Computability Theory

by
Daniele Mundici and Wilfried Sieg

June 1994

Report CMU-PHIL-54

wie P hilosophy
xS Methodology
Logic

Pittsburgh, Pennsylvania 15213-3890

COMPUTABILITY THEORY

The effective calculability of number theoretic functions like addition
and multiplication has always been recognized, and for that
Judgment a rigorous notion of ‘computable function’ is not needed. A
Sharp mathematical concept was defined only in the twentieth
century, when the decision problem for predicate logic and other
issues required a precise delimitation of functions that can be viewed
as effectively calculable. Predicate logic emerged from Frege's
fundamental ‘Begriffsschrift’ (1879) as an expressive formal
language and was described with mathematical precision by Hilbert
in lectures given during the winter term 1917-181. The logical
calculus Frege had also developed allowed proofs to proceed as
computations in accord with a fixed set of rules; in principle, the
rules could be applied according to Gédel by someone who knew
nothing about mathematics, or by a machine’.

Hilbert grasped the potential of this mechanical aspect and
formulated the decision problem for predicate logic as follows: 'The
Entscheidungsproblem is solved if one knows a procedure that
permits the decision concerning the validity, respectively,
satisfiability of a given logical expression by a finite number of
operations.” Some, e.g., von Neumann in 1927, believed that the
inherent freedom of mathematical thought provided a sufficient
reason to expect a negative solution to the problem. But how could a
proof of undecidability be given? The unsolvability results of other
mathematical problems had always been established relative to a
determinate class of admissible operations, e.g., the impossibility of
doubling the cube relative to ruler and compass constructions. A
negative solution to the decision problem obviously required the
characterization of ’effectively calculable functions’; cf. Church's
theorem and the decision problem.

For two other important issues a characterization of that
informal notion was needed, namely, the general formulation of the
incompleteness theorems (cf. Godel's Theorems) and the effective
unsolvability of mathematical problems (e.g., of Hilbert's Tenth
Problem). The first task of computability theory was thus to answer
the question. What is a precise notion of effectively calculable
function? Many different answers to this question invariably

1 Notes of these lectures were written by Bernays and formed the basis for Hilbert and
Ackermann's book 'Grundziige der theoretischen Logik' (1928).

characterized the same class of number theoretic functions: the
partial recursive ones. Today recursiveness or, equivalently, Turing
computability are considered as the precise mathematical
counterparts to 'effective calculability’; c¢f. Church's Thesis.
Relative to these notions undecidability results have been
established, in particular, the undecidability of the decision problem
for predicate logic. The notions are idealized in the sense that no time
or space limitations are imposed on the calculations; the concept of
feasibility’ is crucial in computer science when trying to capture the
subclass of recursive functions whose values can actually be
determined (cf. Complexity theory and Computability and
information).

1 Primitive recursive functions
2 Finite computations

3 Effective descriptions

4 Basic results

5 Undecidable problems

6 Physical steps

1 Primitive recursive functions

A precise definition of the class of primitive recursive functions
(from n-tuples of natural numbers to natural numbers) was given by
Godel in 1931; there it is still called the class of recursive functions.
The main definitional schema of primitive recursion used in the
generation of the elements of this class was well-known in
mathematics. Dedekind (1888) had presented it most clearly and
had given a set-theoretic reconstruction that turned out to be of
importance also in computability theory. Most functions in elemen-
tary number theory are primitive recursive; that was established by
Skolem in 1923. The foundational significance of this function class
was emphasized by Hilbert and Bernays: the values of the functions
(for any argument) can be determined in finitely many steps,
proceeding purely "mechanically”. That point was also expressed by
saying that the functions are effectively calculable.

