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Abstract
We present an algorithm for estimating bounds on causal effects from observational data which
combines graphical model search with simple linear regression. We assume that the underlying
system can be represented by a linear structural equation model with no feedback, and we allow
for the possibility of latent variables. Under assumptions standard in the causal search literature,
we use conditional independence constraints to search for an equivalence class of ancestral graphs.
Then, for each model in the equivalence class, we perform the appropriate regression (using causal
structure information to determine which covariates to include in the regression) to estimate a set
of possible causal effects. Our approach is based on the “IDA” procedure of Maathuis et al. (2009),
which assumes that all relevant variables have been measured (i.e., no unmeasured confounders).
We generalize their work by relaxing this assumption, which is often violated in applied contexts.
We validate the performance of our algorithm on simulated data and demonstrate improved preci-
sion over IDA when latent variables are present. This is an extended version of a conference paper
(Malinsky and Spirtes, 2016).

Keywords: Causal inference, ancestral graphs, latent variables, Markov equivalence

1. Introduction

It is well known that regression estimates for causal effects will be biased unless a variety of con-
ditions on the data are satisfied; methods which correct for confounding by covariate adjustment
depend on facts about the causal structure of the system under study (e.g., whether all the relevant
variables have been measured and how the measured covariates are causally linked to the variables
of interest). Maathuis et al. (2009) provide a good overview and explanation of this idea; see also
Entner et al. (2013) for related analysis. Roughly speaking, regressing Y on X while controlling
for additional covariates does not produce an unbiased estimate of the effect of intervening on X
unless the additional covariates account for any possible confounding of X and Y . In the language
of causal graphs, the covariates must block all causal pathways from variables (measured or not)
which are causes of both X and Y and the covariates should not include effects of X . The con-
ditions under which regression can produce an unbiased estimate of a causal effect can be readily
translated into conditions on an appropriate causal graphical model (Pearl 2009).

The method proposed here combines techniques from automated causal search and regression
to estimate causal effects (also called intervention effects) from observational data. In particular, the
algorithms described in section 4 estimate causal effects even when there are relevant unmeasured
variables (i.e., “latent confounding” or “causal insufficiency”). The method is based on the one
developed by Maathuis et al. (2009), which has been fruitfully applied in the context of genetics
research (Maathuis et al., 2010; Stekhoven et al., 2012). The IDA (“Intervention when the DAG
is Absent”) algorithm of Maathuis et al. is consistent under a set of assumptions which includes
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causal sufficiency: the assumption that no variables which are common direct causes of at least
two measured variables are unmeasured. Importantly, IDA is feasible in high-dimensional settings,
where sample sizes are small but the number of covariates is very large. In their genetics applica-
tions there are more than 4000 variables, and the goal is to find variables which are likely strong
regulators (causes) of some chosen variable of interest in order to prioritize gene knock-out exper-
iments. In the data which is typical in the social sciences and many areas of biomedical research,
the assumption of causal sufficiency is often unwarranted. Even genome-wide expression data may
be causally insufficient if there are unmeasured factors like proteins which act as common causes
of multiple gene expressions. Our procedure is consistent in the presence of latent common causes
and is feasible for large numbers of variables.

The work of Pearl and his collaborators (e.g., Tian and Pearl, 2002; Shpitser and Pearl, 2006)
provides techniques for calculating the outcomes of interventions when the true causal structure
(i.e., true causal graph) is known. These results relate to the general conditions for “back-door
adjustment” and “front-door adjustment” described in Pearl (2009). The back-door criterion is a
graphical criterion that is sufficient for adjustment in the following sense: if a set of variables satis-
fies the back-door criterion for a given graph, then conditioning on that set is sufficient for estimating
intervention effects from observed distributions alone. Maathuis and Colombo (2015) generalize the
back-door criterion to different types of graphical objects, and their result will play an instrumen-
tal role in the algorithms we propose. In order to estimate the intervention effects from data, the
researcher must be able to identify the set of covariates which satisfy the back-door criterion. To
determine which variables satisfy this condition without substantial background causal knowledge,
we use an automated causal search algorithm called FCI (Spirtes et al., 1995; Zhang, 2008b).

One alternative approach to estimating causal effects is worth mentioning here. Algorithms
which learn latent variable LiNGAM models (Hoyer et al., 2008; Kawahara et al., 2010; Entner
and Hoyer, 2010; Tashiro et al., 2014) allow for the possibility of unmeasured variables. These al-
gorithms exploit assumptions about the causal structure (assumed to be structural equation models
which are acyclic, linear, and which have non-Gaussian error terms) to estimate graphical structure
and some estimate causal strength parameters simultaneously. See also Henao and Winther (2011)
and Shimizu and Bollen (2014) for related Bayesian procedures. One substantial benefit to these
algorithms is that they can often identify a unique model or a smaller equivalence class of mod-
els than the FCI algorithm can. Unfortunately, computational complexity makes these algorithms
mostly infeasible in applied contexts when there are more than a few variables and the sample sizes
required are unrealistic for many applications. Furthermore, these algorithms generally require that
the researcher stipulates the number of (possible) latent variables explicitly; the approach proposed
here is more general in that it does not make any assumptions about the number of (possible) un-
measured variables.

