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PREFACE.

The material of these notes was presented in lectures I gave in Milano
in May 1992. Some of the material in the first, third, and fourth lectures had
been developed for courses in Siena and Miinchen in the Spring of 1988, but
the remainder is based on papers and manuscripts written during the last
three years in Pittsburgh.

My reasons for selecting the material are elaborated in the Introduc-
tion. Here I simply say that I attempted to give a partial snapshot of proof
theory from one particular perspective by describing three themes that hang
together quite intimately: foundational reduction, computational informa-
tion, and (heuristics in the) automated search for proofs. These are themes
that were emphasized in the twenties, but have been developed more distinc-
tively only since the fifties. Technically the themes are held together by the
possibility of normalizing proofs and thus, in the case of first order logic, of
bounding the logical complexity of formulas occurring in them. But these
themes are also held together conceptually: That is the rationale for including
an unusual amount of philosophical and historical material.

Thanks are due to Wilfried Buchholz and Helmut Schwichtenberg
who made my sabbatical stay in Miinchen possible (during the academic year
1987-88), to Franco Montagna who invited me to Siena, and -- most of all -- to
Daniele Mundici who was my host in Milano. Mundici encouraged me
during my wonderfully intense and vibrant visit in Milano to complete these
notes. I am also grateful to the students in Siena, Miinchen, and Milano who
attended and criticized my lectures. Mario Chiari helped me to bring the early
material into proper shape; Connie Bartusis proofread all lectures with a keen
eye and critical pen, improving their style considerably. Finally, I want to
acknowledge the financial support of CNR, DFG, and Carnegie Mellon
University.

Pittsburgh, July 1, 1992
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INTRODUCTION

If one tries to characterize what is distinctive about logic in our century
one clearly has to point to its close association with mathematics: Logic has
been using mathematical tools in its presentation and critical self-
examination, and mathematics has been logic's primary field of application
and source of problems. Yet underneath the mathematical shell, the
philosophical origins of fundamental issues have been preserved to a great
extent. It is the glory of logic that it complements formal mathematical work
by informal rigorous reflection. Here are three prime examples: (1) the
analysis of "logical consequence" (in its semantic and syntactic guise from
Aristotle to Frege, Hilbert, Godel, and Tarski); (2) the analysis of "set" (from
Cantor and Dedekind through Zermelo's cumulative hierarchy to
constructible sets -- in both Godel's technical sense and the informal sense);
(3) the analysis of "formality" (from the quasi-normative requirements in
Leibniz to Turing's Thesis and subsequent generalizations). These examples
are not isolated from the rest of logic, but actually constitute its core of
permanent contributions; they are not isolated either from each other, but are
deeply connected through questions concerning the nature of mathematical
experience and, ultimately, the nature of the human mind. It was the
concern with these general philosophical questions that led, in the very first
place, to the methodological emphasis on constructivity in mathematics and
on effectiveness in metamathematics. Not surprisingly, this has led to
developments that are of increasing significance in computer science.

With respect to all of these issues Hilbert had a directing influence in
the twenties and even earlier. As to (1), he formulated most clearly the
completeness problem; as to (2), he emphasized that the axiomatic method
should be applied to the notion of "set" and inspired Zermelo, but also von
Neumann and Bernays; finally, as to (3), he formulated sharply the decision
problem for predicate logic and viewed it as a fundamental problem. I want
to emphasize this in contradistinction to the conventional view that ties
Hilbert's foundational work exclusively to his PROGRAM. Clearly, Hilbert's
desire to settle foundational problems in mathematics by finitist consistency
proofs was important and, indeed, it was for the purpose of this program that
he-quite literally invented a new subject, namely PROOF THEORY. In my view,



the proper inclusion of provability in truth is to be exploited, it seems that it
is best to use weak theories that are nevertheless adequate for the
formalization of mathematical practice. As a matter of fact, the presentation
of analysis given by Hilbert (during the early twenties in second order
arithmetic) can be viewed in this light as an important first step.
Refinements during the subsequent fifty years have made clear that all of
classical analysis can be carried out in theories that are reducible to
elementary arithmetic; parts of analysis and also of algebra can be carried out
in even weaker theories. Joining such quasi-empirical investigations with
proof theoretic work allows then the in-principle-extraction of detailed
"computational information". That comes under the heading of provably
recursive (or provably total) functions; i.e., one determines exactly the class of
those recursive functions whose termination can be proved in the formal
theory at hand. Such results give (in general, crude) bounds from proofs of

0 . . .
I-theorems and, turning the table, are used to prove the independence of
such theorems. In any event, here we have one way of answering the main .’
question : What more than its truth do we know, if we have proved a theorem in a weak

formal theory ?

The third theme is intimately connected with the mechanical
modelling of reasoning in the tradition of Leibniz, and, to a certain extent,
Frege. This theme was definitely taken up by Hilbert himself; in "Uber das
Unendliche" he claimed:

The formula game that Brouwer so deprecates has, besides its mathematical value, an
important general philosophical significance. For this formula game is carried out according to
certain definite rules, in which the technique of our thinking is expressed. These rules form a
closed system that can be discovered and definitively stated. The fundamental idea of my

proof theory is none other than to describe the activity of our understanding, to make a protocol
of the rules according to which our thinking actually proceeds.

If anything is an early formulation of goals for contemporary cognitive
psychology, this is. The claims were made (somewhat) plausible only by
Gentzen's development of the calculi of natural deduction. In German they
are called "Kalkiile des natiirlichen Schlieflens" emphasizing that they (are
to) correspond to an argumentative practice that comes naturally. Strangely
enough (and it is indeed surprising, even if one takes into account the variety
of different aims that are being pursued), this tradition has hardly influenced



PART A. BACKGROUND.

1. Proof theoretic perspectives. After depicting themes and surveying topics,
let me start out with some historical remarks on the context in which
Hilbert's program arose, because it is still widely and deeply misunderstood as
an ad hoc weapon against the growing influence of Brouwer's intuitionism.

Reductive programs. The problems that motivated Hilbert's program can be
traced back to the central foundational issue in 19th century mathematics,
namely securing a basis for analysis. A possible resolution was indicated by
the slogan "Arithmetize analysis!”" That direction was given already by
Gauss, and its meaning can be fathomed from Dirichlet's claim that any
theorem of analysis can be formulated as a theorem concerning the natural
numbers. For some the arithmetization of analysis was accomplished by the
work of Cantor, Dedekind, and Weierstrass; for others, e.g., Kronecker, a
stricter arithmetization was required, one which would base the whole
content of all mathematical disciplines (with the exception of geometry and
mechanics) on "the concept of number taken in its most narrow sense, and
thus to strip away the modifications and extensions of this concept, which
have been brought about in most cases by applications in geometry and
mechanics" ([Kronecker 1887], p. 253). In a footnote, Kronecker makes clear
that he has in mind "in particular the addition of the irrational and
continuous magnitudes". Kronecker strongly opposed Cantor's and
Dedekind's free use of set theoretic notions, as it violated methodological
restrictions on "legitimate” mathematical concepts and arguments.

Having been informed (by Cantor in 1897) about the problematic
character of some set theoretic considerations and the inconsistency of
Dedekind's "Was sind und was sollen die Zahlen", Hilbert addressed the
issues directly in his paper "Uber den Zahlbegriff' and again in his Paris
lectures of 1900. His goal was to establish by a consistency proof the existence
of the set of natural and real numbers and of the Cantorian alephs; but he
gave only a very rough indication, how such a proof could be carried out:
Provide models for an axiomatic characterization of the reals and the alephs.
In his Heidelberg address of 1904 Hilbert gave up this first attempt at



corresponding numeral in that language. Proving the reflection principle in
F amounts to recognizing -- from the restricted standpoint of F -- the truth of
the F-statements whose translations have been derived in P. As a matter of
fact, the proof would yield a method of turning any P-proof of o(y) into an F-
proof of y. Finitist mathematics was viewed as a fixed part of elementary
arithmetic and its philosophical justification seemed to be unproblematic.
Thus Hilbert thought that the consistency proof for P would solve the
foundational problems "once and for all" by mathematical considerations.
Bernays emphasized in 1922: "This is precisely the great advantage of Hilbert's
proposal, that the problems and difficulties arising in the foundations of
mathematics are transferred from the epistemological-philosophical to the
genuinely mathematical domain".

The radical foundational aims of Hilbert's program had to be
abandoned on account of Go&del's Incompleteness Theorems. A:
"generalization" of the program was developed in response to Godel's results, -
and it has been pursued with great vigor and mathematical success for parts
of analysis.2 The basic task of the generalized reductive program can be seen
as follows: Find for a significant part of classical mathematical practice,
formalized in a theory P*, an appropriate constructive theory F*, such that F*
proves the partial reflection principle for P*. That is, F* proves for any P*-
derivation D

Pr*(D,o(y)) = ;

and v is in a class A of F*-statements. It follows immediately that P* is
conservative over F* with respect to the statements in A; consequently, P* is
consistent relative to F*. (I made the assumption satisfied by the theories
discussed below, that F* is easily seen to be contained in P*. If this is not the
case, reductions in both directions have to be established.) The Gddel
Gentzen reduction of classical elementary arithmetic (Z) to its intuitionistic
version (HA) is the early paradigm of a successful contribution to the
generalized program. Clearly, (Z) is taken as P*, (HA) as F*, and A consists of

2 Bernays and Kreisel were highly influential in this development; for relatively recent and polished
formulations see [Bernays 1970], pp.186-187 and [Kreisel 1968], pp.321-323.



numbers as the second order entities; the latter can be represented in our
framework by their characteristic functions. <, >is a pairing function; ( ), and

(), are the corresponding projection functions. For convenience we add a
standard enumeration <fj>j£N of the unary primitive recursive functions,
turning the septuple into an octuple. The language L?, appropriate for this
structure, contains the language L of elementary number theory: x,y,z,... are

used as individual variables; a,b,c,... as individual parameters; 0,', <, >, (),
()1 fj as constants. Terms are built up in the usual way: Using s;t,.... as

syntactic variables over terms, we call numerical equations expressions of the
form s=t. Formulas are obtained from numerical equations and inequalities
by closing under A,v,3,V. The connectives —,¢>, and the negation of complex
formulas are definable. To expand L to L? we add second order variables
f,gh, .., parameters u,v,w, ..., and second order quantification.