The class P R of primitive recursive functions is specified
inductively and contains as its initial functions the zero-function Z,
the successor function S, and the projection functions P! for each n
and each i with 1<i<n. These functions satisfy the equations Z(x)=0,

S(x)=x', and P](x1,...,X5)=x;, for all x,xi,...,xn; X' is the successor of x.
The class is, first of all, closed under the schema of composition:
Given an m-place function y in PR and n-place functions ¢i,..., ¢p in

PR, the function ¢ defined by

O(X1,+-Xn) = W(Q1(X15e..,Xn), +ves Om(X15-..,Xn))

is also in PR; ¢ is then said to be obtained by composition from y and
®1,..., m. PR is also closed under the schema of primitive recursion:
Given an n-place function y in PR, and an n+2-place function ¢ in PR,
the function ¢ defined by

O(X15---,Xn,0) = Y(X1,...,Xp)
q)(xla”',xnay') = (P(Xla'-wXIl’y’q)(Xla-”,Xna}I))

is a function in PR; ¢ is said to be obtained by primitive recursion
from y and ¢. Thus, a function is primitive recursive if and only if it
can be obtained from the initial functions by finitely many
applications of the composition and recursion schemas.

The primitive recursive functions do not exhaust the class of
effectively calculable functions; that was shown by Ackermann, who
constructed a function that is obviously effectively calculable, but not
primitive recursive. The Ackermann-function can be defined by the
following recursion equations:

do(x,y) = S(y)
on(x,0) =(x if n=0
0 if n=1
1 otherwise

¢n'(X,Y') = ¢n(X9¢n'(X’Y))

Notice that ¢ is addition, ¢, is multiplication, ¢3 is exponentiation, etc;
i.e., the next function is always obtained by iterating the previous
one. For each n, the function ¢n(x,x) is primitive recursive, but
0(x,x,x) is not! We can construct another example of an effectively
calculable, but not primitive recursive function y by effectively
listing all primitive recursive unary functions 00, ¢1, 92, 03,... and then
setting y(x) = 1+¢x(x). Since y differs from every ¢;, ¥ cannot be
primitive recursive; but the effectiveness of our listing of the
functions ¢; ensures that v can be effectively calculated.

For working with this class of functions it is indispensable to
establish further closure properties. To allow, for example, directly
general explicit definitions (without the cumbersome detour of
projections) of functions like f(x,y,z) = ((xy)+z)? + 789, one establishes
that variables can be permuted, substitutions can be carried out, and
that the constant functions conf(xi,...,X5)=m are primitive recursive.
Beyond addition, multiplication, and exponentiation it is useful to
know that the following functions are also in P R: x! (factorial),
pred(x) (predecessor), x-y (arithmetic subtraction), Sg(x) (=1:x), sg(x)
(=1-s9(x). Then it is very easy to define the bounded summation of
an n+1-function ¢ in PR as follows:

y(x1,...,Xp,0) =0
Y(X1,e 0 X0, Y)=W(X 1500 X0, Y)FO(X 150, X0, Y)

y is usually denoted by %q)(xl,...,xn,x); bounded productation is
defined similarly.

The functions we listed are useful for the investigation of
primitive recursive relations; an n-place relation R between natural
numbers is called primitive recursive if and only if its characteristic
function? yg isin PR. It is now direct to show that the primitive
recursive relations are closed under Boolean operations (particularly,
—--not, &--and, v--or, ->--if then) and bounded quantification (i.e.,
(Vx<y)--for all x less than y and (Ix<y)--for some x less than y).
Finally, we discuss bounded minimization: the function
ux<y.R(x1,...,xp,x) yields the smallest x less than y, if for some x less
than y R(xi,...,Xp,x), otherwise the function yields y. Define first

01(X1,...,Xp,X) = 0 if (3z<x) R(xy,...,xp,2)
1 otherwise

and notice that ux<y.R(x1,...,Xp,X) = g{/ ¢1(x1,...,Xn,X). Thus, if the relation

R is primitive recursive, bounded minimization leads to a function in
FR.

Given this list of functions in PR and the closure conditions for
primitive recursive relations, we have a convenient framework in
which we can show the primitive recursiveness of number theoretic

2 For recursion-theoretic purposes it is convenient to consider 0 to be the truth-value
true and 1 the truth-value false.

relations; e.g., the characteristic function y < of the less-than-relation <
is given by x_(x,y)=S0(y-x); equality, being a divisor of, being prime
are all defined easily. This is to indicate that the class is
mathematically rather rich.