Though our procedure cannot always pin down a unique causal graphical model, from an equiv-
alence class of graphs we can estimate bounds on causal effects. That is, for a given variable pair
(X,Y ) we can calculate a set of estimates for the causal effect of X on Y . Each estimate corre-
sponds to some model in the equivalence class. The minimum and maximum estimates in such a
set are bounds on the true causal effect, and these bounds can be used to prioritize follow-up ex-
periments by, for example, concentrating on experimental manipulations of variables with effects
bounded away from zero.
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2. Definitions and Background

It is assumed here that the causal structure of the system under study can be represented by a Di-
rected Acyclic Graph (a DAG). A graph G is a pair (V,E) where V is a set of vertices corresponding
to random variables V = {X1, ..., Xp} and E is a set of edges. A DAG contains only directed edges
(→) and has no cycles (no sequence of directed edges from any variable to itself). If Xi → Xj then
Xi is called a parent ofXj , andXj is a child ofXi. Two variables are adjacent if there is some edge
between them, and a path is a sequence of distinct adjacent vertices (e.g., Xi ← Xj ← Xk → Xl).
A directed path from Xi to Xj is a path which contains only directed edges away from Xi and
toward Xj . When there is a directed path from Xi to Xj we call Xi an ancestor of Xj , and Xj

is a descendent of Xi. Denote the set of parents of a vertex X in G by pa(X,G), and the sets of
ancestors of X and descendents of X by An(X,G) and De(X,G) respectively. The adjacency set
ofX is adj(X,G). A v-structure is a triple 〈Xi, Xj , Xk〉 such thatXi → Xj ,Xj ← Xk andXi and
Xk are not adjacent. Xj is called a collider because Xi and Xk “collide” at Xj . A collider which is
part of a v-structure (i.e., a collider with non-adjacent parents) is also called an unshielded collider.

In a causal DAG, Xi → Xj if and only if Xi is a direct cause of Xj relative to V. We assume
that our candidate causal models satisify the Causal Markov Condition (CMC) and the Causal Faith-
fulness Condition (CFC). See Spirtes et al. (2000) for discussion of these assumptions. The CMC
requires that every variable in V is independent of its non-descendents conditional on its parents
in the causal graph, i.e., that the joint probability distribution f(V) =

∏
Xi∈V f(Xi|pa(Xi,G)).

The CFC stipulates that the only independencies that are true in the population are the ones im-
plied by the CMC, or equivalently, that the only independence relationships are the ones reflected
in Pearl’s graphical criterion of d-separation (Pearl, 2009). This is a way of stipulating that there is
no accidental “cancelling out” of causal pathways, or independencies which are the result of special
(measure-zero) parameterizations. Two DAGs are called Markov equivalent if they encode all the
same independence relationships among the observed variables. DAGs which share all the same ad-
jacencies and all the same v-structures form a Markov equivalence class (Verma and Pearl, 1991).

A Markov equivalence class can be represented by a single graph, called a Pattern or CPDAG.
A Pattern or CPDAG has all the same adjacencies as each DAG in the equivalence class but can
contain undirected edges (−) in addition to directed edges. An undirected edge Xi −Xj indicates
that some DAG in the equivalence class contains Xi ← Xj and some DAG contains Xi → Xj .
If Xi − Xj in a CPDAG, Xi is called a sibling of Xj and we denote the set of siblings of X by
sib(X,G). The PC algorithm of Spirtes et al. (2000) assumes the CMC and CFC to search for a
CPDAG. If some of the variables in the set V are unmeasured, we represent the system with a causal
MAG (Maximal Ancestral Graph) over the measured variables. A MAG is a kind of mixed graph so
it may have the following kinds of edges: → and↔. More generally, if we include the possibility
of selection variables, a MAG can also have undirected edges, but we will not consider selection
variables here.1 A MAG represents a DAG after all latent variables have been marginalized out, and
it preserves all entailed conditional independence relations among the measured variables which are
true in the underlying DAG. In a MAGM, a tail mark at Xi (e.g., Xi → Xj) means that Xi is an
ancestor of Xj in all DAGs represented byM. An arrowhead at Xi (e.g., Xi ← Xj or Xi ↔ Xj)
means that Xi is not an ancestor of Xj in all DAGs represented by M. A ↔ edge between two
variables indicates that neither variable is an ancestor of the other (though they are probabalistically

1. So technically speaking what we call a MAG is a DMAG (a Directed MAG) in the parlance of Zhang and Spirtes
(2005).
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dependent). See Richardson and Spirtes (2002) for details on MAGs. A Markov equivalence class
of MAGs is represented by a PAG (Partial Ancestral Graph), which (possibly) has edges with the
additional “circle” edge mark ◦ (e.g., Xi ◦→ Xj). This indicates that in some MAG in the equiva-
lence class there is an arrowhead atXi and in some other MAG there is a tail atXi. So, the PAGs we
will consider (again, excluding the possibility of selection variables) can have the following edges:
→, ◦→, ◦−◦, and↔. The FCI algorithm assumes the CMC and CFC to search for a PAG.

The total causal effect on Y of an intervention on Xi, written do(Xi = x′i) in Pearl’s (2009)
notation, is ∂

∂xE(Y |do(Xi = x))|x=x′
i
. That is, we are interested in the change in the expected

value of Y when we intervene to change the value of Xi by one unit. For a DAG which represents
a linear structural equation model, the total causal effect of Xi on Y with Y 6∈ pa(Xi,G) is the
regression coefficient of Xi in the regression of Y on Xi and pa(Xi,G). Call this regression coeffi-
cient βi|pa(Xi,G). See Maathuis et al. (2009: 3138) for details on this. If Y ∈ pa(Xi,G) the causal
effect is 0. More generally, for any set S ⊆ {X1, ..., Xp, Y } \ {Xi}, we write βi|S to denote the
coefficient of Xi in the linear regression of Y on Xi and S, and let βi|S = 0 if Y ∈ S. The reason
we include the parents of Xi in the regression of Y on Xi in calculating the total effect is because
pa(Xi,G) is sufficient to block all causal pathways from variables which are causes of both Xi and
Y . Another way of putting this is that the set pa(Xi,G) satisfies Pearl’s “back-door criterion” for
DAGs (Pearl, 2009: ch. 3). Maathuis and Colombo (2015) extend Pearl’s back-door criterion for
DAGs to the graphical structures above: CPDAGs, MAGs, and PAGs. The sufficient back-door set
is more complicated but the principle is the same. We will summarize their result in section 4 and
use it to propose a general algorithm for estimating causal effects from PAGs.

