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Abstract

We evaluate the asymptotic performance of boundedly-rational strate-
gies in multi-armed bandit problems, where performance is measured in
terms of the tendency (in the limit) to play optimal actions in either (i)
isolation or (ii) networks of other learners. We show that, for many strate-
gies commonly employed in economics, psychology, and machine learning,
performance in isolation and performance in networks are essentially un-
related. Our results suggest that the appropriateness of various, common
boundedly-rational strategies depends crucially upon the social context
(if any) in which such strategies are to be employed.

Keywords: Bandit Problems · Networks · Reinforcement Learning · Simulating
Annealing · Epsilon Greedy

1 Introduction

In a multi-armed bandit problem, an individual is repeatedly faced with a choice
between a number of potential actions, each of which yields a payoff drawn from
an unknown distribution. The agent wishes to maximize her total accumulated
payoff (in the finite horizon case) or converge to an optimal action in the limit
(in the infinite horizon case). This very general model has been used to model
a variety of economic phenomena. For example, individuals choosing between
competing technologies, like different computer platforms, seek to maximize the
total usefulness of the purchased technologies, but cannot know ahead of time
how useful a particular technology will be. Others have suggested applying
this model to the choice of treatments by doctors (Berry and Fristedt, 1985)
crop choices in Africa (Bala and Goyal, 2008), choice of drilling sites by oil
companies (Keller, Rady, and Cripps, 2005), and choice of modeling techniques
in the sciences (Zollman, 2009).

The traditional analysis of strategies in bandit problems focuses on either
a known finite number of actions or a discounted infinite sequence of actions
(cf. Berry and Fristedt, 1985). In both these cases, strategies are evaluated ac-
cording to their ability to maximize the (discounted) expected sum of payoffs.
Recent interest in boundedly rational strategies have led some scholars to study
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strategies which do not maximize expected utility. These strategies are evalu-
ated according to their ability to converge in the infinite limit to choosing the
optimal action, without considering their short or medium run behavior. For
example, Beggs (2005) considers how a single individual who employs a rein-
forcement learning algorithm (due to Roth and Erev, 1995) would perform in a
repeated multi-armed bandit problem.

Many of the above choice problems, like technology choice, are not made in
isolation, but rather in a social context. An individual can observe not only her
own successes or failures, but those of some subset of the population of other
consumers. As a result, several scholars have considered bandit problems in
social settings (Bolton and Harris , 1999; Bala and Goyal, 2008; Keller, Rady,
and Cripps, 2005). Bala & Goyal, for example, consider a myopic Bayesian
maximizer placed in a population of other myopic Bayesian maximizers, and
find that certain structures for the communication of results ensures that this
community will converge to the optimal action, but other social structures will
not.

Although Beggs and Bala & Goyal seem to utilize essentially the same metric
for the comparison of boundedly rational algorithms – convergence in the limit –
their investigation are more different than they appear. Beggs considers how an
individual does when he plays a bandit in isolation; Bala & Goyal consider how
a group fares when each of its members confronts the same bandit. It should
be clear that the myopic maximizer of Bala & Goyal would not converge in the
limit if he was in isolation. It is perhaps less clear that Beggs’ reinforcement
learner might not converge if placed in the wrong social circumstance.

The above investigations raise a central question: what relation, if any, is
there between a strategy’s performance considered in isolation and its perfor-
mance in a social context? To answer this question, we make precise four differ-
ent ways of evaluating the asymptotic performance of strategies in multi-armed
bandit problems. We then characterize the performance of a variety of bound-
edly rational strategies. We find that which boundedly rational strategies are
judged as appropriate depends critically on (i) whether the strategy is consid-
ered in isolation or in a wider social context, and (ii) whether the strategy is
evaluated in itself, or as part of a collection of complimentary strategies that can
work together. Our results, we believe, makes perspicuous the choices one must
make before engaging in the analysis of various boundedly rational strategies.