The basic theory (BT) contains the familiar axioms for 0,, pairing, and
projections, the recursion equations for all primitive recursive function(al)s,
and the schema for explicit definition of functions in the form

EO(Vx) £(x)=t,[x]
or, upon changing the language a little, in the form
(Vx) Ax.t(x)=t,[x]

If the term t contains second order parameters, they are considered to be
universally quantified in these principles of explicit definition. The theory
contains also the induction schema IA for quantifier-free formulas ¢ of L?:

$0 & (Vx)(dx—x') = (Vx)Ppx

where ¢ may contain second order parameters. Full second order arithmetic
or classical analysis (CA) extends (BT) by the second order induction axiom

(VHIf(0)=1 & (Vx)(f(x)=1 — f(x")=1) — (Vx)(f(x)=1)]
and by the comprehension principle CA

@H(vx) [f(x)=1 < ¢x]



functions that can be proved to exist in the theory. For example, (I2-CA)
denotes the theory obtained from (BT) by adding the comprehension

principle for all formulas in H?o and the full induction schema; (Hg,-CA)l‘ or
"restricted-(ITo-CA)" is the corresponding theory with the induction axiom.

Clearly, (2-CA) I* is equivalent to the theory obtained from (BT) by just
adding the arithmetic comprehension principle. The resulting theories are of

remarkably different strength: (I>-CA)I* is a conservative extension of

elementary number theory (Z), whereas (I-CA) proves the consistency of
(2).

There is one very weak system we shall consider: It was introduced by
Friedman and is labelled (WKL(). An equivalent formulation is this:

(F): =(BT + £1-AC, + Zi-IA + WKL).

The principle WKL is Konig's infinity lemma for trees of 0-1 sequences. In
our framework it can be formulated as follows:

(VOITE A (V¥)@y)Ih(y)=x A f(y)=1) = @g)(Vx) fEx))=1];

T(f) expresses that f is (the characteristic function of) a tree of 0-1 sequences; lh
is the length-function for sequences of numbers. T(f) is the purely universal
formula

(VX)VY) [(Exty)=1 = f(x)=1) A (Eix*<y>)=1 — y<1)]

This theory is surprisingly strong for mathematical work, but metamathe-

matically it is weak: (F) is conservative over (PRA) for H(z)-sentences. That is
the reason (F) can be taken as the starting-point for computational reductions:
if (F) proves (Vx)(3y)Rxy, then there is a primitive recursive function f and a
proof in PRA of (Vx)Rxf(x).

Foundational reductions. Recall that the goal is to reduce certain P* in which
parts of mathematical practice can be developed to theories F* that are
distinguished for philosophical, foundational reasons. Examples are the

11



{{e}(3)}(0) {{e}(3)}(1)

{e}(0) {e}(1) {e}(2)
{e}(3)

e

Higher tree classes are obtained by a suitable iteration of this definition along
a given recursive well-ordering of the natural numbers. Suitable means here
that branchings in the trees are not only taken over the natural numbers but
also over already given lower tree classes. Constructive theories for O have
been formulated as extensions of intuitionistic arithmetic with the following
principles:

0.1. (Vx)(A(O,x) = Ox)
0.2. (VxX)(A(¥,x) = ¥x) = (Vx)(Ox = ¥x)

where A(O,x) is the disjunction of the antecedents of the generating clauses
for O; it is obviously arithmetic in O (indeed; just H? in O). A(¥,x) is obtained
from A(O,x) by replacing all occurrences of Oz with ¥z. O.1 may be called a
definition principle making explicit that applications of the defining clauses
to elements of O yield elements of O. 0.2 is a schematic proof principle by
induction on O for any formula Wz of the language. The resulting theory is
called ID1(0). For the higher tree classes the definition and proof principles
can be formulated in a similar, though more complicated manner. The
theory is denoted by ID(O), when the iteration proceeds along arbitrary
initial segments of the given well-ordering of type A.

13



analysis beyond (A3-CA). There are results for (A3-CA+BI): Jager and Pohlers
determined the proof theoretic ordinal of the theory, and Jager reduced it to
Feferman's constructive theory Ty (thus establishing with earlier work of
Feferman the equivalence of these theories). The system of notations used by
Jager and Pohlers was based on work by Buchholz who recast that work in a
most perspicuous way in his (1986). The system of notations used by Jager
and Pohlers actually is more extensive than needed for the ordinal-theoretic

analysis of the theory (A%-CA+BI), but it presumably falls far short of the

ordinals needed for (H%—CA). Significant new work is due to Rathjen (e.g.,
1991) and Weiermann (1991). Good presentations of some of this work are in
[Jdger 1986], [Buchholz and Schiitte 1988], and [Pohlers 1989].

For me logic, and proof theory in particular, still have the fascination
that arises from the combination of detailed, rigorous work with open, wide-
ranging reflections. The possibility and, indeed, need for the latter is some- *
times hidden, alluded to in brief remarks, delegated to Postscripta, or (sup-) .
pressed into footnotes. From the discussion of the foundational aims of proof
theory it should be quite clear that mathematical reductive results have to be
complemented by analyses of the philosophical distinctiveness of the con-
structive theory to which a classical one has been reduced. That is very much
in the open, but there is also the more subtle (and pervasive) assumption,
namely, that we are dealing with formal theories! The focus on formal theories,
i.e., theories whose axioms and rules are somehow effectively presentable, is
required so that our considerations satisfy epistemological, normative de-
mands. How these demands were "transformed" into precise mathematical
definitions will be the main concern of the next lecture.
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account of the syntactic form of the sentences occurring in them. Indeed,
Frege claimed that in his logical system "inference is conducted like a
calculation" and continued:

I do not mean this in a narrow sense, as if it were subject to an algorithm the same as ... ordinary

addition and multiplication, but only in the sense that there is an algorithm at all, i.e., a
totality of rules which governs the transition from one sentence or from two sentences to a new

one in such a way that nothing happens except in conformity with these rules.]

Almost fifty years later, in 1933, Gddel referred back to Frege and Peano
when he formulated "the outstanding feature of the rules of inference" in a
formal mathematical system. The rules, Godel said, "refer only to the
outward structure of the formulas, not to their meaning, so that they can be
applied by someone who knew nothing about mathematics, or by a
machine."? Frege did not consider the possibility of mechanically drawing
inferences to be among the logically significant achievements of his
Begriffsschrift. But Hilbert grasped the potential of this aspect, radicalized it,
and exploited it in his formulation and pursuit of the consistency problem.
In doing so he believed to have found the basis for mediating between
Kronecker's foundational position and the ever more strongly set theoretic
practice of mathematics: The restrictive demands of Kronecker were accepted
for metamathematics; set theory was to be formulated in a strictly formal way;
and within that formal framework mathematics could be freely developed --
assuming satisfaction of the minimal requirement, i.e., consistency. It is in
this way that I understand Bernays' remark quoted earlier, "...it became his
goal, one might say, to do battle with Kronecker with his own weapons of
finiteness by means of a modified conception of mathematics.” And over the
years the strict formalization of mathematics seemed to open up also new
ways of solving mathematical problems (through calculation). In Hilbert and
Ackermann's - book this is called the "rechnerische Behandlung von
Problemen", i.e., the calculatory treatment of problems!

The most famous problem among these was the so-called
Entscheidungsproblem or decision problem. It is closely related to the
consistency problem and was pursued by some (e.g., Herbrand) on account of

1 [Frege 1984], p. 237. But he was careful to emphasize (in other writings) that all of thinking "can never be
carried out by a machine or be replaced by a purely mechanical activity" [Frege 1969], p. 39.

2{Godel 19331, p. 1.
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is a precise mathematical description of mechanical procedures. Further-
more, Church and Turing proved that there are no recursive (Turing-
machine computable) functions providing a positive solution to the decision
problem. These results seemed to confirm von Neumann's hunch that
heuristic methods will continue to be needed in mathematics; that is, proofs
have to be given, new principles have to be recognized, important new
notions have to be introduced! That need had already been made most
plausible, though not proved, by Godel's Incompleteness Theorems; after all,
they were formulated in Gddel's 1931 paper only for particular theories. A
convincing analysis of effective computability was thus required in order to
give a negative solution to the decision problem and to come to a proper
understanding of the generality of the incompleteness theorems. The
question for us is: What are the grounds for accepting the various
(equivalent) notions as actually constituting a precise mathematical
description of mechanical procedures?

Step-by-step to absoluteness. In his 1934 Lectures at Princeton Godel strove to
make the incompleteness results less dependent on particular formalisms®,
but he did not succeed in resolving the conceptual issue of giving a general
notion of "formal theory". He viewed the primitive recursive definability of
formulas and proofs as a "precise condition which in practice suffices" to
describe particular formal systems, but he was clearly looking for a condition
that would suffice in principle. But in what direction could one search? --
Godel considered it as an "important property” that, for any argument, the
value of a primitive recursive function can be computed by a "finite
procedure" and he added in footnote 3:

The converse seems to be true if, besides recursions according to the scheme (2) [of primitive

recursion], recursions of other forms ... are admitted. This cannot be proved, since the notion of
finite computation is not defined, but it can serve as a heuristic principle.

