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1 Introduction

In a series of important papers, Geiger, Verma and Pearl (Geiger et al. 1990
and 1988 and Pear]l 1988) outlined an axiomatic approach to characterizing
and inferring independence relations in graphical statistical models. A class of
graphical models of particular interest are the class of directed acyclic models
called belief networks. Pearl introduced d-separation as a rule to infer the
independence facts implied by a particular directed acyclic graph; an alternative
equivalent rule has been proposed by Lauritzen et al. (1990). Geiger et al. (1990)
have shown that d-separation is atomic-complete for independence statements
for discrete Bayes networks; One is able to infer all of the atomic independence
facts that can be legitimately inferred from the structure of the Bayes network.
In this paper I show that d-separation has the property of strong-completeness
for discrete Bayes networks; complete for arbitrary disjunctive and conjunctive
combinations of independence statements. This result shows that d-separation
as a rule of inference can not be improved upon.

The measure-theoretic approach to the proof of strong-completeness has
important implications for one major approach to learning belief networks.
Broadly speaking, there are two types of approaches to learning belief networks;
the scoring approaches (Bayesian, Likelihood, MDL) and the independence ap-
proaches (PC, CI, SGS). The independence approaches have been shown to
be asymptotically reliable assuming that the population distribution stands in
a certain relationship to the structure to be learned. The distribution which
stands in this relationship to the structure has been called by many names,
e.g., faithful, stable; and the structure has been named a perfect map of such
a distribution. I demonstrate that faithful multinomial distributions exist for
every directed acyclic graph and every discrete state space. Furthurmore, in a
specific measure-theoretic sense, there are many more faithful distribution than
unfaithful distributions. .

The new results in this paper are about discrete Bayes networks. Strong-
completeness and the existence of faithful distributions has been shown previ-
ously for the Gaussian case. The discrete (multinomial) case is of special interest
since many of the applications of machine learning and data modelling involve
discrete data. I include the results for the Gaussian case and give a new and
uniform proof of the results for both the Gaussian and multinomial cases.

2 Strong-completeness — the logic of belief net-
works

The basic goal of a logic is to derive statements entailed by the assumptions. In
the case of the logic of belief networks we are interested in deriving independence
statements from a directed acyclic graph G = (V,E) which are true of any
distribution P from a specific class of distributions over V for which G is an



I-map (see Pearl 1988)!. We use P to denote an arbitrary class of distributions,
Par to denote the class of multivariate normal distributions, and Pp for the
class of multinomial distributions.

We let i range over independence statements, A 1| B|C for disjoint sets
A, B and C and is read A is independent of B given C. We let I range over
(i) independence statments and (ii) finite conjunctions and disjunctions of I
statements. G entails I (written G' |=p I) if and only if I is true in every
distribution in P for which G is an I-map.

As with any logical calculi, there are rules of inference. The central rule of
inference in this logic is that of d-separation. The first question one asks about a
rule of inference is whether it is sound. The soundness of d-separation as a rule
of inference has been demonstrated in Geiger et al. (1988). The next question
one asks about a set of inference rule is whether the set of rules is complete;
whether all of the true statements are derivable. A sentence I is derivable by
a set of rules D from assumptions G (written G Fp I ) if and only if there is a
proof of Ifrom G using the rules of inference D. Geiger et al. (1990) have shown
that d-separation as a rule of inference is atomic-complete for the multinomial
and multivariate normal class of distributions.

Theorem 4 [Geiger et al.] G |=p,, i if and only if G Fp i.
Theorem 3 [Geiger et al.] G |p,, i if and only if G Fp i.

Thus, for any given atomic independence fact i we can use d-separation to
check if the independence statement i is entailed by the graphical structure.
This does not allow us to check independence sentences which are disjunctive
combination or sentences of disjunctive and conjuctive combinations of such
statements. To derive disjunctive and conjunctive combinations of independence
statements the set of inferential rules D must be expanded to a set of inferential
rules D+ which includes A—introduction and V—introduction.

Theorem 11 [Strong-completeness] G E=p, I if and only if G Foy L

Theorem 12 [Strong-completeness; Geiger et al., Spirtes et al.] G Er.
1if and only if G Fp, 1.