In section 2 we provide the details of our model of bandit problems and four
general classes of boundedly rational strategies. These four classes were chosen
to represent many of the strategies investigated in literatures in economics,
psychology, computer science, and philosophy. Following this, we present the
different formalizations of the notion of convergence in the limit in section 3.
Here we provide the theorems which demonstrate which strategies meet the
various definitions, and illustrate that the different definitions are distinct from
one another. Section 4 concludes with a discussion of the applications and
potential extensions of the results presented here.
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2 The model of learning

We begin by modeling individual agents as embedded in a communication net-
work. The communication network will be represented by a countable (i.e. finite
or countably infinite) undirected graph G = 〈VG, EG〉 with vertices VG repre-
senting individual agents, and edges EG representing pairs of agents who share
information with one another. We will often write g ∈ G when we mean that
g ∈ VG. By a similar abuse of notation, we useG′ ⊆ G to denote a group of learn-
ers G′ ⊆ VG. For any learner g ∈ G, define NG(g) = {g′ ∈ G : {g, g′} ∈ EG}
to be the neighborhood of g in the network G. We assume {g} ∈ NG(g) for
all g ∈ G, so that each individual observes the outcomes of her own choices.
When the underlying network is clear from context, we write N(g), dropping
the subscript G. Because agents in the real world communicate with at most
finitely many people before they die, we assume N(g) is always finite.

In each time period, each agent chooses one of a countable number of actions
A. We assume that the set of actions is constant for all times, and each action
results (probabilistically) in an outcome (or payoff) from a countable set O of
non-negative real numbers. There is a set Ω of possible states of the world that
determines the probability distribution over O associated with each action.

A learning problem is a quadruple 〈Ω, A,O, p〉, where Ω is a set of states of
the world, A is a countable set of actions, O is a countable set of non-negative
real numbers called outcomes, and p is a probability measure specifying the
probability of obtaining a particular utility given an action and state of the
world.

A history specifies (at a given time period) the actions taken and outcomes
received by every individual in the graph. Formally, for any set C, let C<N be
the set of all finite sequences with range in C. Then define the set H of possible
histories as follows:

H = {h ∈ ((A×O)<N)<N : |hn| = |hk| for all n, k ∈ N}

where hn is the nth coordinate in the history h, i.e. hn is the sequence of actions
and outcomes obtained by some collection of learners at stage n of inquiry. The
requirement that |hn| = |hk| for all n, k ∈ N captures the fact that the size of a
group does not change over time. For a network G and a group G′ ⊆ G, define:

HG′,G = {h ∈ H : |hn| = |G′| for all n ∈ N}

When the network is clear from context, we will simply write HG′ to simplify
notation. Then HG is the set of network histories for the entire network, and
HN(g) is the set of neighborhood histories for the learner g. If G′ is a group
and h ∈ HG′ is a history for the group, the expressions hA(n, g) and hO(n, g)
denote the action taken and outcome obtained respectively by learner g ∈ G′
on the nth stage of inquiry.

Example 1: Let G be the undirected graph with two vertices joined by an
edge. Let Ω = {ω1, ω2}, A = {a1, a2}, O = {0, 1}, and
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p(1|ai, ωi) = .7 for i = j = 1, 2

p(1|ai, ωj) = .1 for i 6= j

One can imagine A as possible drugs, outcomes 1 and 0 as respectively
representing that a patient is cured or not, and ωi as representing the state
of the world in which ai is the better treatment. A possible network history
h ∈ HG of length two is 〈〈〈a1, 1〉, 〈a1, 0〉〉, 〈〈a1, 0〉, 〈a2, 0〉〉〉, which denotes the
history in which (i) one doctor applied treatment a1 to two successive patients,
the first of which was cured but the second of which was not, and (ii) a second
doctor applied treatment a1 to a patient who it failed to cure and then applied
treatment a2 to a second patient who was also uncured.

A method (also called a strategy) m for an agent is a function that specifies,
for any particular history, a probability distribution over possible actions for
the next stage. In other words, a method specifies probabilities over the agent’s
actions given what she knows about her own and her neighbors’ past actions and
outcomes. Of course, an agent may act deterministically simply by placing unit
probability on a single action a ∈ A. A strategic network is a pair S = 〈G,M〉
consisting of a network G and a sequence M = 〈mg〉g∈G specifying the strategy
employed by each learner, mg, in the network.