2 Finite computations

Godel used in 1931 and in his Princeton Lectures of 1934 primitive
recursive functions and relations to describe the syntax of particular
‘formal’ theories -- after Godel-numbering the syntactic configura-
tions that make up the theory. Since he strove to arrive at a general
concept of formality through the underlying concept of calculability
for functions, there was no reason to focus attention on theories
whose syntax could be presented primitive recursively. He viewed
primitive recursive definability of formulas and proofs as a precise
condition which in practice sufficed to describe formal systems, but
he was searching for a condition that would suffice in principle.

In his Princeton Lectures, Go6del considered it as a very
'important property' that the value of any primitive recursive
function, for arbitrary arguments, can be calculated by a 'finite
computation’. He added in a footnote to this remark:

The converse seems to be true if, besides recursions according to the scheme
(2) [of primitive recursion], recursions of other forms ... are admitted. This
cannot be proved, since the notion of finite computation is not defined, but it
can serve as a heuristic principle.

In the last part of his lectures Godel used quite general forms of
recursions, when introducing 'general recursive functions'. These
functions are obtained as unique solutions of a system E of equations,
and their values must be computable in an equational calculus with
just two (obviously mechanical) rules3: the first rule allows the
substitution of numerals for variables in any equation derived from
E; the second rule allows the replacement of terms t(vi,...,vp) in a
derived equation by p, in case t(vi,...,vp)=p is a derived equation.
(Lower case Greek letters stand for numerals.)

This class of general recursive functions very quickly turned
out to be characterizable in a variety of ways: Church and Kleene

3 The relation of Godel's proposal to suggestions of Herbrand is discussed in (Sieg 1994).

showed the equivalence to A-definability, Kleene to p-recursiveness
(to be discussed below), Turing to computability by his machines; cf.
Lambda calculus, Combinatory logic, and Turing machines.
The class introduced by Goédel was used by Church in his first
formulation of 'Church's Thesis'. The early, pre-Turing attempts to
argue for the thesis are captured in a mathematically concise way
through the concept of a function reckonable according to rules
("regelrecht auswertbare Funktion"). These functions were
introduced by Hilbert and Bernays in the second volume of their
Grundlagen der Mathematik;, they were characterized as being
calculable in deductive formalisms satisfying general recursiveness
conditions; the critical condition required the proof predicate of the
formalisms to be primitive recursive. It was shown that the
calculations could be carried out in a particular subsystem of
arithmetic; Godel took this fact in 1946 as the basis for his claim that
computability is an "absolute" concept. The analysis of Hilbert and
Bernays revealed also clearly the 'stumbling block' all these analyses
encountered: they tried to characterize the elementary nature of
steps in calculations, but could not do so without recurring to
recursiveness (Church), primitive recursiveness (Hilbert and
Bernays), or to very specific rules (Godel).

Only Turing was able, in his ground-breaking 1936 paper O n
computable numbers, to circumvent the stumbling block by focusing
on the calculations of a human computor proceeding mechanically.
He formulated general boundedness and locality conditions for such a
computor and showed that any number theoretic function, whose
values can be calculated by a computor satisfying these conditions,
can actually be computed by a Turing machine; cf. (Sieg 1994). The
latter fact is sometimes called Turing's Theorem. The restricted
formulation of Turing machines allows a uniform and simple
description of computations; its adequacy for linear computations is
guaranteed by Turing's Theorem. The starting point of Turing's
analysis was, however, the mechanical behavior of a human
computor operating on finite configurations in the plane. This
behavior can be described generally and mathematically precisely.
To arrive at such a more general description, we take a preliminary
step and replace the states of mind by, what Turing described as,
"physical and definite counterparts". This is done by considering
"state of mind" not as a property of the working computor, but rather
as part of the configuration on which he operates. Turing discussed
this replacement very vividly in his 1936 paper:

It is always possible for the computer [i.e., in our terminology, the computor]
to break off from his work, to go away and forget all about it, and later to come
back and go on with it. If he does this he must leave a note of instructions
(written in some standard form) explaining how the work is to be continued.
This note is the counterpart of the "state of mind". We will suppose that the
computer works in such a desultory manner that he never does more than one
step at a sitting. The note of instructions must enable him to carry out one step
and write the next note.