'The proofs of the strong completeness theorems are sketched in the appendix.
As with any completeness proof, if a disjunctive independence sentence A 1 [
B|C VX Ll Y|Z is not true for a graph G we must show that there is a
model — in our case a probability distribution — in which both A 1 | B|C and
X 11 Y|Z are not true. Let graph G be given and assume that it is not that case
that G =p, A 11 B|C. Geiger et al. (1990) gave a method for constructing a
distribution P for which the given graph G is an I-map such A L1 B|C is false
in P. T extend the result to show that there exists a distribution for arbitrary
disjunctive combinations of non-entailed independence facts.

1Assuming that P has a density or probability mass function then @ is an I-map for P if
and only if P is Markov with respect to G (see Lauritzen et al. 1990 and Spirtes et al. 1993).



3 Assumptions for learning belief networks

There are several algorithms which use independence tests to learn belief net-
works from sample data including the PC, and SGS (Spirtes et al. 1993). Ba-
sically these algorithms perform a series of statistical tests of independence
using the sample data and based upon the results of these tests the algorithms
eliminate a set of possible models until the remaining set of models can not
be distinguished by independence facts. The methods enumerated above differ
in the series of independence test that are used; the selection and ordering of
the tests can improve the practical reliability and computational tractability of
these algorithms. Let S be any arbitrary boolean combination of indepen-
dence statements about variables in graph G; we write S when the appropriate
graph is clear from context. We interpret = X L[ Y|Z to mean that X, and Y
are conditionally dependent on Z. A distribution P is faithful to the graphical
structure G if and only if exactly the independence facts true in P are entailed
by the graphical structure G. We say that G faithfully entails S (written
G % S) if and only if S is true in every distribution in P which is faithful to
G. It is easy to show that for all directed acyclic graphs G and for all S that
G % S or G EZ —S. Using this fact we can show the theoretical reliability of
these algorithms assuming the correctness of the statistical tests and that the
population distribution is faithful to the underlying graphical structure. Let
test; be the result of the i test (e.5. X LL Y|Z or =X LL Y|Z for disjoint
subsets X,Y,Z of vertices).? From the assumption, we can eliminate models
in the following way. After performing ¢ tests one can eliminate a model G
if = /'\f_._1 test; is faithfully entailed by G. We can eliminate models until the
remaining set of models are not destinguishable by conditional independence
facts.

The assumption of faithfulness has been criticized by several researchers.
The essence of the criticism is captured by the following question. How can one
ever be confident that the population is faithful to the underlying structure?

This is a reasonable question but even stronger question seems warrented.
Are there faithful distributions (in the class of distributions of interest) for any
arbitrary directed acyclic graph? The theorems below demonstrate that the
answer to this question is affirmative. The proof of existence for Par uses an

alternative proof technique as compared to the proof given in Spirtes et al.
(1993).

Theorem 9 [Existence] For all directed acyclic graphs G there ezists a P € Po
which is faithful to G.

Theorem 10 [Existence—Geiger et al.] For all directed acyclic graphs G

?As above we can define a logical calculus for faithful derivability (G Fx 3) using the rule
of d-separation to derive both independence and dependence facts. By adding a complete set
of propositional inference rules we can show that this logical calculus is strongly-complete for
S sentences.



there exists a P € Py which is faithful to G.

But these theorems do not answer the criticism of the unreasonableness
of the assumption of faithfulness. The next theorem shows that at least in
a measure-theoretic sense the assumption of faithfulness is reasonable. The
distributions in Pp and Py are parametric distributions. Let wg be the set of
linearly independent parameters needed to parameterize a discrete distribution
for which graph G is an I-map and let wg be the set of linearly independent
parameters needed to parameterize a multivariate normal distribution for which
graph G is an I-map.

Theorem 7[Measure zero] With respect to the Lebesgue measure over 72,

the set of distributions which are unfaithful to G is measure zero.

Theorem 8 [Measure zero—Spirtes et al.] With respect to the Lebesgue
measure over W‘?;/, the set of distributions which are unfaithful to G is measure
zero,

4 Final remarks

I conjecture that the proof techniques presented in this paper can be extened
to prove analogous measure zero, existence and strong-completeness results for
the conditional Gaussian class of distributions (see Whittaker 1990).
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5 Appendix A — Proof sketches

The details given in this section are a bare-bones sketch of the proofs of the
theorem in this paper. Detailed proofs can be found in the following section.
Let G be some directed acyclic graph and 7¢ be the set of linearly independent
parameters needed to encode any multinomial or multivariate normal distribu-
tion for which G'is an I-map. As the context demands, we let ¢ represent the
parameters for either a multinomial or multivariate normal distribution.