In the last section of the Lecture Notes Gddel described "general recursive
functions" (to be discussed in greater detail below); they are obtained as
unique solutions of certain functional equations, and their values must be
computable in an "equational calculus". For Gd&del, the crucial point of his
proposal was the specification of mechanical rules for the computation of

6 The theory Godel considered is actually second order arithmetic!
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F is effectively calculable if and only if there is an expression f in the logic L such that:
{fl(w)=v is a theorem of L iff F(m)=n; here, pu and v are expressions that stand for the positive
integers mand n.

Church claimed that such F are recursive, assuming that L satisfies certain
conditions; these conditions amount to the recursive enumerability of L's
theorem predicate, and the claim follows by an unbounded search. The
crucial condition in Church's list requires the steps in derivations of
equations to be, well, recursive! Here we hit on a serious stumbling-block for
Church's analysis, since an appeal to the thesis when arguing for it is logically
circular. And yet, Church's argument achieves something: The general
concept of calculability is explicated as derivability in a symbolic logic, and the
step-condition is used to sharpen the idea that we operate by effective rules in
such a formalism. I suggest the claim that the steps of any effective procedure
must be recursive be called Church's Central Thesis. Robin Gandy aptly called
Church's argument for his thesis the "step-by-step argument”: If steps in
computations are recursive, then the functions being calculated are recursive.
The mathematical essence of these observations is captured by appropriate
versions of Kleene's normal form theorem.

The concept of "calculability in a logic" used in Church's argument is
an extremely natural and fruitful one. Of course, it is directly related to
"Entscheidungsdefinitheit" for relations and classes introduced by Gddel in
his 1931paper and to "representability” as used in his Princeton lectures. It
was used in other contemporary analyses: Godel defined that very notion in
his 1936 note On the length of proofs and emphasized its "type-absoluteness"”.
In his contribution to the Princeton Bicentennial Conference (1946) Godel
reemphasized absoluteness (in a more general sense) and took it as the main
reason for the special importance of recursiveness. Here we have, according
to Godel, the first interesting epistemological notion whose definition is not
dependent on the chosen formalism. But the stumbling-block Church had to
face shows up here, too; after all, absoluteness is achieved only relative to the
description of formal systems.

The more general definition of absoluteness Godel gave in 1946 is
actually derived from work of Hilbert and Bernays in Supplement 2 of the
second volume of Grundlagen der Mathematik. They called a number-
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glance - between symbolic configurations of sufficient complexity. It states
that only finitely many distinct symbols can be written on a square. Turing
suggests as a reason that "If we were to allow an infinity of symbols, then
there would be symbols differing to an arbitrarily small extent" and we would
not be able to distinguish at one glance between them. A second (and related)
way of arguing the point uses a finite number of symbols and strings of such
symbols: for example, Arabic numerals like 17 or 9999999 are distinguishable
at one glance; however, it is not possible for us to determine at one glance
whether 9889995496789998769 is identical with 98899954967899998769 or
whether they are different.

Now let us turn to the question: What determines the steps of the
computor, and what kind of elementary operations can he carry out? The
behavior is uniquely determined at any moment by two factors: (i) the
symbols or symbolic configuration he observes, and (ii) his "state of mind" or
his "internal state”. This uniqueness requirement may be called the
determinacy condition (D); it guarantees that computations are deterministic. -
Internal states are introduced to have the computor's behavior depend
possibly on earlier observations, i.e., to reflect his experience. Since Turing
wants to isolate operations of the computor that are "so elementary that it is
not easy to imagine them further divided”, it is crucial that symbolic
configurations relevant for fixing the circumstances for the actions of a
computor are immediately recognizable. So we are led to postulate that a
computor has to satisfy two finiteness conditions:

(F.1) there is a fixed finite number of symbolic configurations a computor can
immediately recognize;

(F.2) there is a fixed finite number of states of mind that need be taken into
account.

For a given computor there are consequently only finitely many different
relevant combinations of symbolic configurations and internal states. Since
the computor's behavior is -- according to (D) -- uniquely determined by such
combinations and associated operations, the computor can carry out at most
finitely many different operations. These operations are restricted as follows:

23



form of Turing's Theorem and the fact that Turing computable functions are
recursive, F is recursive. This argument for F's recursiveness does no longer
appeal to Church's Thesis; rather, such an appeal is replaced by the
assumption that the calculation in the logic is done by a computor satisfying
the conditions (F) and (0). If that assumption is to be discharged, then a
substantive thesis is needed again. And it is this thesis I want to call Turing's
Central Thesis. It expresses the fact that a mechanical computor indeed satisfies
the finiteness conditions (F), and that the elementary operations he can carry
out are restricted as conditions (O) require.

Church wrote in his review of Turing's paper when comparing Turing
computability, recursiveness, and A-definability: "Of these, the first has the
advantage of making the identification with effectiveness in the ordinary (not
explicitly defined) sense evident immediately ..." For Godel, Turing's work
provided "a precise and unquestionably adequate definition of the general
concept of formal system". In the historical and systematic context Turing
found himself, he asked exactly the right question: What are the possible
processes a human computor can carry out in computing a number? The
general problematic required an analysis of the idealized capabilities of a
mechanical computor. Let me emphasize that the separation between
conceptual analysis (leading to the axiomatic conditions) and rigorous proof
(establishing Turing's Theorem) is essential for clarifying on what the
correctness of his general thesis rests; namely, on recognizing that the
axiomatic conditions are true for computors who proceed mechanically. We
have to remember that quite clearly when moving to methodological
discussions in artificial intelligence and cognitive science. Even Godel got it
wrong, when he claimed that Turing's argument in his 1936 paper was
intended to show that "mental processes cannot go beyond mechanical
procedures”. |

Godel's recursive functions. Another proposal Godel got thoroughly wrong
was Herbrand's! Recall that in the last section of his Princeton Lecture Notes
Godel addressed the question What other recursions beyond primitive ones
might be admitted in defining functions whose values can still be determined
by a finite computation? This is discussed under the heading "general
recursive functions", and Godel gave a definition of a general notion of

25



lecture notes, i.e. without reference to computability."ll But Godel had been
unable to find Herbrand's letter among his papers and had to rely on his
recollection which, he said, "is very distinct and was still very fresh in 1934".
However, the letter from Herbrand was found by John W. Dawson in Gddel's
Nachlass, reads like a preliminary version of parts of [Herbrand 1931c], and on
the evidence of that letter it is clear that Gdel misremembered. Herbrand as
a matter of fact wrote -- describing a system of arithmetic and the introduction
of recursively defined functions into that system with intuitionistic, i.e.,
finitist, justification --
In arithmetic we have other functions as well, for example functions defined by recursion,
which I will define by means of the following axioms. Let us assume that we want to define all
the functions ¢p(x1, x2, ..., xpn) of a certain finite or infinite set F. Each ¢p(x1, ...) will have
certain defining axioms; I will call these axioms (3F). These axioms will satisfy the following
conditions:

)] The defining axioms for ¢p, contain, besides ¢p, only functions of lesser index.

(ii) These axioms contain only constants and free variables.

(iii)  We must be able to show, by means of intuitionistic proofs, that with these -

axioms it is possible to compute the value of the functions univocally for each specified system -
of values of their arguments. ‘

It is most plausible that Herbrand admitted, in addition to the
(intuitionistically interpreted) axioms, substitution rules of the sort
formulated by Godel as rules of computation. Indeed, he asserted in his paper
[1931c] -- as he had done in his letter to Gddel -- that all intuitionistic
computations can be carried out, e.g., in the formal system P of Principia
Mathematica. This is not to suggest that Godel was wrong in his assessment,
but rather to point to the most important step he had taken, namely, to
disassociate recursive functions from an epistemologically restricted notion of
proof. Later on, Godel even dropped the regularity condition that guaranteed
the totality of calculable functions. He emphasized then!2? "that the precise
notion of mechanical procedures is brought out clearly by Turing machines
producing partial rather than general recursive functions." However, at this
earlier historical juncture, the explicit introduction of an equational calculus
with purely formal, mechanical rules for computing was important for the

11 I 4 letter to van Heijenoort of 23 April 1963, excerpted in the introductory note to [Herbrand 1931c],
see [Herbrand 1971], p. 283. (Godel refers to his 1934 lectures.) The background for and the content of the
Herbrand-Godel correspondence is described in [Dawson 1991].

12 [Wang 1974}, p. 84. The very notion of partial recursive function, of course, had been introduced in
[Kleene 1938].
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With van Heijenoort I assume that, here too, Herbrand used "intuitionistic"
as synonymous with "finitist".14 This third proposal is identical with the one
made by Herbrand in his letter to Godel quoted above except for clause (i)
from the earlier definition; but that clause is implicitly assumed, as is clear
from the examples Herbrand discusses. I view the first formulation on the
one hand as a preliminary, not fully elaborated version of the second and
third formulation; on the other hand, I view it as a more explicit indication of
the Kroneckerian element in metamathematics I pointed to earlier on. Thus,
we can see the evolution of essentially one formulation!