3. The IDA Approach

Maathuis et al. (2009) provide algorithms to estimate causal effects under the following assump-
tions: they assume that the data is generated from an unknown DAG; they assume the Causal
Markov Condition and Causal Faithfulness Condition hold; they assume a set of jointly Gaussian
variables {X1, ..., Xp, Y }; and they assume causal sufficiency, i.e., that there are no unmeasured
common causes. The Gaussianity assumption can be weakened to only linearity; joint Gaussianity
implies linearity but only linearity is needed so that the total causal effects can be identified with
coefficients in linear regressions.2 Effectively, Maathuis et al. are assuming that the system under
study can be represented by a linear structural equation model with no feedback. We will discard
the assumption of causal sufficiency in the next section.

In their “global” algorithm, Maathuis et al. begin by searching for a CPDAG from their data
with PC. Then, they list all the DAGs in the equivalence class represented by this CPDAG. For each
DAG Gj (j = 1, ...,m) in the equivalence class, they regress Y on each non-descendent Xi along
with pa(Xi,Gj) in order to estimate the causal effect θij . They collect the θij’s in a p×mmatrix Θ,
where the columns correspond to covariates and the rows correspond to DAGs in the equivalence
class. The “global” IDA algorithm is very slow if the number of covariates is large, because of the
step that lists all the DAGs in the equivalence class. For the intended application (genetics data with
p > 4000) this is infeasible. So, Maathuis et al. propose a second algorithm which is much faster
because it only requires “local” information. The key is that for each DAG Gj , one only needs to

2. The current implementation of their algorithm uses independence tests based on Fisher’s z-score, which is only a test
of independence when the data is jointly Gaussian. Future implementations can incorporate more general tests of
independence instead, e.g., Zhang et al. (2011) or Ramsey (2014).
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know the back-door set pa(Xi,Gj) in order to carry out the regression. Knowledge of the rest of the
graph is not necessary. Maathuis et al. exploit this fact in their “local” algorithm. Starting with a
CPDAG, the algorithm needs only to examine possible parent sets by orientating undirected edges
with vertices in sib(Xi,G). The orientations considered must preserve Markov equivalence; see
Maathuis et al. (2009: 3141-3143).

The substantial increase in speed comes at a price, however; the local IDA algorithm sacrifices
information about which causal effect estimate comes from which DAG in the equivalence class.
Instead of producing the complete matrix Θ, IDA outputs multisets (which are collections in which
members are allowed to appear more than once) ΘL

i of causal effects for each covariate Xi. Each
element of the ΘL

i is the causal effect of Xi on Y in some DAG represented by the CPDAG, but we
do not know which one. Maathuis et al. prove that Θi and ΘL

i are equal (i = 1, ..., p) when they
are interpreted as sets (2009: Theorem 3.2). They also provide a sample version of this algorithm,
prove its consistency under a variety of assumptions (concerning sparsity of the graph, etc.), and
validate it on the genetics dataset by using it to pick out the variables with the largest minimum
causal effect. See their paper for a full discussion.

4. Intervention Effects in Causally Insufficient Systems

In this section we sketch two algorithms analogous to the ones presented by Maathuis et al. without
the assumption of causal sufficiency. Our algorithm takes the output of FCI (a PAG) as input, and so
we must work with the set of MAGs represented by that PAG. In following the procedure of global
IDA, we would like to list all the MAGs M1, ...,Mn represented by a PAG P , and estimate the
matrix of causal effects. But what set do we regress Y on? We need a back-door set for (Xi, Y ) in
each MAG. In order to construct a sufficient adjustment set we need several definitions. First, let a
collider path from Xi to Xj be a path on which every vertex (except the endpoints) is a collider.

Definition 4.1 (Visible and invisible edges) All directed edges in DAGs and CPDAGs are said to be
visible. Given a MAGM / PAG P , a directed edge X → Y inM / P is visible if there is a vertex Z
not adjacent to Y , such that there is an edge between Z and X that is into X , or there is a collider
path between Z and X that is into X and every non-endpoint vertex on the path is a parent of Y .
Otherwise X → Y is said to be invisible.

Definition 4.2 (D-SEP(X,Y,G)) Let X and Y be two distinct vertices in mixed graph G. We say
that V ∈ D-SEP(X,Y,G) if V 6= X and there is a collider path between X and V in G, such that
every vertex on this path is an ancestor of X or Y in G.

Definition 4.3 (R and RX) Let X be a vertex in G, where G represents a causal DAG, CPDAG,
MAG, or PAG. Let R be a DAG or MAG represented by G, in the following sense. If G is a DAG
or MAG, we simply let R = G. If G is a CPDAG/PAG, we let R be a DAG/MAG in the Markov
equivalence class described by G with the same number of edges into X as G. LetRX be the graph
obtained fromR by removing all directed edges out of X that are visible in P .