Claim 1 The independence facts not entailed by d-separation applied to directed
acyclic graph G hold only for values of the parameters which statisfy non-trivial
polynomial constraints.

The proof of this claim is in two parts. First one can show, based upon the
specific parameterization (multinomial or multivariate normal) that the con-
straints are polynomials in the parameters. Second we show that the con-
straints are non-trivial (not all value of the parameters satisfy the constraints).
The proof of the non-triviality is similar to the main lemma used in the atomic-
completeness result of Geiger et al..

Claim 2 For independence statement I not entailed by G and for the Lebesgue
measure over the set of parameters ng the set of values where the independence
fact1 holds is Lebesgue measure zero.

The proof of this claim follows from the fact that the solution set to non-
trivial polynomial constraints has measure zero (See Spirtes 1994, unpublished).

Theorem 7 and Theorem 8 follow from Claim 2. With respect to a given
graph G, only a finite number of independence facts are not faithfully entailed.
Each of these independence facts hold only for a set of parameterizations of
measure zero. The union of all of these finitely many sets of parameterizations
is measurable and is of Lebesgue measure zero. ' '

Theorem 9 and Theorem 10 follow from Theorem 7 and Theorem 8 by the
following measure-theoretic argument. Given that the set of parameterizations
in which the distribution is unfaithful are of measure zero and that there are
sets of (permissable) parameterizations with positive measure then there are
parameterizations which are faithful.

Finally, Theorem 11 and Theorem 12 and the strong-completeness for §
sentences with respect to k5 follow from the existence of faithful distributions
for the two classes of distributions; all and only the idependence facts which
follow from the rule of d-separation hold in the faithful distribution.

6 Appendix B — Proofs

A discrete Bayes network is a tuple (G, P) where P is a probability function
over a finite set of variables V (each of which take on at least 2 values) and Gis



a graph over the same set of variables V such that there exists a factorization

of P(V) such that
P(V) = H P(Alparents(A))
AV
where P(A|parents(A)) is a conditional probability distribution and parents(A)

is the set of parents of vertex A in graph G. Linear Bayes networks are described
in Spirtes et al. (1993). ‘ :

6.1 Parameterizations of Bayes networks

Given that the joint distribution P factors according to the graph G into condi-
tional probabilities we can parameterize the joint distribution by parameterizing
each of the conditional distributions. For variable A € V we define N V(A) as
the number of possible values that A can take and C(A) as the set of possible
values of A. Let inst(0) = 1 and inst({Al, ..., An}) = NV(41) x ... x NV(An).
For each conditional probability P(A|parents(A)) we can represent: the condi-
tional distribution with nparam(A4, parents(A)) linearly independent parame-
ters where

nparam(A, parents(A)) = (NV — 1) x inst(parents(A)).

The reason for the (NV(A) - 1) is that for any given instantiation of the par-
ents the NV(A4)** probability is a linear combination of the other (NV(4) -
1) parameters. We adopt the following convention for naming the parame-
ters. ‘9D,d,(a1,...,aN) is the parameter for the conditional probability P(D =
d|Al = al,..., AN = aN) where parents(D) = Al,..., AN and where the vari-
bles (Al,..., AN) are ordered lexicographically. Let 6 be the set of all of the
parameters for all of the variables in V. Each of the parameters 0p g (a1,.. N)
satisfies the constraints that 0 < 0p,d,(a1,..,any < 1 and for all .al,...,aN it
is the case that ZdEC(D) 0D'd,(a1,m,aN) = 1.3 The parameterization of linear
Bayes networks is discussed in Spirtes et al. (1993).

6.2 Faithfulness

Let P be a probability function (a density or mass function as required) over
V and G be a graph over the vertices in V. (G, P) are said to satisfy the
Markov condition if and only if for all A € V it is the case that A LI
V\(parents(A) U descendants(A)) given the parents(A). If P is a discrete
probability function then (G,P) is a discrete Bayes network if and only if
(G, P) satisfies the Markov condition. If P is a multivariate normal density
function then (G, P) is a Gaussian Bayes network if and only if (G, P) satis-
fies the Markov condition. A conditional independence relation is entailed for

3Note that if the distribution P is not positive then some of the parameters are not strictly
necessary to parameterize the distribution.



graph G if and only if it is true in all distributions P such that (G, P) satisfies
the Markov condition. Let {G, P) be a discrete (Gaussian) Bayes network. A
discrete (Gaussian) Bayes network is faithful if and only if the conditional inde-
pendence relations true in P are exactly those entailed by the factorization of
P with respect to G.