Together, a strategic network S = 〈G,M〉 and a learning problem 〈Ω, A,O, p〉
determine a probability pSω(h) of any finite history h ∈ HG′ for any group
G′ ⊆ G. To see why, again consider Example 1. Suppose the two learners
both employ the following simple strategy: if action ai led to a success 1 on the
previous stage, play it again with probability one; if the action failed, play the
other action. Then the probability pSω1

(h) of the history h in Example 1 in state
of the world ω1 is

pSω1
(h) = p(1|a1, ω1) · p(0|a1, ω1) · p(0|a1, ω1) · p(0|a2, ω1) = .7 · .3 · .3 · .9 = .1323

Notice, however, the same history h might have a different probability if one
were to respecify the methods employed by the agents in the network. For
example, suppose the agents both employed the rule “switch actions if and only
if a success is obtained.” Then the history h above would have probability zero
(regardless of state of the world), as the first learner continues to play action a1
after a success.

Because outcomes can be interpreted as utilities, it follows that for any state
of the world ω, there is an expected value Eω[a] of the action a that is constant
throughout time. Hence, in any state of the world ω, there is some (potentially
empty) collection Aω = {a ∈ A : Eω[a] ≥ Eω[a′] for all a′ ∈ A} of optimal
actions that maximize expected utility. Hence, it follows that the event that g
plays an optimal action at stage n has a well-defined probability, which we will
denote pSω(hA(n, g) ∈ Aω). In the next section, we study the limiting behavior
of such probabilities in various strategic networks.

Because we are interested in problems in which agents can eventually find
such optimal actions, we assume all learning problems are solvable in the sense
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that Aω is non-empty and finite for each ω ∈ Ω. Amongst solvable learning
problems, some are far easier than others; for example, if one action has higher
expected utility in every world-state, then there is relatively little for the agents
to learn. We are principally interested in more difficult problems. Say a learning
problem is non-trivial if no finite history reveals that a given action is optimal
with certainty. In other words, a learning problem 〈Ω, A,O, p〉 is non-trivial
if for all strategic networks S = 〈G,M〉, and all network histories h ∈ HG, if
pSω1

(h) > 0 for some ω1 ∈ Ω, then there exists ω2 ∈ Ω such that Aω1
∩ Aω2

= ∅
and pSω2

(h) > 0. Say a learning problem is difficult if it is non-trivial, and
1 > p(0|a, ω) > 0 for all ω ∈ Ω and all a ∈ A. That is, no action is guaranteed
to succeed or fail, and no history determines an optimal action with certainty.

2.1 Four Types of Strategies

Although the number of differing strategies is enormous, we will focus on the
behavior of four types of boundedly rational strategies: reinforcement learning
(RL), simulated annealing (SA), decreasing ε-greedy (εG), and what we call, δε
methods. We study these strategies for four reasons. First, the first three types
of strategies have been employed extensively in economics, computer science,
statistics, and many other disciplines in which one is interested in finding the
global maximum (or minimum) of a utility (respectively, cost) function. Second,
all four strategies are simple and algorithmic: they can easily be simulated on
computers and, given enough discipline, performed by human beings. Third,
the strategies have desirable asymptotic features in the sense that, in the limit,
they find the global maximum of utility functions under robust assumptions.
Fourth, some of the strategies have psychological plausibility as learning rules
in particular types of problems.

Before introducing the strategies, we need some notation. Denote the cardi-
nality of S by |S| which, if S is a sequence, is also its length. For any sequence
σ and any natural number n, the expression σ � n denotes the initial segment of
σ of length n; by convention, let σ � n = σ if |σ| < n. For any two sequences σ
and σ′ on any set, write σ � σ′ if the former is an initial segment of the latter,
If σ is a sequence, then ran(σ) denotes its range when the sequence is consid-
ered as a function. For example, ran(〈m1,m2,m3〉) is the set {m1,m2,m3} and
ran(〈m1,m2,m1〉) is the set {m1,m2}. When two sequences σ and σ′ differ
only by order of their entries (e.g. 〈1, 2, 3〉 and 〈2, 1, 3〉), write σ ∼= σ′.