This is (prima facie) not in conflict with the interpretations Godel
considered!5, e.g., that Herbrand envisioned "unformalized and perhaps
unformalizable computation methods" and refused "to confine himself to
formal rules of computation"; but, as we will see, it is in conflict with Godel's
understanding that Herbrand's proposal leads to a class of functions larger
than that of general recursive functions. So let us distinguish two features of
Herbrand's schema, namely, (1) the defining axioms (plus suitable rules)
must make the actual intuitionistic computation of function values possible,
and (2) the termination of computations has to be provable intuitionistically.
That is, in modern terminology, we are dealing with "intuitionistically
provably total (or provably recursive) functions", where provability is not a
formal notion. However, a connection to a formal notion of provability is
given in the fourth section of [1931c], where Godel's Incompleteness
Theorems for the system P of Principia Mathematica is discussed. Herbrand
asserts there that any intuitionistic computation can be carried out in P and
that any intuitionistic argument can be formalized in P. He concludes, after
sketching Godel's proof, that P's consistency is not provable by arguments
formalizable in P, hence not intuitionistically either. What is most
interesting is his remark that Godel's argument does not apply to the system
of arithmetic that includes the above schema for introducing functions: The
functions that are introducible cannot be described intuitionistically, as we
could diagonalize to obtain additional functions. This last observation can be

14 A more detailed description of intuitionistic arguments is given in note 5 of Herbrand's [1931¢], pp. 288-
289.

15 in [vanH 1985}, pp.115-117.
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PART B. PROVABLY TOTAL FUNCTIONS.

In the first part of these lectures I described three main themes of proof
theoretic research and their intimate historical and systematic connection
with the analysis of effective computability. As to the latter, two distinct
approaches emerged. One is connected with Godel and began with his
definition of the class of general recursive functions via a suitable equational
calculus. The other, pursued by Herbrand, also requires that effectively
computable functions be defined as solutions of functional equations, but in
addition, their totality has to be proved finitistically. It is this notion of
provably total function that will be prominent in the two lectures of this part.
However, we are not using informal finitist proofs, but rather proofs in
particular formal theories for proving the totality of simply defined functions.
In the fifties, Kreisel asked the question: Given a formal theory T, can we find
a natural class F of recursive functions, such that the T-provably total
functions are exactly the elements of F? During the last few years the
question has been turned around for small classes of recursive functions
(complexity classes): Given a class F of recursive functions, can we find a
natural theory T, such that the elements of F are exactly the T-provably total
functions? The hope has been that relationships between formal theories
might reveal relationships between the corresponding classes of functions.

1. Sequent calculi and normal derivations. A variety of technical tools have
been employed in proof theory; for example the g-calculus, the no-counter-
example interpretation, the Dialectica interpretation. However, the tools
most directly useful and most perspicuous in my view are finitary and
infinitary sequent calculi for which normalization theorems can be
established. The reductive results I mentioned in A.1 have been proved by
use of such calculi and an associated lucid method that is also due to Gentzen.
This will be illustrated now by considering the first consistency result that was
(properly) obtained in the Hilbert school; its strongest version is due to
Herbrand. Then I will discuss the cut elimination theorem and some of its
extensions in detail.

A consistency proof. The classical sequent calculi we are considering are
presented in the style of Tait (1968); i.e., finite sets of formulas are proved and
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all formulas occurring in a normal derivation of A are subformulas of
elements of A.

Let me explain, through an example, how the subformula property
(and ¥Y-inversion) can be exploited in the "canonical" proof of the reflection
principle; the idea is simple, pervasive, and elegant. Consider a fragment of
arithmetic, say (N); it has the usual axioms for zero and successor, defining
equations for finitely many primitive recursive functions, and the induction
schema for quantifier-free formulas. Consequently, all of the axioms can be

taken to be in quantifier-free form. Now assume that (N) proves a -
statement and, thus, by ¥-inversion a quantifier-free statement y. A normal
derivation of A,y can be obtained, where A contains only negations of (N)-
axioms. These considerations can actually be carried out in (PRA), i.e.,

(PRA)+ Py (y) - PE(Ay).

Pfy and Pf" express that there is a derivation in (N) and, respectively, that
there is a normal derivation in the sequent calculus. A normal derivation of
Ay contains only subformulas of elements in its endsequent. So one can use
an adequate, quantifier-free truth definition Tr (for quantifier-free formulas
of bounded complexity) to show that

(PRA) + PEAw)— Tr(Z(AW)),

where Z(A,y) is the disjunction of the formulas in A,y. This is possible
because the language of (N) contains only finitely many symbols for primitive
recursive functions; we can easily define a primitive recursive valuation
function for all terms built up from them. More generally, but for the same
reason, (N) could contain all functions of a fixed segment of the Grzegorczyk
hierarchy.! As Tr is provably adequate we have

(PRA) b Tr(Z(A, )= Z(A,v),

and, thus,

IFor details concerning the standard material for truth definitions, see [Schwichtenberg 19771, pp. 893-
894.
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(ii) the length I1DI| of a derivation D is defined inductively to be the sup
(1D;1+1) with D; as the direct subderivations of D;

(iii) the cut-rank p(D) of a derivation D is also defined inductively: If D; are
the direct subderivations of D then p(D) equals either

sup(l@l+1, sup; ., p(Dy) if the last rule in Dis C with cut-formula ¢

or

sup; <k p(Dy)

(iv) a derivation is called normal or cut-free only when p(D)=0; if p(D)=1 it is
called quasi-normal. (The cut-formulas in quasi-normal derivations are all
atomic.)

Now I formulate some lemmata that are easily established by induction
on derivations. For the formulation of the first we need the operation
D=D,I" that adds I to the side formulas of all the inferences; for the
formulation of the second, we need the operation D(a)=D(s) that replaces all
occurrences of a by s. Clearly, one wants to replace only occurrences of a that
are "connected" to occurrences of a in an element of the endsequent and, in
addition, one has to insure that the side condition on the universal quantifier
rule is not violated: to do this we assume, without loss of generality, that with
each such inference there is associated a unique eigenvariable and that these
eigenvariables are distinct from parameters occurring in I" and s, respectively.

Weakening lemma. If D is a derivation of A, then D,I" is a derivation of A,T;
ID,I’l = IDI and p(D,T) = p(D).

This lemma allows us, most importantly, to consider a more general
formulation of the cut rule, namely,

1_‘OI(P 1_‘1/_'(P
ol

Substitution lemma. If D(a) is a derivation of A(a), then D(s) is a derivation of

A(s); 1D(@)1=1DG)|; p(D(a))=p(D(s)).
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A, Ai, F1 for all i<k
A/ A/ 1-‘1

Case 2. ¢ and —¢ are the p.f. of the last inference in Dy , respectively D.

Case 2.1. @ or ~¢ is atomic. Then the last and only inferences in Dy and D
must be instances of (logical) axioms; consequently, I'p,I'; is also an instance of
an axiom.

Case 2.2. @ or ¢ is a disjunction yovy;. By symmetry we can assume the
former. So =@ = -ygAa—yi. We can also assume that ¢ is a s.f. of the last
inference in Dy, replacing Dy by Do ¢ if necessary. So the last inference is of

the form

T, 0, ¥
To, @

By induction hypothesis we have a derivation Dy of

o, Vi, I

of length <IDg |+ Djland cut-rank <|¢|. By a-inversion we obtain from D; a

derivation D; of

1_‘1/ —Yi

of length <ID7l<1Dgl+ 1Dy | and cut-rank <[g|. Joining Dy and Dy by C with cut-
formula y; we obtain a derivation of I'p,I';; its length is <1 Dol +1D; | and cut-
rank <g). '

Case 2.3. @ or —@ is an existential statement (3y)yy. By symmetry we can
assume the former. So —¢ = (Vy)-yy. We assume again that ¢ is a s.f. of the
last inference of Dy. So the last inference is of the form

To, @, yt
I, @

By induction hypothesis we have a derivation Do of

FOI Y, rl
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bounding of the logical complexity of formulas appearing in a (normal) proof
of a sequent I': Every formula in D is a subformula of an element in I.

Definition. ¢ is a subformula of y iff [(¢ is y) or (y is =€, & is atomic and ¢ is &)
or (yis Egaky or EgvEr and ¢ is a subformula of &y or &;) or (y is (Vx)Ex or (Ix)Ex
and ¢ is &t or a subformula of Et for any term t)].

Corollary (subformula property). If D is a normal derivation of I', then every
formula in D is a subformula of some element in I'.

Proof (by induction on normal derivations). One just has to notice that all the
rules occurring in normal derivations have the property: any formula in its
premise(s) is a subformula of a formula in its conclusion.

Q.E.D.

Remark: There is a different way of proving a normal form theorem for the
sequent calculus! The completeness proof for the calculus without the cut-
rule shows that to establish all logical truths the cut-rule is not needed; that is,
if a sequent can be proved at all, it is (by the soundness of the full calculus) a
logical truth, and thus it can be established by a normal proof.

Extensions. The considerations for pure predicate logic can be modified and
extended to treat finitary calculi with additional, mathematical axioms,
additional sorts (e.g., finite type theory), or additional rules (e.g., induction
rule), but also to treat infinitary calculi. I will consider only finitary calculi.
The first extension -- to treat theories with universal axioms -- admits new
axioms in addition to the logical ones. The particular way I treat them is
modeled after [Girard, 19871, pp.123-126. We start with a definition: Let T be a
set of sequents whose elements are literals (i.e., either atoms or negated
atoms); if T is closed under substitution3 it is called a Post System. Let me
describe some examples:

(1 the axioms for equality can be expressed by a Post System :

(EAy) T, t=t

3 "Closed under substitution” means: if D(a)€ T then D(t)€ T for each term t in the language at hand.

