <
ui(s, 82;).

Let = be the first node that appears along both the plays of s; against

s ; and s; against s* ; at which s; deviates from s}, so that x € range(play(s;, s*;))N
range(play(s;, s*,;)) and s;(Li(z)) # s:(Ii(x)). Then z is consistent with
s; and s{ in T. Let y be any node at I;(z) consistent with s; and s,
and let s_; be any strategy profile of i’s opponents. Then w;(si,5—s,7y) <
ui (8}, $—i,y); for otherwise, by perfect recall, let s*, be a strategy profile
of #’s opponents such that both play(si,s*;) and play(s}, s*;) reach y,
and such that s* ;|Ty = s_;|T. Then w;(s;, s;) > wi(s}, s*;), contrary to
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the hypothesis that s} weakly dominates s; in S(T'). Since we also have
that u;(s:, s*;,2) < ui(s}, s%;, ), it follows that s; weakly dominates s;
at I;(z) so that s; is not sequentially properly admissible.

Suppose that a strategy s; is properly weakly dominated at an infor-
mation set I; in T by strategy s;. Then there must be a node z in I; con-
sistent with s; and a strategy profile s”; in T such that s} yields a higher
payoff at ¢ against s’ ; than s; does, i.e. wui(si,s_;,2) < wi(si,s_;,z).
Assume without loss of generality that z is reached by the play sequence
of s; against s, i.e. & € range(play(si,s_;)). Now we define a strategy
s! that weakly dominates s; in T as follows.

1. At an information set I} that does not contain z or any successor of
z, 8i(I;) = s:(L3).

2. At an information set I} that contains x or a successor of z, s} (I}) =
si(Li)-

We show that s} weakly dominates s; in S(T'). Since play(si,s—:)
reaches «, play(s}, s—;) also reaches =, and so u;(s}, s—;) = ui(s],5-:,¢) =
wi(sh, s—i, ) > ui(ss,5-4,2) = vi(si, s—;). Thus s weakly dominates s;
in S(T) if for no s—; in T, u;(si,5-:) > ui(s},s-:), which we establish
now. Let a strategy profile s_; in T be given.

Case 1: the play sequence of (s},s—:) does not reach Ii(z). Then
play(s?, s—:) = play(si, s-i), and the claim follows immediately.

Case 2: the play sequence of (s}, s—;) goes through some node y in
Ii(x). Since « is consistent with s; and T is a game with perfect recall,
y is consistent with s;, and so play(si, s—;) reaches y. As before, we have
that (a) ui(si,$—i,y) = ui(si, s—;) . Also, s coincides with s; after node
y, and so (b)ui(s},s-:) = ui(s}, s—i, y). Since s; weakly dominates s; at
I;(z), and y.is in L(z), it follows that (c) wi(s}, s—¢,9) > ui(ss,5-4,9).
Combining (a), (b) and (c) it follows that u:(s},s-i) > us(8s,5-i). This
establishes that s; is weakly dominated given S(T).0

THEOREM 7 Let T be a finite game tree with perfect recall. A strategy
profile s is consistent with common reasoning about sequential proper ad-
missibility if and only if s is consistent with common reasoning about ad-
missibility in the strategic form of T. That is, CRpseq(T) = CR4a(S(T)).

Proof. We prove by induction on j that for all j > 0, PSeq’ (T) =
Adi(S(T)).

Base Case, j = 0. Then by definition, PSeq®(T) = S(T) = Ad°(S(T)).

Inductive Step: Assume that PSeqj (T) = Ad/(S(T)) and consider
j+1. By inductive hypothesxs TIPSeq’ T) = TIAdJ (S(T)). Now a strat-
egy s; is in PSeq!™(T) <= s; is in PSeq!(T) and s; is sequentially
properly admissible in T|PSeq’ (T). By inductive hypothesis, the first
condition implies that s; is in Ad?(S(T')). By proposition 6 and the facts
that T|PSeq’ (T') = T|Ad? (S(T)) and that all restrictions of T are games
with perfect recall, the second condition implies that s; is admissible in
S(T|Ad? (S(T))) = Ad/(S(T)). So s; is in Ad’*!(S(T)). Conversely, a
strategy s; is in AdYY(S(T)) < s: is in Ad'(S(T)) and s; is admis-
sible in Ad?(S(T)). By inductive hypothesis, the first condition implies
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that s; is in PSeq/(T), and the second condition may be restated to
say that s; is admissible in S(T"|Ad?(S(T))). By proposition 6, the sec-
ond condition then implies that s; is sequentially properly admissible in
T|Ad?(S(T)) = T|PSeq’ (T). Hence s; is in PSeqi ™' (T). This shows that
PSeq? ™ (T) = Ad’+1(S(T)), and completes the proof by induction.0

PROPOSITION 8 For all finite games G with pure étrategy profiles S,CR44(S) #
0.

Proof. The admissible elements in ,S’{ survive at each iteration j ,
for each player ¢, and there always is a admissible element in each S}

since each Sf is finite. Hence S7 # @ for any 4, and so S’E"GNIS"_ll =
CR4(S) £ 0.0
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