Reinforcement Learning (RL): Reinforcement learners begin with an initial,
positive, real-valued weight for each action. On the first stage of inquiry, the
agent chooses an action in proportion to the weights. For example, if there are
two actions a1 and a2 with weights 3 and 5 respectively, then the agent chooses
action a1 with probability 3

3+5 and a2 with probability 5
3+5 . At subsequent

stages, the agent then adds the observed outcome for all the actions taken in
his neighborhood to the respective weights for the different actions.

Formally, let g be an individual, w = 〈wa〉a∈A be a vector of positive real
numbers (the initial weights) such that

∑
a∈A wa < ∞. Let h ∈ HG′ be the
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history for the individuals in g’s neighborhood. Let ra,N(g)(h) represent the total
accumulated payoff for action a in g’s neighborhood in history h, which includes
the initial weight wa. Define rN(g)(h) :=

∑
a∈A ra,N(g)(h), which represents the

total payoff of all actions (and their initial weights) in g’s neighborhood along
the history h. An RL strategy mw is defined by specifying w. For any w, the
probability that an action a is played after observed history h is given by:

mw(h)(a) =
ra,N(g)(h)

rN(g)(h)

Because
∑
a∈A wa <∞ and N(g) is always finite, the above quantity is in fact

a real number between 0 and 1. Because wa is positive for all a ∈ A, the chance
of playing any action is always positive.

Reinforcement learning strategies are simple and appealing, and further,
they have been studied extensively in psychology, economics, and computer
science.1 In economics, for example, reinforcement learning has been used to
model how individuals behave in repeated games in which they must learn the
strategies being employed by other players.2 Such strategies, therefore, are im-
portant, in part, because they plausibly represent how individuals actually select
actions given past evidence. Moreover,RL strategies possess certain properties
that make them seem rationally motivated: in isolation, an individual employ-
ing an RL method will find one or more of the optimal actions in her learning
problem (Beggs, 2005).

In the definitions of the remaining strategies below, let w = 〈wa〉a∈A be a
vector of non-negative real numbers such that

∑
a∈A wa <∞.

Decreasing Epsilon Greedy (εG): Greedy strategies that choose, on each
round, the action that currently appears best may fail to find an optimal action
because they do not engage in sufficient experimentation. To address this prob-
lem, one can modify a greedy strategy as follows. Suppose 〈εn〉n∈N is a sequence
of probabilities that approach zero. At stage n, an εG-learner plays each action
which currently appears best with probability 1−εn

k , where k is the number of
actions that currently appear optimal. Such a learner plays every other action
with equal probability. Because the experimentation rate εn approaches zero,
it follows that the εG learner experiments more frequently early in inquiry, and
plays an estimated EU-maximizing action with greater frequency as inquiry pro-
gresses. εG strategies are attractive because, if εn is set to decrease at the right
rate, then they will play the optimal actions with probability approaching one

1Here, we use the phrase “reinforcement learning” as it is employed in game theory. See
Beggs (2005) for a discussion of its asymptotic properties. The phrase “reinforcement learning”
has related, but different, meanings in both psychology and machine learning.

2See Roth and Erev (1995) for a discussion of how well reinforcement learning fares em-
pirically as a model of how humans behave in repeated games. The theoretical properties
of reinforcement learning in games has been investigated by Argiento, et. al (2009); Beggs
(2005); Hopkins (2002); Hopkins and Posch (2005); Huttegger and Skyrms (2008); Skyrms
and Pemantle (2004).
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in all states of the world. Hence, εG strategies balance short-term consider-
ations with asymptotic ones. Because they favor actions that appear to have
higher EU at any given stage, such strategies approximate demands on short
run rationality.