39



derivation and thus of T(F)FD. (Clearly, the principal formulas of axioms I' A
are the elements of A.)

Theorem (T-normalization). Let D be a T(F)-derivation of I'; then there is a quasi-
normal T(F)-derivation E of T with |E!<2' and m=p(D)-1.

Proof. One proceeds as in the proof of the normalization theorem above. It is
only the proof of the reduction lemma that has to be modified slightly: in case
2.1. one has to consider the possibility that T(F)-axioms are involved. If one

of the axioms is a logical one then I, Iy must be a T(F)-axiom; if both are

T(F)-axioms, then we can infer Iy, I'; by a permitted cut.
Q.E.D.

Here one could require having only atomic cuts whose cut-formulas are p.f.s
in some sequent of T(F). In applications this is unnecessarily restrictive, since
only the complexity of formulas is crucial: We do not obtain the full
subformula property, but the important bounding of the logical complexity of
formulas occurring in the derivation is still achieved.

Corollary. If D is a quasi-normal T(F)-derivation of T, then every formula in D
is either a subformula of some element in I" or of some T(F)-axiom.

Remark. Cut-elimination does not hold in general for systems with proper
axioms. To see that, consider the following example adapted from [Girard
1987]4: assume that both A and -A, B are (proper) axioms. Clearly, B is
provable from them by one application of the cut-rule, but there is no cut-free
derivation.

Now we shall treat a second extension -- this time not by mathematical
axioms of a restricted form, but rather by a rule for induction, called ©-IA; it is
of the form:

I',90 I',—0¢a, ga’

I, ot
Here the parameter a is not in P(Tu{gt}), t is any term, and ¢a is in ©, a class

of formulas like Ay, 2:8, nﬁ. The theory obtained from an extension of

4section 2.7.7 on pag.125

41



This is proved straightforwardly by induction on the length of D. Note that
in theories that allow definition by cases the finite sequence of terms can be
joined into a single term t by defining:

t =ty if OQty; =t;if —QoAPt; .. =t; if “Zicn(QPt)AQt,

This kind of "term extraction” will be crucial for obtaining computational
information from derivations.
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The corollary can be further extended to I-normal derivations; that extension
will be given only in a more specialized setting. We are considering theories
T(F) of the form (QF(F)-IA) such that T(F) and F satisfy the following two
conditions:

(H.1) F is provably closed under explicit definitions and definition by cases
(thus under Boolean operations, max, min);

(H.2) F is provably closed under bounded search, i.e., for any formula ¢ in
QF(¥) there is an h in F such that T(F) proves: (Qy<x)¢y <-> ¢h(x).

Theories T(F) satisfying these two conditions are called Herbrand Theories. It is
for them that I establish the most suitable form of J-inversion.

J-inversion. Let T(F) be an Herbrand theory, let I' contain only purely
existential formulas, and let y be quantifier-free; if D is a T(F)-derivation of
[,(@x)wx, then there is a term t* and a(n I-normal) T(F)-derivation D* of I',yt*.

Proof (by induction on I-normal T(F)-derivations). I focus on the central step
in the argument when the last inference in D is of the form

L 00,(3x)wx I' ~da,0a’,(Ix)yx
Tt (Ix)wx
The induction hypothesis, applied to the derivations Dy and D, leading to the

premises of the inference, yields terms r and s(a). These terms may contain
other parameters as well. The induction hypothesis yields also derivations
Do* and D,* of

(1) T,00,yr
and of
(2) [,~0a,0a',ys(a).
T(F) proves clearly
=¢0,0t,(Ix<t)(yx A ~yx')
and, with condition H.2 and A-inversion, both
(3) -00,0t,ywh(t)
and
(4) —00,0t,~yh(t)".
From (2), replacing the parameter a by the term h(t), one obtains
(5) T',~0h(t),6h(t)’ ,ys(h(t)).
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arithmetic as introduced by Buss; third, I'll investigate second-order
extensions of fragments of arithmetic, in particular Friedman's (F).

Induction and recursion. The key-word here is match-up, that is, match-up
between induction and recursion. I will show that the schema of primitive

recursion is exactly right for analyzing the Z?—induction-principle, and that
bounded iteration is exactly right for analyzing s-).“,?—induction. As
consequences we obtain very neat proofs of two facts: (1) the provably total

functions of (Z?—IA) coincide with the primitive recursive ones (established by
Parsons and independently by Mints and Takeuti), and (2) the provably total

functions of (Buss's theory) S} are exactly the polynomial-time computable
ones. Let me start out with the considerations for the former result.

Lemma. Let T contain only %1-formulas; if D is an I-normal derivation of T in
(ZX(PR)-1A), then there is an I-normal derivation of T in (QF(PR)-IA).

Proof. The argument proceeds by induction on the number # of applications
of the)?.?—induction rule in D. Clearly, if #=0, the claim is trivial. So assume

that #>0 and consider an application of the E?—induction rule such that no
other application occurs above it in D. The subderivation E determined in
this way ends with the inference '

A(Fx)wx0 A ~(@x)yxa (Gx)yxa’
A,(Tx)wpxt /

where v is quantifier-free. Without loss of generality we can assume that A
contains only existential statements; by the corollary to the I-normalization

Theorem, all formulas in D are contained in I'I? or Z? ; if A contained universal
formulas, we could use Y-inversion first and carry out the subsequent steps
with additional parameters -- and these paramaters could be removed in the
very last step by applying first the rule for 3 and then for V. After this
digression, showing once more the significance of bounding the logical
complexity in "normal" derivations, let me continue with the main
argument. Let Eg be the derivation of the left premise and E, that of the right
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bounded arithmetic, is the language of elementary arithmetic expanded by
function symbols |.1, 7, and # where lal yields the length of the binary
representation of a, 7 is the shift-right-function, and a#b is 2lallbl  The
language L(P) is obtained from L(B) by adding function symbols for each
element of P. The latter class of functions is defined inductively as the
smallest class of functions that contains certain initial functions (0, ', 7, 2., %,
choice') and that is closed under composition and bounded iteration; a
function f is said to be defined by iteration from g and h with time bound p
and space bound q (p and q suitable polynomials?) iff the following holds: If ©
is defined by

T(x,0) = g(x)

(x,y") = h(x,y,t(x,y)),
then we must have

(Vysp(Ix1)) 1ty | <q(Ix])
and

f(x) = tx,p(1x1));
x indicates a sequence of variables. -- Letting F stand for P or B, the set of
quantifier-free formulas in L(F) is denoted by QF(F). The bounded quantifiers
(Vx<1tl) and (@x<1tl), understood again as abbreviations, are called sharply

bounded. Ag(F), the class of sharply bounded formulas, is built up from
literals in L(F) using A, v, and sharply bounded quantifiers; if closure under
bounded existential quantification is also required, the set of formulas is

called Z?(F). A formula of L(F) is in s-Z?(SF) just in case it is of the form
(x<t)d, where ¢ is in QF(F). The theories of bounded arithmetic to be
investigated contain the basic axioms for the non-logical symbols of L(B), the
defining equations for the elements of P in case the theory is formulated in
L(P), and one of the induction principles ®-PIND or ®-LIND. The latter are
formulated as rules
I, g0 I ~Q3. Qa
T, ot

and

1o , X, and choice are the shift-left-function, the characteristic function of <, and the definition by cases
function, respectively.

ZA polynomial is called suitable if it has only nonnegative integers as coefficients; thus suitable
polynomials are monotonically increasing.
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We only have to establish that the theory (s-Z?(‘P)-LIND) is conservative over

(QF(P)-LIND) for IT)-formulas. That is obtained directly from the next
lemma.

Lemma. LetI contain only Z(l)-formulas; if D is an I-normal derivation of I in

(s-Z?(ZP)—LIND), then there is an I-normal derivation of I in (QF(P)-LIND).

Proof. The argument proceeds by induction on the number # of applications
of the s-Z?(P)-induction rule in D. The claim is trivial if #=0. So assume that

#>0 and consider an application of the s-Z?(’P)-induction rule, such that no
further application occurs above it. The subderivation E determined in this
way ends with the inference

A.yal A, ~waa, yaa'
Ayvalsl ;

yaa is of the form (Ix)(x<t[a,a] A y*xaa), where y* is in QF(P) and a indicates
the sequence of parameters occurring in Ay. Let Eg be the derivation of the
left premise and E, that of the right premise. 3-inversion allows us® to extract
from Eg aterm ofa] and a derivation in (QF(P)-LIND) of

(1) A, ola]<t[a,0] A y*olala0 .

The application of Y-inversion and then of 3-inversion to Ea yields a new

parameter c, a term 7t[a,c,a] , and a derivation of

(2) A, —(cstla,a] A y*caa), tlacal<tfaa’l A y*1[a,calaa’.
Now define: p(a,0) =ola]
p(a,a') =1[a,p(a,a),a] if a<lsl
and =p(a,a) otherwise ;

p can be shown to be in P. For that note first that the term s contains neither
a nor c: a not due to the restrictive condition on the rule LIND, ¢ not due to

3 As D is I-normal we can assume without loss of generality that A contains only existentially quantified
formulas.
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For the formulation of two crucial lemmata I assume that A consists
only of existential formulas; A[-QF-ACj] denotes the sequent obtained from A
by adding negated instances (and instantiations) of the quantifier-free axiom
of choice; A[-WKL] is defined similarly. We are working within (BT); explicit
definition or A-abstraction is given by: (Vx)Ay.tlyl(x)=t[x], i.e., QF-AA. All of the
axioms are presented by a Post-system XK.
QF-ACy-elimination. If D is an I-normal K-derivation of A[-QF-ACy], then there

is an I-normal K--derivation of A.