This was achieved quite beautifully by Post in 1947, and Post's
approach of describing Turing machine computations is used in
(Davis 1958). The configurations on which the machine works are
instantaneous descriptions, briefly, id's. These are finite sequences
in the alphabet of a Turing machine containing exactly one state
symbol; the position of the state symbol indicates which symbol is
being scanned. A program of a Turing machine can now be viewed
as a set of Post production rules operating on (a single symbol of)
such id's. If in this way of describing Turing machines one replaces
finite sequences by finite graphs (with a few well-motivated proper-
ties) and the simple Post-Turing operations on one symbol at a time
by operations on a fixed finite number of distinguished graphs, then
one arrives at the notion of a Kolmogorov Machine. This latter
notion, or rather a general concept of algorithm, was introduced by
Kolmogorov and Uspensky in 1958: KMs compute exactly the Turing
computable number theoretic functions.

Which number theoretic functions can be computed by Turing
machines or other computing devices? Kleene's analysis of the
equational calculus led to the introduction of the ‘'regular
minimization' operator and to an inductive characterization of Godel's
class of general recursive functions. Suppose the n+1-place function ¢
has the property that for every xi,...,x; there is a y such that
0(X1,..-,Xn,y)=0. Denote by ny.¢(x1,...,Xn,y)=0 the least such y. Under
these conditions, the function y given by Y(X15...,Xn)=1y.0(X1,...,Xp,y)=0
is said to be obtained from ¢ by regular minimization. A function is
(u-) recursive iff it can be obtained from the initial functions by a
finite number of applications of composition, primitive recursion, and
regular minimization. I.e., the class R of recursive functions is
obtained from PR by closure under regular minimization.

Up to now we have considered total (i.e., everywhere defined)
functions and operations that do not lead outside the class of total
functions. Godel (after Kleene) emphasized the importance of partial
functions defined only for a subset of N or Nx ... xN if they are unary

or n-ary. For example, while py.xy=0 is an equivalent definition of
the zero function, an expression like py.x+y=0 is undefined for each
x=1,2,... . For partial functions ¢ we liberalize the regularity condition
for minimization: u=py.¢(xi,...,Xn,y)=0 holds if and only if the following
two conditions are satisfied:

(1) for any i=0,1,...,u-1, ¢(x1,...,Xn,i) is defined and different from O;
(i) o(x1,...,xp,u)=0.

Given xi,...,xy at most one number u can satisfy both (i) and (ii). If no
such u exists then the n-tupel (xi,...,x;) is outside the domain of the
function py.¢(xt1,...,Xn,y)=0 or, stated differently, ny.¢(x1,...,Xp,y)=0 is
undefined at (xi,...,Xy). A function is partial recursive iff it can be
obtained from the initial functions by a finite number of applications
of composition, primitive recursion, and (unrestricted) minimization.

One can explicitly construct Turing machines for the initial
functions and for those operations on programs that correspond to
composition, primitive recursion, regular, as well as unrestricted
minimization. Thus, these operations do not lead outside the class of
Turing computable functions. This immediately yields the following
result, showing the power of Turing machines:

THEOREM: All partial recursive functions are Turing-computable.

3 Effective descriptions

To prove the converse of the last Theorem, we follow Pythagoras'
ontological prescription and use Godel's device to assign numbers e
and y as codes to Turing machines M and to finite sequences of ids.
The coding introduced by Godel for formal theories in 1931 (and
adapted in Davis' book for Turing machines) will do. Once a machine
is coded as a number, the code can be supplied as an input to any
machine; this adumbrates the metamorphosis of hardware into
software, culminating in the stored-program computer.
Programming the first computers virtually amounted to inserting
wires into plugboards, but von Neumann -- influenced by Turing's
treatment of his paper machines -- realized that programs can be
coded and stored as strings of symbols in the same way as data.