6.3 Method for constructing constraints

In this section we give a method for calculating the polynomial constraint that
must be satisfied for a violation of faithfulness to occur.

Let (G, P) satisfy the Markov condition and let A 1L B|C be an indepen-
dence fact true in P but such that 4 Lt B|C is not implied by the Markov
condition applied to G.

A1l B|C &

V(a,b,¢) if P(C =¢) # 0 then
P(A=a,B=blC=c¢c) =
P(A=a|C=c)P(B=b|C=c) & (%)

Y(a, b, c)-if P(C = c) # 0 then
P(A=a,B=b,C=¢c)P(C=c)=
P(A=a,C=¢)P(B=),C=c)

Thus, for a violation of faithfulness to occur a set of inst({A, B} UC) many
equations must be satisfied. Now I will show that each of these equations is a
polynomial in the parameters of the model. Let = Ancestor(4, B, C).

P(Q) = ZV\Q P(V) = Hxsn P(X|P‘”’e"t3(X)) (1)

Notice that all of the probabilities which occur in the last statement in (*) are

of the form P(F=f) for some set of vertices F and some instantiations of those

vertices f. For instance if F = {4} U{B}UC then P(A=a,B=b, C=c) is of the

form P(F=f).

P(F =1) = Yo\p P(F =£,Q\F) (2)
=2_5(1) (3)

where each summand S(7) is a product of |2] many parameters (see equation
1). There are I = inst(Q\F) many summands. Let O1,..., 07 be the I instan-
tiations of the variables in Q\F. We define M (4, 1) as follows
M(A,4) = the value of A in the i** instantiation of Q\F if A € Q\F

= the value of A in the instantiation fif A € F.

The #** summand S(3) for (2) is formed in the following fashion. Let p(4, 7)
be the j** parent of A with respect to the lexicographic ordering over the set of
parents of A.



5(1) = I1aen 04,M(A,0),(M(p(4,1),0),...M(p(A,n),4)

where A has n parents

Since the constraints are products of terms of the form P(F=f) given in
(2) the constraints are polynomials in the parameters of the discrete Bayesian
network.

Violations of faithfulness occur in the linear case for distributions only if
polynomial constraints in the parameters of the model hold. This is shown in
Spirtes et al. (1993).

6.4 The polynomial constraints are non-trivial

A polynomial in n variables is said to be non-trivial (not an identity) if not
all instantiations of the n variables are solutions of the polynomial. Now we
show that all of the polynomials for non-entailed independence constraints are
non-trivial.

We do this by using the property weak transitivity which is guaranteed to
hold in Gaussian and discrete distributions where all of the variables are binary
(see Pearl 1988). Weak transitivity allows us to give an alternative proof of the
completeness of d-separation and a measure theoretic result about faithfulness
for the Gaussian case as well as the discrete case.

Some inference rules about independence and dependence for probability
theory (see Dawid 1979 and Pearl 1988).

X 1Y|Z=-Y 1L X|Z (Symmetry)
X LLY|Z=-X1LWY|Z (Decomposition)
For positive distributions

X UL WY ZAX LLW|ZY ==X LLY|ZW (Intersection)

The following rule also holds for Gaussian and Boolean systems .

X LLAYZA-y LLY|Z =2 -X LLY[|ZV =X LLY|Zy (Weak Transitivity)
where v is a singleton set.

Lemma 1 — If in directed acyclic graph G there ezists a d-connecting path
between A and B given C then there exists a singly-connected subgraph G' of
G such that A and B given C are d-connected by a path p in G' and such that
the only edges in G' are edges on the d-connecting path and a set of edges which
form ezactly one directed paih from each collider on the path p to a member of
C.

Proof — Let p be a d-connecting path between A and B given C in G. Let
G1 be the subgraph of G such that all of the edges on p are in G; and for each
collider D on p not in C we include the edges that are on one path from D to
a member of C not through another member of C. Arbitrarily choose one path
if there are more than one from D to members of C.
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Figure 1: Schematic of singly connected graph between A and B given C =
{C1,C2}.

Let 7(G1) be the number of multiple pathways that exist in G1. It is clearly
finite. If 7(G1) > 0 then there exists two distinct colliders on p, the d-connecting
path from A to B given C in G, which have the same member of C as a
descendent. Let D1 and D2 be such colliders. Let p[D1, D2] be the set of
edges between D1 and D2 on the path p. Remove p[D1, D2} from the graph
G1. Clearly we reduce r(Gi) by removing p[D1, D2]. Continue the process until
7(G1) = 0. Clearly a d-connecting path between A and B given C remains at
each stage.