In this special situation we can eliminate QF-AC in favor of just QF-AA, i.e.,
quantifier-free comprehension. The same holds for Weak Konig's Lemma:
WKL-elimination. If D is an I-normal K-derivation of A[-WKL], then there is an
I-normal K-derivation of A.

Assuming these two lemmata and the eliminability of Z?—induction, I give
the proof of the conservation theorem I mentioned.

Theorem. (BT+E?—IA+Z?—AC0+WKL) is conservative over (BT) for Hg-sentences.

Proof. Notice that a derivation in (BT+Z\-IA+X{-ACo+WKL) of the Thr-
statement (Vx)(3y)yxy can be transformed into an I(Z?)—normal K -derivation
with an endsequent of the form [-QF-ACy,~WKL], (Vx)(@y)yxy . This sequent
can be assumed (by ¥Y-inversion) to be of the form [-QF-ACy,—-WKL], (Jy)yay.
The main claim is this:

*) Let A consist only of existential formulas; if D is an I(Z?)-normal K-
derivation of A[-QF-AC,,~WKL],(3y)yay, then there is an I-normal K-deriva-
tion E of A,(Qy)yay.

Proof of (*) (proceeds by induction on the length of I(Zg)-normal K -deriva-
tions). The induction step is trivial in case of LA, C with atomic cut-formula,
or when the last rule affects an element of A or the formula (Jy)yay. So we
have to consider the cases that the last rule (1) is C with E?—cut-formula, (2) is
the Z?—induction rule, (3) introduces an instance of -QF-AC,, or (4) introduces
an instance of ~WKL. Let me discuss the arguments for (1) and (2); those for
(3) and (4) are analogous to that for (2). In case (1) the derivation ends in an
inference of the form
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Now use the standard trick to remove the universal quantifier by Y-
inversion, then apply the induction hypothesis, and finally re-introduce the
universal quantifier to obtain an I-normal X-derivation Dy* of

(6) A,(@y)yay,~¢b,¢b'.

Joining the derivations leading to (5) and (6) by the Z?-induction rule, we
obtain an I(Z?)-normal K-derivation of A,(Jy)yay,pt. But this derivation can
be transformed into an I-normal K-derivation of the same sequent by the

Theorem concerning the elimination of Z?—induction. The remaining two
cases (3) and (4) are treated similarly using the appropriate elimination
lemmata. Q.E.D.

Now let us come back to the elimination lemmata we just applied to prove
the conservativeness of (BT+Z?—IA+Z?—ACO+WKL) over (BT) with respect to

0 . .
[Ir-sentences. Let me first give the proof of the QF-ACy-elimination lemma.

Proof (by induction on the length of D). I focus on the crucial case when an
instance of ~QF-AC, has been introduced by the last rule in D. D has then
the immediate subderivations Dy and D; with endsequents A[-QF-ACy],
(Vx)@y)yxy and A [-QF-ACy 1, -@H)(Vx)yxf(x). By ¥-inversion one obtains I-

normal K-derivations D; of

(1)  A[-QF-AC], Gy)ycy
and
(2)  A[-QF-ACy, ], ~(Vx)yxu(x) ,

where ¢ and u are new number, respectively function parameters. ID;1<D;,
for i<1, and the endsequents of D; satisfy the conditions on the complexity of
the formulas. The induction hypothesis yields I-normal X-derivations of

) A Gyycey
and
@) A, ~(Vx)yxux) .
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The terms s and t may contain further parameters, but u does not occur in t.
Now observe: (i) t yields sequences of arbitrary length in the tree f that do not
necessarily form a branch; (ii) f(u(s[u]))#1 expresses the well-foundedness of f.
In short, we have a binary tree (according to Eg) that contains sequences of
arbitrary length and is well-founded. This conflicting situation can be
exploited by means of a formalized recursion theoretic observation, namely: s
can be majorized (in the sense of [Howard]) by a numerical term s* that does
not contain u, since u can be taken to be majorized by 1. Let t[s*] be the 0-1
sequence

£0,++--s ts*-l

and define with A-abstraction the function u* by
u(n) =t ifn<s*

and u*(n) equals 0 otherwise. u*(s*) equals t[s*]. According to Eo f is provably
a tree, and s* is a bound for s. Thus we have from F; a derivation of A,
f(t(s*))=1. Replacing u by u* yields a derivation of and indeed a derivation
G2 of A, f(t[s*])#1 when taking into account the equation u*(s*)=t[s*]. From
F1 one can obtain a derivation Gjof A, f(t[s*])=1 by a-inversion and the
substitution lemma, replacing c by s*. A cut of G;and G; yields the sought for
derivation E of A. Q.E.D.

Clearly, the Theorem does provide computational information; that is
expressed in the following corollary.

Corollary. If (BT+Z?—IA+E?—ACO+WKL) proves the Hg-statement (Vx)3y)yxy,
then there is a primitive recursive function f and a proof of yaf(a) in (PRA).

(ET) is like (BT) but it has defining axioms only for the Kalmar-elementary,

not for all primitive recursive function(al)s and it does not contain Z?—
induction. By the same argument one can establish a conservation result
analogous to that for Friedman's (F); then it is possible to infer the following
corollary.

Corollary. If (ET+Z§)—AC0+WKL) proves the Hg-statement (Vx)3@y)yxy, then
there is a Kalmar-elementary function f and a proof of yaf(a) in (KEA).
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PART C. NATURALLY NORMAL PROOFS

In the first two parts of these lectures we have seen the use of the classical
sequent calculus as a technical tool for achieving two ends: For foundational
reductions of (strong) subsystems of analysis to constructive theories and for
the extraction of computational information from proofs, thus for the charac-
terization of the provably total functions of theories. I mentioned a third
theme of proof theoretic research that goes back to Hilbert, namely, the
cognitive psychological one. In "Uber das Unendliche" Hilbert described
proof theory in such a way that it can be mistaken for cognitive psychology
restricted to mathematical thinking. Let me recall his remark: "The
fundamental idea of my proof theory is none other than to describe the
activity of our understanding, to make a protocol of the rules according to
which our thinking actually proceeds.” If this remark has plausibility at all,
then only through the emergence of Gentzen's natural deduction calculi.l I
am turning now to their discussion.

1. Mechanization and natural deduction proofs. The mechanization of
human reasoning has been aimed for ever since theoretical recognition of the
formal character of inference steps was complemented by practical experience
with intricate mechanical devices. I remind you again of Leibniz! It is only
since the end of the 19th century that we have powerful logical frameworks
allowing us to formalize substantive parts of human knowledge, namely,
mathematics. And it is only since the middle of our century that we have
sufficiently intricate (electronic) devices providing the physical
underpinnings for mechanization. Up to now, it seems to me, logical
frameworks that do not reflect human reasoning have been chosen for
mechanization; that applies to resolution, to sequent calculi as well as to their
notational variant, tableaux.

Normal Proofs.  Calculi that mirror closely the structure of ordinary
argumentation have been available since the mid-thirties -- Gentzen's
natural deduction calculi. According to Gentzen they were to reflect "as
accurately as possible the actual logical reasoning involved in mathematical

1 But one must remember that Hilbert had analyzed the role of the various connectives in such a way that
his system is an axiomatic formulation of the ND-rules.
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To state the first of these properties recall that the premise of an
elimination inference containing the characteristic connective is called major
premise and that a derivation is called normal, just in case there is (roughly
speaking) no formula occurrence in the derivation that is both the conclusion
of an I-rule and the major premise of an E-rule. In addition, the consequence
of —E should not be the major premise of an elimination rule. The first
central property was established by Prawitz (1965) and can be formulated in a
slightly more general way than Prawitz did:

Normalization Theorem. Any derivation of G from o in the ND-calculus can be
transformed into a normal derivation leading from o to G.

Here o is the sequence of assumptions from which G is derived. Prawitz's
proof specifies a particular sequence of "reduction steps" to effect the
transformation.?> The second crucial fact that holds for (normal derivations
in) natural deduction calculi is a corollary of the normalization theorem and
states that normal derivations D of G from o have the subformula property in
the following sense: every formula occurring in D is (the negation of) either a
subformula of G or of an element in o.

Despite the "naturalness" of natural deduction calculi, the part of proof
theory that deals with them has hardly influenced developments in
automated theorem proving. For that the proof theoretic tradition founded
on Herbrand's work and Gentzen's work on sequent calculi have been more
important. The keywords here are resolution and logic programming. From
a purely logical point of view this is prima facie peculiar: It is after all the
subformula property of special kinds of derivations* that makes resolution
and related techniques possible, and normal derivations in natural deduction
calculi have that very property (with the minor addition mentioned above).
Why is it then that natural deduction calculi have not been exploited for
automated proof search? The answer to this broad question lies, it seems to me,
in answers to three crucial questions: (1) How can one specify through a calculus

normal derivations? (2) How can one construct a search space that allows the

3 And holds, to be precies, only for a part of the classical calculus. The (strong) normalization theorem for
the full calculus is established by Stalmark (1991).

4 Derivations in Herbrand's calculus and derivations in the sequent calculus without cut have the
subformula property: they contain only subformulas of their endformula, respectively endsequent.
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predicate logic and to non-classical logics, for example, intuitionistic logic.>
(The extension to predicate logic will be sketched in the next lecture.)