Formally, and more generally, let each agent begin with an initial estimate
of the expected utility of each action, given by the vector 〈wa〉a∈A. At each
stage, let estg(a, h) be g’s estimate of the expected utility of action a given
history h. This is given by wa if no one in g’s neighborhood has yet played a,
otherwise it is given by the current average payoff to action a from plays in g’s
neighborhood. Additionally, define the set of actions which currently have the
highest estimated utility:

A(g, h) := {a ∈ A : estg(a, h) ≥ estg(a
′, h) for all a′ ∈ A}

Given (i) a vector w = 〈wa〉a∈A of non-negative real numbers representing
initial estimates of the expected utility of an action a and (ii) an antitone func-
tion ε : H → (0, 1) (i.e h � h′ implies ε(h′) ≤ ε(h), an εG method determined
by 〈w, ε is any method m of the form:

m(h)(A(g, h)) = 1− ε(h)

m(h)(A \A(g, h)) = ε(h)

Simulated Annealing (SA): In computer science, statistics, and many other
fields, SA refers to a collection of techniques for minimizing some cost function.3

In economics, the cost function might represent monetary cost; in statistical
inference, a cost function might measure the degree to which an estimate (e.g.,
of a population mean or polynomial equation) differs from the actual value of
some quantity or equation.

In our model of learning, SA strategies are similar to εG strategies. SA
strategies may experiment frequently with differing actions at the outset of
inquiry, but they have a “cooling schedule” that ensures that the rate of ex-
perimentation drops as inquiry progresses. SA strategies and εG strategies,
however, differ in an important sense. SA strategies specify the probability of
switching from one action to another; the probability of switching is higher if
the switch involves moving to an action with higher EU, and lower if the switch
appears to be costly. Importantly, however, SA strategies do not “default” to
playing the action with the highest EU, but rather, the chance of playing any
action depends crucially on the previous action taken.

Formally, let σ = 〈〈wa〉a∈A, 〈qa,a′〉a,a′∈A, T 〉 be a triple in which (i) 〈wa〉a∈A
is a vector of positive real numbers representing initial estimates of the expected

3For an overview of SA methods and applications see Bertsimas and Tsitsiklis (1993),
which considers SA methods in non “noisy” learning problems in which the action space is
finite. Bertsimas and Tsitsiklis (1993) provides references for those interested in SA methods
in infinite action spaces. For an overview of SA methods in the presence of “noise”, see Branke
et al. (2008). Many of the SA algorithms for learning in noisy environments assume that one
can draw finite samples of any size at successive stages of inquiry. As this is not permitted
in our model (because agents can choose exactly one action), what we call SA strategies are
closer to the original SA methods for learning in non-noisy environments.
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utility of an action a, (ii) 〈qa,a′〉a,a′∈A is a vector of numbers from the open unit
interval (0, 1) representing initial transition probabilities, that is, the probability
the method will switch from action a to a′ on successive stages of inquiry, and
(iii) T : H → R≥0 is a monotone map (i.e. if h � h′, then T (h) ≤ T (h′))
from the set of histories to non-negative real numbers which is called a cooling
schedule. For all h ∈ HN(g),n+1 and a ∈ A, define:

s(h, a) = T (h) ·max{0,estg(hA(n, g), h � n)− estg(a, h � n)}

Here, s stands for “switch.” Then the SA method determined by σ = 〈〈wa〉a∈A, 〈qa,a′〉a,a′∈A, T 〉
is defined as follows. The value of mσ(〈−〉)(a), we assume, is either zero or one
so that some initial action is fixed, and

mσ(h)(a) =

{
qa′,a · e−s(a,h) if a 6= a′ = hA(n, g)

1−
∑
a′′∈A\{a′} qa′,a′′ · e−s(a

′′,h) if a = a′ = hA(n, g)

Delta-Epsilon (δε): The fourth class of methods that we consider consists of
intuitively plausible algorithms, though they have not been studied prior to this
paper. δε strategies are generalizations of εG strategies. Like εG strategies, δε
methods play the action which has performed best most frequently, and experi-
ment with some probability εn on the nth round, where εn decreases over time.
The difference between the two types of strategies is that each δε method has
some set of “favorite” actions A∗ ⊆ A that it favors in early rounds. Hence,
there is some sequence of (non-increasing) probabilities δn with which δε meth-
ods plays its favorite action A∗ on the nth round. The currently best actions
are, therefore, played with probability 1− δn − εn on the nth stage of inquiry.