The graph Gy is the desired graph G'.0

Schematically, the claim amounts to the claim that there is a subgraph which
looks like the graph in Figure 1 where C = {C1,C2}.

Let P be a probability distribution and G be a directed acyclic graph. (G, P)
satisfies the local dependence condition if and only if (G, P) is a Bayes network
and if A — Bisin G then =A 11 B is true in P.

Claim 3 For a singly-connected graph G there exists a positive binary proba-
bility distribution P distribution such that (G, P) satisfy the local dependence
condition.

Claim 4 For a singly-connected graph G there ezists q positive Gaussian prob-
ability distribution P distribution such that (G, P) satisfy the local dependence
condition.

Both Claim 3 and Claim 4 are easy to show.
Lemma 2 If (G, P) satisfies the local dependence condition, P is weakly tran-

sitive, G is singly-connected, and there exists a directed path from A; to A, in
G then —=A; 1L A, is true in P. ‘
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Figure 2: Graph G'.

Proof — by induction on length of path using weak transitivity.
base case — consider the trivial case of the null path from A; to A;.

induction step — Assume that there is a path from 4; to A, in Gand ~A4; L{
An-1. Weget ~A,_; L1 A, from local dependence and A; Lt Ap|A,_1 by the
Markov condition and the single-connectedness of G. Then, by weak transitivity,
-A; 1L A,.O

Theorem 3 For any directed acyclic graph G which does not entail A 11 B|C
there exists a discrete binary (Gaussian) distribution P such that —A 11 B|C
is true in P and (G, P) is o discrete (Gaussian) Bayes network.

Proof — assume that A 1L B|C is not entailed by Markov condition applied to
G. We construct a binary valued (Gaussian) distribution P; over the variables
in G such that (G, P) is a discrete Bayes network and such that —A L1 B|C
Is true in P;. Since A 1l B|C is not entailed by Markov condition applied
to G there must exist a path which d-connects A and B given C. Let G’ be
the subgraph of G described in Lemma 1. To simplify the proof I will give
an informal argument which can readily be turned into a rigorous inductive
argument. Let G’ be described by the graph in Figure 2 where C = {C1,C2}.
Let P be a positive binary (Gaussian) probability distribution such that
(G',P) satisfies the local dependence condition; one exists by Claim 3 (Claim 4).
Note that the positivity of P allows us to use Intersection as a rule of inference.
The goal is to show that ~A L1 B|C1,C?2
(1) =4 LL D|C1

proof —

HALLD ‘ Markov condition (applied to G')
(it =D LL C1|p local dependence
(iil) =C1 11 A0 local dependence

10



(iv) A LL D|C1 weak transitivity (WT) and (1), (ii) and (iii)
(2) =A LL D|C1,C2

proof -

(i) ~A LL D,C2|C1 from Decomposition and (1)

(ii) A 1L C2|D,C1 from Markov condition

(iii) =4 L1 D|C1,C2 from (i), (ii) and Intersection
(3) ~D LL B|C2

proof-

- (i) D 1L B|® from Markov condition
(if)y ~D L1 C2|0 local dependence ‘and Lemma 2
(iii) ~C2 LL B|® local dependence and Lemma 2
(iv) =D LL B|® or =D L1 B|C?2 from WT, (ii) and (iii)
(v) =D 11 B|C2 from (i) and (iv)

(4) =D 11 B|C1,C2
proof- as in proof of (2).
(5) A LL B|C1,C2

proof-

(1) A LL B|C1,C2,D from Markov condition
(i) ~A LL B|C1,C2 or =A 11 B|C1,C2,D from WT, (4) and (2)
(iii) =A LL B|C1,C2 from (i) and (ii)

Thus we have established that —~A L1 B|C1,C2 and it is clear that we can
extend Py to a distribution P over G. Let V' be the set of vertices in G’ and
V be the set of vertices in G and let {Z;, Z, ..Zn} be an enumeration of the
vertices in V\V'. In the discrete case let P(V) = P, (V')P(Z1)...P(Z,) where
P(Z;) is any arbitrary binary distribution over the variable Z;. In the Gaussian
case let cov(Z;, X) =0 forall 0 < ¢ < n and X € V' and set the variances of
Z; arbitrarily but not to zero. It should be clear that the proof. above can be
turned into an induction over the number of directed paths (or more exactly
semi-treks) in the d-connecting path in G'.0

Theorem 4 (Geiger et al.; Atomic completeness) For any directed acyclic
graph G over variables V which does not entail A 11 B|C there ezists a discrete
(not necessarily binary) distribution P such that —A 11 B|C is true in P and
(G, P) is a discrete Bayes network.