All of these definitions can be found in Maathuis and Colombo (2015); the definition of visi-
ble/invisible edges is a generalization of the standard one introduced in Zhang (2008a). A visible
edge between X and Y in a MAG or PAG picks out an ancestral relationship that is incompatible
with any latent common cause between X and Y in the underlying DAG. possibleDe(X,G) is de-
fined as the set of possible descendents of X in G, where Xi is a possible descendent of Xj if there
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is a path from Xj to Xi with no arrowhead pointing towards Xj . possibleDe(X,G) and De(X,G)
are equal if G is a MAG. Maathuis and Colombo (2015) prove the following theorem:

Theorem 4.1 (Back-door Set) Let X and Y be two distinct vertices in a causal DAG, CPDAG,
MAG, or PAG G. Let R and RX be defined as above. If Y ∈ adj(X,RX) or D-SEP(X,Y,RX) ∩
possibleDe(X,G) 6= ∅, then f(y|do(x)) is not identifiable via the generalized back-door criterion.
Otherwise D-SEP(X,Y,RX) satisfies the generalized back-door criterion relative to (X,Y ) and
G.

The set D-SEP(Xi, Y,MXi), when the antecedent condition is not met, is a back-door set for
(Xi, Y ) in MAG M so we can take the coefficient of Xi in the regression of Y on Xi and D-
SEP(Xi, Y,MXi) to be the causal effect of Xi on Y inM.

Algorithm 4.1: LV-IDA(“global”)

Input: PAG P , conditional dependencies of X1, ..., Xp, Y
Output: Matrix Θ of possible causal effects
1. List the MAGsM1, ...,Mn in the equivalence class of P .
2. for j = 1 to n
3. for i = 1 to p
4. if Y 6∈ De(Xi,Mj) then θij = 0
5. if Y ∈ adj(Xi,Mj,Xi) or D-SEP(Xi, Y,Mj,Xi) ∩De(Xi,Mj) 6= ∅
6. then θij = “NA”

7. else
{
S = D-SEP(Xi, Y,Mj,Xi)

θij = βi|S
8. end
9. end

Algorithm 4.1 is the “global” algorithm. Listing all the MAGs represented by a PAG is more
complicated than listing all the DAGs represented by a CPDAG. In the latter case, there are well-
known and efficient algorithms which orient undirected edges and exhaustively apply orientation
rules (to orient remaining undirected edges) which preserve Markov equivalence; see Meek (1995).
No such procedures are currently known for PAGs. One would need a way of transforming circle
marks on ◦→ and ◦−◦ edges into tails and arrowheads, and deciding which further orientations
in the graph are implied by these new tails and arrowheads, while preserving Markov equivalence.
This is because some combinations of transformations could introduce new independence relation-
ships among the variables, e.g., if transforming two circles into arrowheads simultaneously creates
a new v-structure.

The naive approach would be a brute force method that exhaustively tries every combination
of circle mark transformations, and then checks if the resulting graph is Markov equivalent to the
starting graph using the procedure introduced by Ali et al. (2009). This approach would be exceed-
ingly slow. For large graphs with many circle marks, there are just too many possible combinations
of transformed marks and checking Markov equivalence for every resultant graph would require a
lot of computation time. We pursued an alternative approach to enumerate the list of MAGs more
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quickly. The procedure is based on a suggestion by Jiji Zhang, and it exploits a transformational
characterization of equivalence between MAGs introduced in Zhang and Spirtes (2005). We call it
the ZML (Zhang MAG Listing) algorithm, and it is described in the appendix.

Even with the ZML algorithm for enumerating MAGs, the “global” LV-IDA is too slow for even
moderately-sized graphs (e.g., more than 15 or 20 variables). The “local” IDA algorithm operates
on the principle that one only needs to know enough information about the DAGs in the equivalence
class to determine what the possible back-door sets are. Similarly, for a “local” version of the above
algorithm one only needs to know enough about the MAGs to calculate the back-door set.

For the local algorithm, we need to define the set Possible-D-SEP(Xi, Y,G), abbreviated as
pds(Xi, Y,G):

Definition 4.4 (pds(Xi, Y,G)) Let V ∈ pds(Xi, Xj ,G) if and only if there is a path π between Xi

and V in G such that for every subpath< Xm, Xl, Xh > on π either Xl is a collider on the subpath
in G or < Xm, Xl, Xh > is a triangle in G.

A triangle is a triple 〈Xm, Xl, Xh〉 where each pair of vertices is adjacent. There are alterna-
tive definitions of pds(Xi, Y,G) which make the set smaller (but potentially more computationally
intensive to search for), see Colombo et al. (2012).3 In order to compute D-SEP(Xi, Y,MXi) and
check if Y ∈ adj(Xi,MXi) or D-SEP(Xi, Y,MXi)∩De(Xi,M) 6= ∅, we only need the variables
in possibleDe(Xi,P) ∪ pds(Xi, Y,P). The set pds(Xi, Y,P) (which includes all the adjacencies
of Xi the way it is defined here) is sufficient for determining which edges out of Xi are visible (for
constructingMXi). pds(Xi, Y,P) is also needed for checking if Y ∈ adj(Xi,MX) and for con-
structing D-SEP(Xi, Y,MXi). The set of possible descendents of Xi is needed to check whether
D-SEP(Xi, Y,MXi)∩De(Xi,M) 6= ∅. Knowing the induced subgraph over these variables is at
least sufficient for calculating the back-door set for (Xi, Y ) in P . We propose Algorithm 4.2.