For any effective Godel-numbering it is easy, though somewhat
tedious, to establish that simple syntactic notions and operations
concerning machines and their ids can be represented by number-
theoretic, indeed primitive recursive predicates and functions. For
instance, the ternary predicate T(e,x,y) expressing that y is (the code
of) a computation of Turing machine (M with code) e for input x is
primitive recursive; also, the unary 'result-extracting' function U is
primitive recursive, where U(y) is either the number on the tape of
the last id of the computation y or, in case y is not the code of a
computation, U(y) is 0. (Our choice of the default value O is only to
guarantee that U is a total function.)

Given a Turing-computable function ¢ and a machine M with
code e computing ¢, there are two possibilities for any input x:
Case 1: M terminates. Then there is a (first) computation y* of M for
input x, i.e., y* is the smallest number y such that T(e,x,y); the
number U(y*) read on the tape in the final configuration of y*
coincides with the value ¢(x); writing py.T(e,x,y) as an abbreviation
for py.xr(e,x,y)=0, we have

(%) 0(x)=U(uy.T(e,x,y))

Case 2: M does not terminate. Then for any y, the predicate T(e,x,y)
will be false, i.e., xr(e,x,y)=1 for all y, and condition (ii) in the
definition of the unrestricted p-operator will never hold. Thus, both
ny.T(e,x,y) and U(uy.T(e,x,y)) are undefined.

This establishes (**) for both cases, and we have proved Kleene's
Normal Form Theorem for unary Turing-computable functions.
Kleene's Theorem holds also, with the same proof, for functions
having any finite number of arguments.

THEOREM (Kleene's Normal Form) Let ¢ be an n-place number
theoretic function that can be computed by a Turing machine with
code e; then for each xi,...,x; in the domain of ¢ we have

O(x1,....xn)=U(ny.T(e,X1,....Xn,¥)).

Kleene established this Normal Form Theorem not for Turing-
computable functions, but for total functions that can be calculated in
Godel's equational calculus. He concluded that Gédel's general
recursive functions are recursive, a conclusion we can draw now for
Turing-computable partial functions.

COROLLARY Every Turing-computable function is partial recursive.

Using the Theorem formulated at the very end of section 2, it follows
that Turing-computability for number theoretic functions is
equivalent to partial recursiveness and, indeed, to all the other
characterizations discussed in that section. Kleene's Theorem has
most interesting additional consequences to be discussed in the next
section. This is done not just to present elegant mathematical results,
but to reinforce the conceptual analysis, as these results (are taken
by some to) lend additional support to Church's Thesis.

4 Basic results

Kleene's Normal Form Theorem has important consequences for the
theory of computability. Consider, first of all, the two-place function
y(e,x)=U(uy. T(e,x,y)); vy is partial recursive and provides an enumera-
tion of all unary partial recursive functions. This is Kleene's
Enumeration Theorem. The theorem -- together with the equivalence
of partial recursiveness and Turing-computability -- guarantees the
existence of a universal Turing machine. Indeed, consider a Turing
machine M [y] computing y. For any pair of arguments ¢ and x, M [y]
interprets its first argument as the code of a Turing machine ™M [g]
(computing a unary partial recursive function ¢) and its second
argument as the input for M [¢]. Then M [y] proceeds to compute ¢(x)
following the program of M. [¢]. Since M[¢@] was arbitrary, M. [y] is able
to simulate any Turing machine. Similarly, for each n=2, 3, 4,... , there
is a partial recursive (n+1)-place function w(® such that every n-
place partial recursive function ¢ can be written as ¢(xi,...,Xp) =
y®@)(e,x1,...,xp) for a suitable index e for ¢.

Given a function ¢(pi,...,Pm,X1,...,Xxn) of m+n variables, let us
'parametrize’ ¢, i.e., assign values pi*,...,pm* to the first m variables.
We then obtain a new n-place function ¢ as follows:

¢(X1,~~,Xn)=(P(P1*,---,Pm*,xlr~aXn)o

Intuitively, ¢ is the "slice” of ¢ with coordinates (p1*,...,pm*). By
Kleene's Enumeration Theorem we can write for suitable indices e
and e*:

(P(pla---,Pmaxlw-,Xn) = W(m+n)(eap1"”apmaXb"”XH)

and

O(X15..-,Xn) = Y@(e* x1,...,Xp).
The following theorem tells us that the slicing operation leading from
e to e* can be performed uniformly and effectively:

PARAMETER (or S%-) THEOREM For each m,n > O there is a primitive
recursive (n+1)-place function SZ, such that

‘V(m+n)(e,p1,---,pm,x1w-axn)=W(m)(S&(e’P1’-"’pm)’xl’""xn)'

This theorem was established by Kleene at first for Godel's general
recursive functions; it amounts in that context to replacing
effectively the first m variables of the function ¢ computed from
equations with code e by numerals for pi,...,pm. This theorem is used
to prove the following central result, also due to Kleene:

RECURSION THEOREM Let ¢ be a partial recursive function with
(m+1)-places. Then there is a number e such that for all xi,...,xp

ym(e,x1,....Xm) = 0(€,X1,....Xm).

The theorem finds many uses in establishing that implicitly defined
functions are actually partial recursive. For example, letting m=1
and writing v instead of y(1), an application of the Recursion Theorem
to the function g(y,x)=y immediately yields:

FIXPOINT THEOREM There is a constant e* such that for all x
y(e*,x) = e*.

Intuitively, for every possible input x, the program with number e*
uses any input to output a copy of itself -- just as a self-replicating
organism. More generally, for every recursive function r(z), we
obtain by applying the recursion theorem to the function y(r(z),x) a

number e such that for all x, y(e,x)=y(r(e),x).

Kleene's Enumeration Theorem allows us to reformulate
properties of partial recursive functions as number theoretic
properties of their codes. A set P of natural numbers is called an
input-output property (of unary partial recursive functions) iff,
whenever ¢' is in P and e" codes the same function as e' (in the sense
that y(e',x)=y(e",x) for all x in their common domain), then e" is also

in P. The following theorem states that non-trivial input-output
properties are not recursive.

RICE'S THEOREM If P is an input-output property such that neither it
nor its complement is empty, then P is not recursive.

There are important non-trivial input-output properties of
programs. For instance, the set of codes of Turing machines
computing total functions is one such property; as a consequence of
Rice's theorem we know that there is no Turing machine that decides,
whether or not a given Turing-computable function is total. We will
discuss additional undecidable problems in the next section;
however, undecidability will be established there in quite different
ways.

5 Undecidable problems

"Problems" are identified with (characteristic functions) of one place
predicates or, equivalently, with subsets of N. Let K be the problem
corresponding to the question: Does the computation of machine M
with code e terminate, if the input is the natural number e? This
problem was formulated by Turing and is known as the Self-Halting
Problem. A diagonal argument (using the existence of a universal
machine) settles the undecidability of K without resorting to Rice's
theorem.

The Self-Halting problem is the progenitor of a multitude of
undecidable problems, arising from virtually all fields of mathe-
matics. Consider, for instance, the following problem. INSTANCE: a
presentation P of a group G via generators and relations (P looks like
a multiplication table for G) and two expressions v and w built up
from these generators, using the multiplication operation and its
inverse. QUESTION: do v and w represent the same element of G?
This is known as the word problem for groups. Novikov and,
independently, Boone proved that the problem is undecidable. --
Markov proved the undecidability of the following problem for 4-
dimensional manifolds. INSTANCE: a suitable combinatorial descrip-
tion of two such manifolds. QUESTION: are they homeomorphic? In
the 2-dimensional case the homeomorphism problem becomes
decidable; it is not known whether the 3-dimensional problem is
decidable or not.

Yet another logic-free undecidable problem is given by
elementary functions, i.e., those functions f of a real variable x which
can be built up using exponentials, logarithms, n-th roots, trigono-
metric functions and their inverses by addition, multipli-cation, and
composition. While the derivative operation does not lead outside
the realm of elementary functions, the integral of, say, (sin x)/x is
not elementary. Indeed, Richardson proved that the following
problem is undecidable. INSTANCE: an elementary function f(x).
QUESTION: is the integral of f elementary? Finally, the tenth problem
in Hilbert's list presented at the International Congress of
Mathematicians in 1900 asks for an algorithm to decide of a
polynomial equation p(xi,...,xn)=0, with integer coefficients, whether
or not it has integer solutions. Following important work of J.
Robinson, Davis, and Putnam, Matijasevic proved in 1970 that the
problem is undecidable. -- Let us go back to the problem K.