Proof — Begin by constructing the discrete binary distribution P from Theo-
rem 3. We must simply expand the distribution based on binary valued prob-
abilities to one based upon the number of categories required for each of the
variables in V; the resulting distribution is essentially a binary distribution ex-
tended to an arbitrary discrete probability space by using zero probabilities.
We assume that the values of the binary variables in P are either zero or one (0

11



or 1). The easiest way to extend the distribution is to force the probability of
V=v to be zero if for some A € B the value of A in v is not either 0 or 1. The
dependence follows since all of the polynomials described in equation (*) must
hold for the independence to hold and by Theorem 3 and this is not the case.Ol

6.5 Polynomial constraints are Lebesgue measure zero and
the completeness of d-separation.

Theorem 5 (Spirtes unpublished) - The solutions to a (non~trivial) poly-
nomial are Lebesgue measure zero over the space of the parameters of the poly-
nomial.

For a fixed statespace (i.e. the number of categories for each variable) let
72 be the set of linearly independent parameters needed to parameterize an
arbitrary discrete distribution for which graph G is an I-map and let wg be
the set of linearly independent parameters needed to parameterize an arbitrary

multivariate normal distribution for which graph G is an I'map. For the dis-
" crete case, the set of legal parameterizations E C [0, 1]* where n is the number
of linearly independent parameters. For the Gaussian case, the set of legal
parameterizations is the space R".

Theorem 6 For a fized statespace with n linearly tndependent parameters, the
set of parameterizations w over a graph G in which independence fact A 1L B|C
is true but such that A 11l B|C has measure zero with respect the Lebesgue
measure over R™,

Proof — Let n = inst({A, B} UC). There are n polynomials which must hold
for this violation to occur. The polynomials are non-trivial by Theorem 3. Let
w; be the set of solutions to the i*" polynomial. '

n
w = ﬂwi
i=1

w is measurable since finite intersections of measurable sets are measurable. Let
w’ = UL w;. Since o' is the finite union of measurable sets it is measurable.
pw) < p(w') < 307 p(wi) = 0 and given the non-negativity of the measure
we have p(w) = 0; Q is Lebesgue measure zero.O

Theorem 7 Violations of faithfulness in a discrete bayes network (G, P) are
measure zero with respect to the Lebesgue measure over R™ where [78] = n.

Proof — There are a finite number of sets of polynomials which must be satis-
fied to violate faithfulness. Let n be the number of such polynomials and w; be

12



the set of solutions to the ih set of polynomials, each of these sets is of measure
zero by Theorem 6.
n
w = U Wq
t==1

w is measurable since finite unions of measurable sets are measurable and the set
w is also Lebesgue measure zero. Finally restrict the solution set w to the interval
[0,1]. Let E C [0,1]" be the subset of legal parameterizations of a distribution
where n is the dimensionality of the space for the Lebesgue measure, p. Eis
a closed set and thus measureable. As E is a measurable set and the finite
intersection of measurable sets is again measurable, w N E is measurable. Since
wNE Cw we know that u(w NE) < p(w) = 0 and by the non-negativity of the
measure y we have that p(w NE) = 0.0

Theorem 8 Violations of faithfulness in linear probability distributions are
Lebesgue measure zero,

Proof — Similar to proof of Theorem 7.0

Theorem 9 For all directed acyclic graphs G there ewists a P € Pp which is
faithful to G.

Proof — Follows from Theorem 7 by the following measure-theoretic argument.
Given that the set of parameterizations in which the distribution is unfaithful
are of measure zero and that there are sets of (permissable) parameterizations
with positive measure then there are parameterizations which are faithful.O

Theorem 10 (Existence—Spirtes et al.) For all directed acyclic graphs G
there exists a P € Py which is faithful to G.

Proof — Follows from Theorem 8 as in Theorem 9.0

Theorem 11 d-separation is complete for the class of multinomial distributions
over arbitrary directed acyclic graphs.

Proof — This follows from the existence of a faithful distribution.O

Theorem 12 d-separation is complete for the class of Gaussian probability dis-
tributions over arbitrary directed acyclic graphs.

Proof — This follows from the existence of a faithful distribution.O
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