The intercalation rules operate on triples of the form «;B?G. o is a
sequence of formulas, the available assumptions; G is the current goal; B is a
sequence of formulas obtained by a-elimination and —-elimination from
elements in o. To facilitate the description of rules and parts of search trees let
us agree on some conventions. I let lower case Greek letters «, f3, v, 9, ..
range over finite sequences of formulas; as syntactic variables over formulas
we use ¢, ¥, X, ...; P, 0, T (with indices) will range over trees. At first I
consider only formulas in the language of sentential logic using the
connectives =, A, V, —; I also use 1 (falsum) as an auxiliary symbol. ¢ea
expresses that ¢ is an element of the sequence o; o, is short for the
concatenation a*f of the sequences o and B; «,p stands for the sequence.
ax<¢>, where <> is the sequence with ¢ as its only element. Finally, I write
a=p iff the sets of formulas in the sequences a and P are identical. There are -
three kinds of intercalation rules: those corresponding to E- rules for A, Vv, —;

those corresponding to I-rules for A, v, —; and finally rules for negation. Let
me first list the rules of the first kind, i.e., the {-rules:

ng PG, o1adr€aB, 0i¢af = o;B,0i7G for i=1or2
W o;B?G, d1vorcaP, o1¢af, 0o => a.91;?G AND «,02;3?G

V= o;P?G, d1—02€0B, d1€aB, hréof => o;B,027G

The side conditions of these rules avoid repeating the "same questions";
o;B?G is the same question as o*;p*?G just in case the sets of formulas in the
sequences o,p and a*,p* are identical. Now I formulate the rules that
correspond to inverted introduction rules, i.e., #-rules.

A o;B?0iA02  =>  o;p?01 AND o;B?02
tv:  o;B?01ver =>  o;f?¢1 OR  a;P?¢2

> (X;B?¢1-)¢2 => a,¢1;5?¢2

5 That was done by Saverio Cittadini in his M.S. thesis written in May 1991; see {Cittadini 1992].
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As an example of how the intercalation rules are used to build up the
search space for a question «;?G, let me show the search tree for the question
?Pv=P. It is partially presented in Diagram 1 (of the Appendix to this lecture
on p. 72). We start out by applying three intercalation rules to obtain three
new questions, namely, ?P OR ?—P OR, proceeding indirectly, -(Pv-P);?1.
That the branching in the tree is disjunctive is indicated by 0. Let us pursue
the leftmost branch in the tree: To answer ?P we have to use l¢ and, because
of the restriction on the choice of contradictory pairs, we have only to ask

-P;?P AND -P;?-P. B indicates that the branching is conjunctive here. In

the first case only l¢ can be applied and leads to the same question we just
analyzed: Using —P as an assumption, 1 has to be proved. Thus we close this
branch with a circled F, linking it to the same earlier question on the branch.
In the second case the gap between assumptions and goal is obviously closed,
so we top this branch with a circled T. The other parts of the tree are
constructed in a similar manner. But the tree is not quite full: At the nodes
that are distinguished by arrows the additional contradictory pair consisting of
P and —P has to be considered. Atnodes 2 and 3 the resulting branches do not
help in closing the gap; at node 1, in contrast, the resulting subtree is of
interest and will be discussed below.

The darkened subtrees (in Diagram 1) contain enough information for
the extraction of derivations in a variety of styles of natural deduction. For
our calculus we can easily obtain the corresponding derivations; namely:

A
Pv-P m
P
Pv-P ——P=D)

Pv-P

The second derivation is analogous to this one, except that the roles of P and
-P are interchanged; finally, the derivation that emerges from the undrawn
part at node 1 is this:

structure of ordinary arguments. In the case of resolution based procedures, one also has the non-trivial
problem of finding an associated natural deduction derivation. Cf. Andrews, Mints, and Pfenning.
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so G* must be 1! But then the construction is terminated, because l¢ is not
applicable either. Thus, the branch is closed with F. Q.E.D.

Every branch in a search tree is finite and is topped by either a circled T
or F. This assignment to the leaves can be easily (and uniquely) extended to
the whole tree and thus determines the value of the original question. One
can show two facts: (1) If T is assigned to the root of the intercalation tree,
then there is a normal derivation leading from the assumptions to the goal of
the question; (2) If F is assigned to the root of the intercalation tree, then
there is not only no normal derivation, but no derivation at all: The
intercalation tree contains enough information to show that the inference
from o to G is semantically invalid. Let me address just (2); the first fact is
established by a rather straightforward inductive argument.

Extracting Counterexamples. By the evaluation of intercalation trees we
know that a question o;?G obtains the value T or F. In case the value is T we
can determine an associated normal derivation. In case the question has
value F, we have as an immediate consequence "The search failed!" But that
only means the particular possibilities of building up derivations -- as
reflected in the construction of the intercalation tree -- do not lead to a
derivation that establishes G from assumptions in o. We can do better: a
special branch in the intercalation tree can be selected and be used to define a
semantic counterexample to the inference from a to G. Clearly, if the
question a;?G evaluates as F, then so does «,G";?1, where G" is =G if G is
not a negation and is its unnegated partotherwise. We establish the
following lemma:

Counterexample extraction lemma. For any a and G: If the intercalation tree ¢ for
0;?G evaluates as F, then it contains a canonical refutation branch p that
determines a valuation v with v'(¢)=0 for all € and v'(G)=1. (Thatis, visa
counterexample to the inference from o to G.)

The intercalation tree o is evaluated as F and thus it will be quite direct to see
that the following construction leads to a branch p through o, if F(a*<G">) is
non-empty. If this set is empty, a*<G"> consists only of sentential letters and
the valuation v, defined by v(P)=0 iff Pe a*<G">, is a counterexample. If the
set of proper subformulas of the elements of a*<G"> is non-empty, we need a
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applicable. Application of that rule with any formula in F(a*<G">), in
particular with Hy, leads to the canonical closing indicated in the diagram.

Let I':'= {¢ | 0€0ly+1}; thus, T consists of all the formulas appearing on
the Lh.s. of the question mark at p's top node. The set I' has important
syntactic closure properties and this can be exploited to define a valuation that
will serve as a model for a*<G">. We establish first the closure properties.

Closure lemma. For all subformulas ¢1, ¢ of o*<G"> we have:
) either ¢1 or -9, is in I, but not both;
(11) ﬂﬂ(plEI“ => ¢1EF;

(iii)  (91A92)€T => ¢1€ and ¢€T;
—(01A02)€T => —p1€T or —o€T;

(iv)  (¢1vdr)eT => ¢1€T or 0,€T;
—(dp1vh2)€T => —¢1€T and —07€T;

(V)  (¢1—02)€l => —p1€T or ¢2€T;
=(¢1—=¢2)€T => ¢1€T" and —¢€T.

Proof. (i) is direct from the construction. (ii) is an almost immediate
consequence of (i): Assume ——¢;1€I" and ¢;¢I; from the second assumption
and the first part of (i) it follows that —¢1€I". But that together with the first
assumption contradicts the second part of (i).

Now let me establish (iii) paradigmatically to show the pattern of further
argumentation. We have to show:

(*)  (91Ad2)€T => ¢1€TC and ¢€T and
(**)  =(01A92)ET => 1€’ or =€l

For (*) assume ($1A07) €T and 04T (the case ¢,4T is symmetric); by (i) —¢1€T.
Given these conditions we can close the branch as follows, applying ¥A; to the
left node above the checkered one :
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Now define a valuation by v(P) = 0 iff PeT". Using this valuation and the
closure lemma we can prove the Proposition that for every ¢€I™: v'(¢)=0. Hence
v is a model for a*<G">; this concludes the proof of the lemma concerning
the extraction of counterexamples. Putting these considerations together, we
obtain a completeness theorem for classical sentential logic in the following
form:

Completeness theorem. The intercalation tree for the question a;?G allows us to
determine either a normal derivation G from o or a branch that provides a
counterexample to the inference from o to G.

So we have a semantic argument for the normalizability of ND proofs.

Normal form theorem. If G can be proved from assumptions in o, then there is a
normal proof of G from .

This is, as far as I know, the first semantic proof of the normal form theorem
for a natural deduction calculus. It is also extremely easy to obtain (from
intercalation derivations) the interpolation theorem.
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vI: a;B?G, (Ax)ox€aP, ais new for a,(Ix)px,G, and there is no t€T(ap,G)
with ¢tcaff => o,0a;p?G

vV o;BAVYX)0x, aisnew for a,(Vx)ox = o;B?¢a
t3: oB?(@x)ox, teT(aB,G) => o;p2¢t

Intercalation trees are now inductively specified as in the case of sentential
logic: if a*;3*?G* is an open question, all possibilities of intercalating formulas
are considered. In case G* is different from | one proceeds, e.g., in the order

Wot& 1, v &5, v>, 43, 4v, 1V, 2 &, 4>, 43, tv, and finally either l;or
1., in case G*is 1 we apply ly with F containing all proper subformulas of o*
(where subformulas of quantified formulas are taken only with terms in
T(a*,1l)). Branches are closed with T and F under the same conditions as
before. However, intercalation trees will in general not be finite; that means at,
every stage there will be a branch without a definite value, and to evaluate .
partial trees 6* we assign a third value O to the leaves of such branches. Given’
the valuation v+, the value of the question at ¢*'s root is determined by
recursion on ¢* following Kleene's scheme [IM, p. 334] for three-valued logic:

[N]o* = v(N) if N is a leaf of ¢*

[N]s Mls- if M is the unique predecessor of N

1l

in case N is at a conjunctive branching,

[N]G*

T if for all immediate predecessors M of N: [M]s*=T
F if for some immediate predecesor M of N: [M]s=F
o otherwise

in case N is at a disjunctive branching,

[N]s* = F if for all immediate predecessors M of N: [M]s*=F
T if for some immediate predecesor M of N: [M]s*=T
O otherwise