Recalling the discussion in section 3, it is clear that the
predicate K(e) can be defined by the statement "there exists a y, such
that T(e,e,y)". K is thus an example of a recursively enumerable or,
briefly, r.e. set of natural numbers: it can be defined by prefixing one
existential quantifier to a decidable binary predicate. Trying for
each n in N all possible pairs (e,y) such that e+y=n and singling out e
whenever T(e,e,y) is true, we can effectively list all members of K.
Recursively enumerable sets were named because of the following
equivalent characterization: a subset of N is r.e. iff it is either empty
or the range of a (primitive) recursive function. Furthermore, a set R
is recursive iff both R and its complement are recursively
enumerable. This latter fact allows a different entry to computability
theory: recursive enumerability is taken as the basic concept, and
recursive sets are defined as those r.e. sets whose complements are
also recursively enumerable; that is done in Post's approach.

The importance of K among r.e. sets stems from its being
complete, i.e., maximally difficult among all r.e. sets; by this we mean
that every r.e. set can be effectively reduced to K. A problem P is
effectively reducible to Q iff there is a recursive function f such that
for all natural numbers x, x is in P iff f(x) is in Q. Thus, if we want to
see that x is a solution of problem P we compute f(x) and test
whether f(x) solves Q! Clearly, Q is at least as difficult as P, in the
sense that effective solutions for Q yield effective solutions for P. By
effectively reducing the self-halting problem K to the Entscheidungs-
problem E, Turing concluded from the undecidability of K, that also E
cannot be decidable. Turing's reduction is nothing else but a

transcription of the ternary predicate T(e,e,y) into a first-order
arithmetical theory with sufficient demonstrative power.

The self-halting problem K, the most complex among r.e.
problems, is the simplest in an infinite sequence of manifestly
undecidable problems, the so-called jumps. In order to obtain the
Jump hierarchy, the concept of computation is relativized to sets of
natural numbers whose membership relations are revealed by
"oracles”. The jump K' of K, for example, is defined as the self-halting
problem, when an oracle for K is available. This hierarchy can be
associated in a most informative way to definability questions in the
language of arithmetic: all jumps can be defined by increasingly
complex arithmetical formulas, and all arithmetically definable sets
are reducible to some jump. The above construction underlies the
arithmetic hierarchy introduced by Kleene and Mostowski in the
fifties.

Certain interesting sets of natural numbers are not definable
by arithmetic formulas; one example is the set of all Godel numbers
of true arithmetic statements. If this set were arithmetically
definable, one could formulate arithmetically the "liar sentence" that
expresses its own falsity. This observation of Godel and Tarski is the
cornerstone for proving the incompleteness of every formal theory of
arithmetic that contains symbols for addition and multi-plication and
has semantically sound axioms and rules of inference: No matter
which (true) statements we choose as axioms, and no matter which
inference rules we adopt (provided they are truth-preserving) there
are statements which, albeit true for the natural numbers, are not
provable in the theory. Arithmetic truth can be defined, however, in
second order languages that allow quanti-fication over functions; cf.
Arithmetic and analytic hierarchy.

6 Physical steps

Turing appealed in his analysis of mechanical calculability to the
limitations of the human sensory apparatus; however, he claimed
that the justification for his thesis lies ultimately "in the fact that the
human memory is necessarily limited". This remark is not expanded
upon at all, and we can only speculate as to Turing's understanding
of this "fact”: Did he have in mind more than the spatial limitations

for "encoding” finite configurations? If not, the restrictions can be
motivated by physical considerations.4