Essentially we just run the “global” algorithm on the subgraph over the set which is sufficient
to calculate all the local back-door sets. This algorithm is really only “semi-local” in the sense that
one might have to list a large number of MAGs if the number of vertices in Zi is large. However, if
the number of vertices in Zi is manageably small, this algorithm could be substantially faster than
the “global” algorithm. Indeed, the set Zi seems to be small enough to run the ZML algorithm in
all the simulated trials we ran, which included graphs of over 100 variables.4

As with the local IDA algorithm, we sacrifice some information: we no longer know which esti-
mated causal effects correspond to which graphs in the equivalence class. We also cannot determine
how many graphs in the equivalence class imply a particular causal effect estimate. Fortunately, we
do not sacrifice anything else, as evinced by Theorem 4.2:

Theorem 4.2 The local and global versions of LV-IDA produce the same output, when the output
is interpreted as a set. That is, Θi

set
= ΘL

i for all i = 1, ..., p.

The proof is in the appendix. This is directly analagous to Theorem 3.2 in Maathuis et al. (2009).
Note that the output of LV-IDA may contain elements which are labeled “NA”. The causal effects of
some variables may not be identifiable by Maathuis and Colombo’s generalized back-door criterion,
as is clear from the definition. They may sometimes be identifiable by other means (Maathuis and

3. In our implementation we use both the definition above as well as a variant which requires that V is an ancestor of
either Xi or Y .

4. For large graphs, we used RFCI due to Colombo et al. (2012) instead of FCI to perform the initial PAG search.
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Colombo, 2015; Perković et al., 2015; Hyttinen et al., 2015). When an LV-IDA estimate is “NA”
this indicates that the measured set of covariates is not sufficient to rule out (using the back-door
criterion) confounding in some MAG consistent with the data. Unless one can rule out confounding
by background knowledge, one may attribute an arbitrary proportion of the observed correlation
between two variables to a latent variable. The number of identifiable, non-zero effects is largely
determined by the presence of visible edges in the graph, which of course depends on the causal
structure and which covariates are measured. IDA assumes that all causal effects are identifiable
by ruling out latent common causes. As a consequence, there may be variable pairs for which
IDA will estimate non-trivial effect bounds, but which are not identifiable under the less restrictive
assumptions of LV-IDA.

Algorithm 4.2: LV-IDA(“local”)

Input: PAG P , conditional dependencies of X1, ..., Xp, Y
Output: Multisets ΘL

i , i = 1, ..., p
1. for i = 1 to p
2. Form the set Zi = possibleDe(Xi,P) ∪ pds(Xi, Y,P).
3. Form P∗, the subgraph of P over vertices Zi.
4. List the MAGsM1, ...,Mm represented by P∗.
5. for k = 1 to m
6. if Y 6∈ De(Xi,Mk) then add θik = 0 to ΘL

i

7. if Y ∈ adj(Xi,Mk,Xi
) or D-SEP(Xi, Y,Mk,Xi

) ∩De(Xi,Mk) 6= ∅
8. then add θik = “NA” to ΘL

i

9. else
{
S = D-SEP(Xi, Y,Mk,Xi

)

add θik = βi|S to ΘL
i

10. end
11. end

Hyttinen et al. (2015) introduce a procedure which combines an ASP constraint solver with
a version of the do-calculus to calculate causal effects in graphs with latent variables. For small
graphs, they find that their approach is faster than a procedure which naively enumerates all the
Markov equivalent graphs. Their enumeration procedure differs from the one proposed here – rather
than “naive enumeration” we use the ZML algorithm. Further, we exploit the locality of back-door
adjustment, and use regression instead of estimation via the do-calculus (which would be much
slower). All of these differences contribute to the feasibility of our algorithm on large graphs. The
procedure in Hyttinen et al., however, may identify some causal effects which are unidentifiable
by LV-IDA, since the do-calculus algorithm they use is complete and the generalized back-door
criterion is not. More recently, Perković et al. (2016) have proposed a complete adjustment criterion
(and constructive adjustment set). In future work these results can be combined with LV-IDA to
perhaps increase the number of identifiable effects.

8



CAUSAL EFFECTS WITH ANCESTRAL GRAPH MARKOV MODELS

U1

U2

U3

U4

X1

X2

X3

X4

X5

X6 X7X8

Figure 1: A simulated DAG with several unmeasured confounders U1, ..., U4. The true causal
effects of X5 on X6 and X5 on X7 are 0.894 and 1.143, respectively. LV-IDA produces the esti-
mates {NA, 0.894, 1.345, 1.707} and {NA, 0, 1.143, 1.662}, respectively. IDA produces the esti-
mates {1.345, 1.481} and {1.603, 1.662}, respectively.

5. Simulations

First, we show an example of how LV-IDA and IDA compare in the infinite-sample limit. We
simulate a DAG with 8 measured variables and 4 latents. The DAG is parameterized as a linear
Gaussian structural equation model. See Figure 1. We run PC and FCI on the true covariance
matrix, and then apply IDA and LV-IDA to estimate intervention effects on the output of PC and
FCI respectively. LV-IDA is successful in the sense that the true causal effect is contained within
the estimated set of possible effects, but IDA gets it wrong. When we estimate the causal effect of
X5 on X6 using LV-IDA we get {NA, 0.894, 1.345, 1.707}, and using IDA we get {1.345, 1.481}.
The true effect size is 0.894 so the output of LV-IDA contains the true value while the output of
IDA does not. For the effect of X5 on X7, LV-IDA yields {NA, 0, 1.143, 1.662} and IDA yields
{1.603, 1.662}. The true effect is 1.143 so again the output of LV-IDA contains the true value while
the output of IDA does not. Note that LV-IDA can produce a set of estimates which includes both
“NA” and the true value, and it can also produce estimates which contain the true value and no “NA”
while IDA gets it wrong. In general, IDA will yield estimates which do not include the true value
in the causally insufficient setting because PC may return graphs with spurious edges or incorrect
orientations even in the infinite sample limit. FCI will not make such mistakes in the infinite sample
limit.