The intercalation tree o for ;?G is thus defined in stages as follows: opis 0;?G;
On+1 is op if [0;?Glon is either T or F, otherwise oy4; is obtained from o, by
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existential and negated universal formulas that occur on the L.h.s. of 2. We
start out the construction of the binary tree t (using conventions and
definitions from the last lecture) with the first wave for the enumeration of the
proper subformulas of formulas in a*<G"> (where immediate subformulas of
quantified formulas are taken only with terms in T(a*<G'">,1):

7(0) = 0;?G

o = oa*x<G">
Aog,1) = K(ot,1)
(1) = o7l

Now let 0<m; at level 2m we extend each open branch with a question of the
form B;?1 at its leaf by

Br H B;?-H

\/

B;?1

if both questions B;?H and B;?-H evaluate as O; if only one of them evaluates
as O, then the branch is extended at just that question. And one of these cases
must hold, because the question [3;?1 evaluates as O. (Clearly, as before, H is the
first element in the given enumeration that extends B properly.) At the next
level 2m+1, every open branch is extended by applying the appropriate
negation rule. After finitely many steps this construction cannot be continued.
However, at least one branch in the tree constructed so far has to be open (for
extensions by rules other than ly), as for all néN [o;?G]lgp=0. In sentential
logic, as we saw, that cannot happen; the resulting set of formulas I is
deductively closed in the sense of the earlier Closure Lemma. Here, some of
the I''s associated with the top nodes cannot satisfy the closure conditions

(I x)px € T' => ¢tel for some term t

and

~(Vx)¢px € I' => -¢teT for some term t.
In the first case the rule 3 is applicable (with a canonically chosen new
variable); in the second case we are able to extend the branch in the following
way (also with a canonically chosen new variable):
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The definition of a structure M from I, is now utterly standard, and we obtain
a completeness theorem for classical predicate logic in the following form:

Completeness Theorem. The intercalation tree for the question o,?G allows us to
determine either a normal derivation G from o or a branch that provides a
counterexample to the inference from o to G.

So we have a semantic argument for the normalizability of ND proofs.

Corollary (Normal Form Theorem): If G can be proved from assumptions in o, then
there is a normal proof of G from a.

Remark. As in the case of sentential logic the Interpolation Theorem with its
standard consequences (Beth Definability, Robinson Joint Consistency) can be
obtained easily and constructively.

Let me address the question of finding proofs in mathematics -- with’
logical and mathematical understanding. If one looks, as one naturally would, .
at Georg Polya's writings on mathematical reasoning and heuristics, one
realizes very quickly that his most general strategies for argumentation are
logical ones. Quite sophisticated strategies are involved in a program, the
Carnegie Mellon Proof Tutor, that searches automatically and efficiently for
natural deduction proofs in sentential logic; that program was developed by
Richard Scheines and myself with assistance from Jonathan Pressler and Chris
Walton. ! Presently we are extending the program to predicate logic. Though it
is undoubtedly not logical formality per se that facilitates the finding of proofs,
logic does help to bridge the abyss between assumptions and conclusions. It
does so by suggesting very rough structures for arguments, that is, logical
structures that depend solely on the syntactic form of assumptions and
conclusions. This role of logic may seem modest, but it seems to be critical for
penetrating to essential subject-specific considerations supporting a conclusion.
It is our very ambitious goal (that will take some years of sustained work) to do
automated proof search in elementary set theory, say, up to the Schroder-
Bernstein Theorem; and in combinatorics, say up to van der Waerden's
Theorem and other Ramsey type theorems.

1 For details, in particular concerning heuristics, see [Sieg and Scheines 1992].
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believed, is removed by the introduction of a "formal logic"; formal rules (that
correspond to intuitively valid inferences) reduce greatly the necessity for
appealing to intuition, and the idea of ingenuity takes on a more definite
shape, when we work in a formal logic:

In general a formal logic will be framed so as to admit a considerable variety of possible steps in

any stage in a proof. Ingenuity will then determine which steps are the more profitable for the
purpose of proving a particular proposition.

These broad considerations are connected directly to the discussion of actual or
projected computing devices in his Lecture to the London Mathematical
Society and Intelligent Machinery, where Turing calls for both "intellectual
searches” (i.e., heuristically guided searches) and "initiative" (that includes, in
the context of mathematics, proposing intuitive steps). So Turing faces both
problems: formulating heuristics with respect to a fixed search space, that is,
derivations of a particular formal system, but also finding new principles. The
latter problem has to be addressed since, in Turing's own phrase, the necessity
for intuition cannot be entirely eliminated because of Gédel's theorems.

Indeed, in his investigation of ordinal logics, Turing was not about to
formulate "ingenious" ways of finding proofs; on the contrary, ingenuity was
replaced by "patience" based on the fact that the theorems of a formal logic can
always be effectively enumerated and on the assumption that "all proofs take
the form of a search through this enumeration for the theorem for which a
proof is desired". And he focused on ways of transcending the limitations
imposed by the Incompleteness Theorems. In 1947, when he was more
concerned with the actual construction of computing machines, he
nevertheless emphasized the shift of the theoretical issues:

As regards mathematical philosophy, since the machines will be doing more and more

mathematics themselves, the centre of gravity of the human interest will be driven further and
further into philosophical questions of what can in principle be done etc.3

If the interpretation of the Incompleteness Theorems (seen as formulating
particular answers to the question of what in principle can be done) is to be
informative, the relation of Turing computability to effective calculability and
the informal understanding of the latter notion must come to the fore.

3 [Turing 19471, p. 122.
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For it makes it impossible that someone should set up a certain well-defined system of axioms and
rules and consistently make the following assertion about it: All of these axioms and rules I
perceive (with mathematical certitude) to be correct, and moreover I believe that they contain
all of mathematics.

If someone claims this, he contradicts himself: Recognizing the correctness of
all axioms and rules means recognizing the consistency of the system. Thus, a
mathematical insight that does not follow from the axioms has been gained.
To explain carefully the meaning of this situation, Godel distinguished
between "objective" and "subjective" mathematics: Objective mathematics
consists of all true mathematical propositions; subjective mathematics contains
all humanly provable mathematical propositions. Clearly, there cannot be a
complete formal system for objective mathematics; but it is not excluded that,
for mathematics in the subjective sense, there might be a finite procedure
yielding all of its evident axioms (though we could never be certain that all of
these axioms are correct). But if there were such a procedure, then -- at least as
far as mathematics is concerned -- the human mind would be equivalent to a -
Turing machine. Furthermore, there would be simple arithmetic problems
that could not be decided by any mathematical proof intelligible to the human
mind. If we call such a problem absolutely undecidable we have established
with full mathematical rigor that either mathematics is inexhaustible in the
sense that its evident axioms cannot be generated by a finite procedure or there
are absolutely undecidable arithmetic problems.”

Aspects of mathematical experience. This theorem appears to Godel to be of
"great philosophical interest”. That is not surprising, since he explicates the
first alternative in the following way: "... that is to say, the human mind (even
within the realm of pure mathematics) infinitely surpasses the powers of any
finite machine". However, if one takes seriously this reformulation, then one
certainly should try to see in what ways the human mind "transcends" the
limits of mechanical computors. Godel suggested in (1972a) that there may be
(humanly) effective, but non-mechanical procedures. Yet even the most
specific of his proposals, Godel admitted, "would require a substantial advance
in our understanding of the basic concepts of mathematics”". That proposal
concerned the extension of systems of axiomatic set theory by axioms of -

6 [Gsdel 1951], pp. 5-6.
7 [Godel 1951}, p. 7.
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"intended model" constituted by inductively generated elements.10 And these
notions are distilled from mathematical practice for the purpose of
comprehending complex connections, of making analogies precise, and of
obtaining a more profound understanding. It is in this way that the axiomatic
method teaches us, as Bourbaki (1950) expressed it in Dedekind's spirit,

to look for the deep-lying reasons for such a discovery [that two, or several, quite distinct
theories lend each other "unexpected support"], to find the common ideas of these theories, ... to
bring these ideas forward and to put them in their proper light.

Notions like group, field, topological space, and differentiable manifold are
abstract in this sense and are properly investigated, i.e., in full generality, in
category theory. Another example of such a notion is that of Turing's
mechanical computor! Though Goédel (1972 a) uses "abstract" in a more
inclusive way than I do here, it seems that the notion of computability
exemplifies his broad claim "that we understand abstract terms more and more
precisely as we go on using them, and that more and more abstract terms enter
the sphere of our understanding”. This conceptional aspect of mathematical
experience and its profound function in mathematics have been entirely
neglected in the logico-philosophical literature on the foundations of
mathematics - except in the writings of Paul Bernays.

Final remarks. I argued that the sharpening of axiomatic theories to formal
ones was motivated by epistemological concerns. A central point was the
requirement that the checking of proofs ought to be done in a radically
intersubjective way; it should involve only operations similar to those used by
a computor when carrying out an arithmetic calculation. Turing analyzed the
processes underlying such operations and formulated a notion of computability
by means of his machines; that was in 1936. In a paper written about ten years
later and entitled Intelligent Machinery, Turing stated what really is the central
problem of cognitive psychology:

If the untrained infant's mind is to become an intelligent one, it must acquire both discipline and
initiative. So far we have been considering only discipline {via the universal machine, W.S.]. ...
But discipline is certainly not enough in itself to produce intelligence. That which is required in

10 The categoricity of the second-order theory of complete ordered fields does not argue against this point;
as another example of a theory exhibiting similar features consider the theory of dense linear orderings
without endpoints.
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