Assume that a Kolmogorov machine operates on configurations
containing z different symbols, each symbol being physically "coded"
by at least one atom; that is an altogether reasonable assumption.
Then there must be at least z pairwise disjoint regions containing the
codes (of the symbols). Otherwise, the electron clouds of two
different codes might overlap, making the codes indistinguishable.
Let ¢ and a denote the speed of light and Bohr's radius of the
hydrogen atom, where a/c=0.176x10-18 seconds. It follows that the
codes will be contained in a volume V of at least z(4/3)ra3 cubic
meters; that forces the diameter 2r to be larger than 2azl/3 meters --
the diameter being the largest possible distance between two codes
in this volume. Let f be the frequency of our machine; thus, 1/f is
the time available for each computation step. Since signals cannot
travel faster than light and since a computation step involves the
whole configuration, it follows that f cannot exceed c/(2azl/3) steps
per second. Thus, we obtain the inequality fzl/3 < 2.828x1018 steps
per second, which points out a fundamental incompatibility between
high number of codes (i.e., size of configura-tions) and high
computational speed. The operations of KMs are thus restricted in
complexity, as they have to lead from distinguished graphs to
distinguished graphs; and within the given physical boundaries only
finitely many different graphs are realizable.

If we focus on physical devices and analyze machine, not
human mechanical, computability we have to take into account the
possibility of parallel procedures as incorporated, for example, in
cellular automata. Gandy provided in his (1980) the first conceptual
analysis and a general description of parallel algorithms. These
algorithms are thought to be carried out by "discrete deterministic
mechanical devices", i.e., machines satisfying the physical assump-
tions explicit in our discussion above; in Gandy's words: "The only
physical assumptions made about mechanical devices ... are that
there is a lower bound on the linear dimensions of every atomic part
of the device and that there is an upper bound (the velocity of light)
on the speed of propagation of changes". He formulated axiomatic
principles for these devices and proved that whatever can be calcu-
lated by devices satisfying the principles, Gandy Machines, is also
computable by a Turing machine.

4Are there ways of getting around the effect of such physical limitations? That issue is
discussed with references to the literature by Mundici and Sieg, (1994).

References and further reading

Cutland, N. (1980) Computability - An _introduction to recursive
function theory, Cambridge: Cambridge University Press. (An
informative introduction to basic results.)

Davis, M. (ed.) (1965) The Undecidable, Hewlett (New York): Raven
Press. (Anthology of fundamental papers on the subject by Gédel,
Church, Turing, Kleene, Rosser, and Post.)

Davis, M. (1958) Computability and Unsolvability, New York:
McGraw-Hill. (A classical, detailed presentation of the basic parts of
computability theory.)

Herken, R. (ed.) (1988) The Universal Turing Machine (A half-
century survey), Oxford: Oxford University Press. (The book contains
informed systematic, enlightening historical, and provocative
"futuristic” essays by, among others, Kleene, Gandy, Davis, Feferman,
Penrose.)

Mundici, D. and Sieg, W. (1994) 'Paper Machines', Philosophia
Mathematica. (A non-technical essay on the development of the
main ideas of computability, also covering physical computation.)

Odifreddi, P. (1992) Classical Recursion Theory, Amsterdam: North-
Holland Publishing Company, volume I, second reprinting 1992;
volume II, 1993. (A comprehensive modern treatise on
computability theory.)

Rogers, H. (1967) Theory of recursive functions and effective
computability, New York: McGraw Hill. (The standard reference on
recursion theory before Odifreddi's and Soare's books.)

Sieg, W. (1994) 'Mechanical Procedures and Mathematical Experience'
in Mathematics and Mind ed. A. George, Oxford, Oxford University
Press. (Examination of the conceptual analyses underlying
computability theory, in particular in Turing's fundamental paper;
emphasizes connections to investigations in the foundations of
mathematics.)

Soare, R.I. (1987) Recursively enumerable sets and degrees, Berlin,
New York: Springer Verlag. (Brings the reader to the frontiers of

current research on computable functions, featuring: Post's problem,
oracles, priority methods, lattice of r.e. sets.)

van Heijenoort, J. (ed.) (1967) From Frege to Godel - A source book
in mathematical logic, 1879-1931, Cambridge: Harvard University
Press. (Anthology of fundamental papers in logic starting with
Frege's Begriffsschrift (1879) and ending with Godel and Herbrand's
work in 1931.)

DANIELE MUNDICI and WILFRIED SIEG