Next, we ran a number of finite sample simulations. We generated 100 random sparse DAGs
with 15 variables, 4 or 5 of which are latent. We parameterized these with linear Gaussian structural
equations (coefficients distributed ±Uniform[0.5,1.5]) and generated data vectors with n = 1000
samples. We searched for a CPDAG using PC, for a PAG using a variant of FCI, and then used
these as inputs to IDA and LV-IDA. The PAG search was done with GFCI, a procedure which
mixes greedy score-based search with conditional independence tests (Ogarrio et al., 2016). GFCI
achieves better performance in finite samples as compared with FCI. In both PC and GFCI the α
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Figure 2: Precision and recall plots for simulation study, described in the text.

tuning parameter was set to 0.01.5 For every pair of variables in each graph, we estimated the total
causal effect and compared our estimates with the true value. In the case of LV-IDA, we confine our
results to causal effects which are identifiable, i.e., which have no “NA” among the set of estimates.
(About 12.7 percent of estimated effects had an “NA” for some graph in the equivalence class.)
Both LV-IDA and IDA can produce multiple estimates for a particular causal effect, so we choose
the best estimate to compare with the true value from among the multiset. LV-IDA is more accurate
than IDA in terms of mean squared error: the MSE for LV-IDA was 0.022 and the MSE for IDA
was 0.056. We plot precision and recall in Figure 2. For both IDA and LV-IDA we use the minimum
absolute value estimate in the multiset of causal effects, following Maathuis et al. (2009). While
LV-IDA does worse than IDA with respect to recall, it does better with respect to precision. That
is, if LV-IDA identifies a large effect estimate (in absolute value), then the true effect is likely to be
large (in absolute value). For the intended application of IDA – finding a manageable number of
strong regulators in a genetic regulatory network to prioritize knock-out experiments – precision is
more important than recall. Our simulation results suggest that in many cases, true large effects are
possibly confounded and thus not identifiable. Fortunately we need only correctly identify a small
number of true large effects to plan follow-up experiments, and for this task LV-IDA does well.

The performance of LV-IDA is contingent on the accuracy of the underlying PAG search. IDA
has been improved by variations on PC like PC-stable (Colombo and Maathuis, 2014) and with
stability selection techniques (Stekhoven et al., 2012). Similar steps may likewise improve the
performance of LV-IDA.

5. IDA and PC are implemented in the R package pcalg (Kalisch et al., 2012) and our LV-IDA is also implemented in
R. For GFCI and the data generation we used the TETRAD software: https://github.com/cmu-phil/tetrad.
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6. Conclusion

The LV-IDA algorithm is a straightfoward extension of the IDA algorithm to the domain of causally
insufficient systems, i.e., systems with possible unmeasured confounding. Thus, LV-IDA makes
estimating (sets of) intervention effects possible when an unknown number of possibly relevant
variables have been left out of the model. Although it may not be feasible to run LV-IDA on
very high-dimensional data sets with thousands of variables, it can be applied to local regions of
a large graph (e.g., the Markov blanket of some variable of interest). The result of this kind of
localized application of LV-IDA should be correct, since ancestral Markov models are closed under
marginalization (Richardson and Spirtes, 2002). Then, identified causal effect estimates which
are bounded away from zero can be used to prioritize follow-up experiments. In any case, LV-
IDA improves on IDA when the research goal requires accurate estimation of intervention effects
that account for possible bias from latent variables. Sometimes the causal effect of interest is not
identifiable from the current set of measured covariates. In such cases, bounds on causal effects
may be misleading so the researcher would be advised to expand their set of measured variables or
try to identify the effect by other means.
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Appendix A.

The subgraph consisting of vertices on ◦−◦ in a PAG P is called the circle component of the graph,
written C(P).

Algorithm A.1: ZML()

Input: PAG P
Output: A list of the MAGs represented by P , called [P]
1. LetM = P .
2. Transform all ◦→ inM, into→.
3. The remaining circle marks inM are on ◦−◦ edges. For each possible orientation

of C(M) as a DAG with no new v-structures, add the resulting graph to [P].
4. Let L be a list of circle mark locations in P .
5. for eachMk ∈ [P]
6. for l = 1 to the length of L
7. for each sequence of circle marks in L of length l
8. for each circle mark location in the sequence which is a tail inMk

(i.e., Xi → Xj inMk but Xi ◦→ Xj or Xi ◦−◦ Xj in P)
9. Transform Xi → Xj inMk to Xi ↔ Xj if the conditions in Zhang

and Spirtes (2005: Lemma 1) are satisfied.
10. end
11. Add the resulting graph to [P]. (Unless it is a duplicate.)
12. end
13. end
14. end

The graphical object after step 2 in the algorithm is what Zhang (2006) calls the Arrowhead
Augmented Graph (AAG). Constructing an AAG from P and then orienting the circle component as
any DAG (with no new v-structures) yields a MAG in the equivalence class of P; see Zhang (2006:
Lemma 4.3.6).6 So, if we enumerate all possible DAG orientations over the circle component of
the graph we produce several MAGs in the equivalence class. The last step generates graphs with
arrowheads in place of tail marks where there were circle marks in the original PAG. It invokes a
rule for transforming Xi → Xj into Xi ↔ Xj while preserving Markov equivalence. The rule
is reproduced in Lemma A.1. Note that a path π between D and C, π = 〈D, ..., A,B,C〉, is a
discriminating path if and only if: 1) π includes at least three edges; 2) B is a non-endpoint vertex
on π, and is adjacent to C on π; and 3) D is not adjacent to C, and every vertex between D and B
is a collider on π and is a parent of C.

Lemma A.1 LetM be an arbitrary DMAG, and A→ B an arbitrary directed edge inM. LetM′
be the graph identical toM except that the edge between A and B is A↔ B. (In other words,M′

6. That the circle component can be oriented into a DAG with no v-structures follows from the fact that the circle
component is chordal. See Zhang (2006) for a proof and related references. Also note that we have assumed no
selection variables, so contra the general definition of an AAG, there are no ◦− edges to orient.
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is the result of simply changingA→ B intoA↔ B inM.)M′ is a DMAG and Markov equivalent
toM if and only if
(i) there is no directed path from A to B other than A→ B inM;
(ii) for any C → A inM, C → B is also inM; and for any D ↔ A inM, either D → B or
D ↔ B is inM;
(iii) there is no discriminating path for A on which B is the endpoint adjacent to A inM.

Proof. See Zhang and Spirtes (2005: Lemma 1).
In order to prove Theorem 4.2 we need several more lemmas. Let P be a PAG produced by

the FCI algorithm, and [P] is the set of MAGs represented by P . P∗ is the subgraph of P over
the vertices in possibleDe(Xi,P)∪ pds(Xi, Y,P) for some (Xi, Y ). Let [P∗] be the set of graphs
generated from P∗ by the ZML algorithm. C(P∗) is the circle component of P∗. C(P) is chordal,
meaning that any cycle of length 4 or more in P has an edge (chord) connecting two non-adjacent
vertices on the cycle. A subgraph of a chordal graph is also chordal so C(P∗) is also chordal.

Lemma A.2 The set possibleDe(Xi,P)∪ pds(Xi, Y,P) is sufficient for determining the general-
ized backdoor set for (Xi, Y ) in everyM∈ [P].

Proof. First, we note that the subgraph over pds(Xi, Y,P) is sufficient to construct MXi . To
construct this graph we need to know which directed edges (if any) out of Xi are visible. A directed
edge is from Xi to Y is visible if (i) there exists a vertex Xj such that Xj → Xi but Xj is not
adjacent to Y or (ii) there exists a vertex Xj such that there is a collider path between Xj and X
where every non-endpoint vertex is a parent of Y . The set adj(Xi,P) is a subset of pds(Xi, Y,P) so
pds(Xi, Y,P) suffices to determine condition (i). pds(Xi, Y,P) also suffices to determine condition
(ii) because it includes every vertex on a possible collider path from Xi. pds(Xi, Y,P) is sufficient
for checking whether Y ∈ adj(Xi,MXi), since it is sufficient for constructingMXi and includes
all the adjacencies of Xi. pds(Xi, Y,P) is also sufficient for determining D-SEP(Xi, Y,MXi) by
construction. Finally, possibleDe(Xi,P) is sufficient for determining De(Xi,MXi), since any
descendent of Xi in one of the MAGs represented by P is a possible descendent of Xi in P . �

Lemma A.3 Any DAG orientation of C(P∗) with no unshielded colliders is a subgraph of some
DAG orientation of C(P) with no unshielded colliders, as long as C(P∗) is connected.

Proof. Let C(P∗)DAG denote a DAG orientation (with no unsheilded collider) of C(P∗), and
C(P)DAG is a DAG orientation ofC(P) which is includesC(P∗)DAG as a subgraph. If the Lemma
is false, then inC(P)DAG there must be a forced unshielded collider in order to preserve consistency
with C(P∗)DAG. We will show that this implies a contradiction.

Let B be a vertex in C(P) which is forced to be an unshielded collider in C(P)DAG. Let A and
C be the two non-adjacent vertices which collide at B. Note that least one of A, B, or C must not
be in C(P∗) or else the triple would have been oriented in C(P∗)DAG. There must be a vertex D
in C(P) which is not adjacent to B and which is oriented as a parent of A by C(P∗)DAG in order
to force the orientation A → B in C(P)DAG. Similarly, there must be a vertex E in C(P) which
is not adjecent to B and which is oriented as a parent of C by C(P∗)DAG in order to force the
orientation of C → B in C(P)DAG. Without loss of generality, assume D and E are in C(P∗). (If
they are not, we can find vertices F andG in C(P∗) which are connected toD and E by a sequence
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of ◦−◦ edges, and so force the orientations A → B and C → B. In this case we just repeat the
argument that follows but for F and G.) There are two cases: either D = E or not.

Case 1. D = E. This implies D◦−◦A◦−◦B◦−◦C◦−◦D is in C(P). This is a cycle of length
4, and so there must be a chord connecting two non-adjacent vertices since C(P) is chordal. Either
the chord is A◦−◦C or D◦−◦B. The first contradicts our assumption A and C are not adjacent
(and thus form part of an unshielded collider); the second contradicts our assumption that A → B
is a forced orientation, since now it could have been oriented D → A← B.

Case 2. D 6= E. Then there is a path between D and E in C(P∗) by the connectedness of
C(P∗). The path could be a single edge between D and E or it could be a longer path which
includes other vertices in C(P∗). Either way D◦−◦A◦−◦B◦−◦C◦−◦E◦...◦D is a cycle of length
greater than 4. So it must have a chord. The chord cannot be between A and C because they form
part of an unshielded collider. No matter how long the cycle is, there will be a chord betweenD and
B or between E and B (to see this, do an induction on path lengths). But then either the orientation
A→ B or C → B is not forced, in contradiction to our assumption. �

Note that Lemma A.3 assumes that C(P∗) is connected. This is not generally the case. When
C(P∗) is not connected, the graphical structure could be arranged such that some DAG orientation
of C(P∗) is not a subgraph of any DAG orientation of C(P). This can actually only happen under
somewhat contrived circumstances; although one can construct a theoretical example, it has never
come up in any of our simulations of “random” graphs. In any case, we can protect against this
failure by adding two lines to the ZML algorithm (only when LV-IDA is run in “local” mode). After
step 3, check whether C(P∗) is connected. If it is, proceed as usual. If it is not, check whether each
DAG orientation of C(P∗) is extendable to a full DAG orientation of C(P) using the algorithm of
Dor and Tarsi (1992). This is a basically a check whether a partially oriented graph – C(P) with
induced subgraph C(P∗)DAG – is consistent with any DAG orientation. Throw out any orientations
of C(P∗) which are not extendable and keep those which are extendable. With this adjustment, the
“local” ZML is guaranteed to produce only those orientations of C(P∗) which are consistent with
orientations of C(P).

Lemma A.4 EveryM∗ ∈ [P∗] is a subgraph of someM ∈ [P], that is, listing the graphs repre-
sented byP∗ does not produce any graphs which are not subgraphs of some MAG in the equivalence
class of P .

Proof. We proceed by showing that every step in the ZML algorithm preserves the truth of the
proposition, i.e., that no step of the procedure results in a graph in [P∗] which is not a subgraph of
some graph in [P]. Step 2 clearly preserves the truth of the proposition because the ◦→ edges in
P∗ are just a subset of the ◦→ edges in P . C(P∗) is a subgraph of C(P) which is chordal. Any
orientation of C(P∗) as a DAG with no unshielded colliders is a subgraph of some DAG orientation
of C(P) with no unshielded colliders (by Lemma A.3 and the text which immediately follows the
proof) so step 3 of the algorithm preserves the truth of the proposition.

Step 9 could produce a graph which is not a subgraph of some member in [P] if some mark
change was legal according to rules (i), (ii), and (iii) of Lemma A.1 in M∗ but not legal for all
M ∈ [P]. In other words, there must be some transformation from A → B to A ↔ B which
is legal in some M∗ but not legal in any M ∈ [P]. There are three ways this could happen,
corresponding to the three rules (i), (ii), and (iii). We derive a contradiction in each case.

Case 1. Suppose A → B is legally transformed into A ↔ B in M∗ but there is a directed
path from A to B (aside from A → B) in every M ∈ [P]. A ◦−∗ B must be in P∗ for the
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transformation to be considered. (∗ is a “wildcard” edge mark which can represent a circle, tail,
or arrowhead.) Then A ◦−∗ B is also in P . But if there is a directed path from A to B in every
M∈ [P], then A is an ancestor of B in P (by the completeness of FCI) and there cannot be a circle
at A from B in P . Contradiction.

Case 2. Suppose A→ B is transformed into A↔ B inM∗ but rule (ii) is not satisfied by any
M ∈ [P]. There are two possibilities: (a) for allM ∈ [P] with C → A, C is adjacent to B but not
C → B; or (b) for allM ∈ [P] with D ↔ A, D is adjacent to B but neither D → B nor D ↔ B.
(Note thatM∗ andM have all the same adjacencies.) Suppose (a). Then C ← B or C ↔ B for
allM ∈ [P]. Either way, allM are not ancestral (a directed cycle in the first case and an almost
directed cycle in the second case). Suppose (b). Then C ← B and all M are not ancestral (an
almost directed cycle). Contradiction.

Case 3. SupposeA→ B is legally transformed intoA↔ B inM∗ but there is a discriminating
path for A on which B is the endpoint adjacent to A in everyM ∈ [P]. Again, A ◦−∗ B must be
in P∗ for the transformation to be considered and then A◦−∗B is also in P . If the discriminating
path exists in everyM ∈ [P], then it exists in P . But then the rule R4 in FCI would have oriented
A ◦−∗ B as either A→ B or A↔ B (see Zhang, 2008b). Contradiction.

So, no mark change would have occured in step 9 that would result in a graph which is not a
subgraph of any graph in [P]. �

Lemma A.5 Every M ∈ [P] is a supergraph of some M∗ ∈ [P∗], that is, listing the graphs
represented by P∗ produces all possible orientations of circle marks in P , when the set of circle
marks is restricted to the ones at vertices in P∗.

Proof. This follows from inspection of the ZML algorithm. ZML exhaustively orients all circle
marks in P∗ as tails and arrowheads, only excluding those arrowhead orientations which are not
consistent with the conditions (i), (ii), and (iii) in Lemma A.1. But if an arrowhead orientation over
the vertices in P is illegal by one of these rules, then the same orientation would be illegal in the
vertices over P∗. �

Theorem 4.2 follows from Lemmas A.2, A.4, and A.5. Lemma A.2 says that the set we’ve
picked out, Zi, is sufficient for calculating the back-door set in each MAG. Lemma A.4 says we
do not introduce any new orientations among the variables in Zi which are not constituent of some
MAG represented by P , and Lemma A.5 says that we get leave out any possible orientations among
the variables in Zi which are constituent of some MAG represented by P .
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