Formally, let a∗ ∈ A, and δ, ε : H → [0, 1) be antitone maps such that δ(h)+
ε(h) ≤ 1. Then a δε method determined by the quadruple 〈〈wa〉a∈A, δ, ε, a∗〉 is
any method m such that

m(h)(A(g, h) \A∗) = 1− (ε(h) + δ(h))

m(h)(A \ (A(g, h) ∪A∗)) = ε(h)

m(h)(A∗) = δ(h)

Every εG method is a δε method, where A∗ = ∅ and δ is the constant function
0.

δε methods capture a plausible feature of human learning: individuals may
have a bias, perhaps unconscious, toward a particular option (e.g., a type of
technology) for whatever reason. The δ parameter specifies the degree to which
they have this bias. Individuals will occasionally forgo the apparently better
option in order to experiment with their particular favorite technology. The
ε parameters, in contrast, specify a learner’s tendency to “experiment” with
entirely unfamiliar actions.
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3 Individual versus Group Rationality

One of the predominant ways of evaluating these various boundedly rational
strategies is by comparing their asymptotic properties. Which of these rules
will, in the limit, converge to playing one of the optimal actions? One of the
central claims of this section is that there are at least four different ways one
might make this precise, and that whether a learning rule converges depends on
how exactly one defines convergence.

Our four ways of characterizing long run convergence differ on two dimen-
sions. First, one can consider the performance of either only a single strategy or
a set of strategies. Second, one can consider the performance of a strategy (or
strategies) when they are isolated from other individuals or when they are in
groups with other strategies. These two dimensions yield four distinct notions
of convergence, each satisfied by different (sets of) strategies.

We first consider the most basic case: a single agent playing in the absence
of any others. Let Sm = 〈G = {g}, 〈m〉〉 be the isolated network with exactly
one learner employing the strategy m.

Definition 1. A strategy m is isolation consistent (ic) if for all ω ∈ Ω:

lim
n→∞

pSmω (hA(n, g) ∈ Aω) = 1

ic requires that a single learner employing strategy m in isolation converges,
with probability one, to an optimal action. ic is the weakest criterion for indi-
vidual epistemic rationality that we consider. It is well-known that, regardless
of the difficulty of the learning problem, some εG and SA-strategies are ic. Sim-
ilarly, some δε strategies are ic. Under mild assumptions, all RL methods can
also be shown to be ic

Theorem 1. Some SA, εG, and δε strategies are always (i.e. in every learning
problem) ic. If 〈Ω, A,O, p〉 is a learning problem in which there are constants
k2 > k1 > 0 such that p(o|a, ω) = 0 if o 6∈ [k1, k2], then all RL methods are ic.

The second case is convergence of an individual learner in a network of other,
not necessarily similar, learners. This notion requires that the learner converge
to playing an optimal action in any arbitrary network. Let S = 〈G,M〉 be a
strategic network, g ∈ G, and m be a method. Write Sg,m for the strategic net-
work obtained from S by replacing g’s method mg with the alternative method
m.

Definition 2. A strategy m is universally consistent (uc) if for any strategic
network S = 〈G,M〉 and any g ∈ G:

lim
n→∞

pSg,mω (hA(n, g) ∈ Aω) = 1

uc strategies always exist, regardless of the difficulty of the learning prob-
lem, since one can simply employ an ic strategy and ignore one’s neighbors.
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Furthermore, by definition, any uc strategy is ic, since the isolated network is
a strategic network. The converse, however, is false in general:

Theorem 2. In all difficult learning problems, there are RL, SA, εG, and δε
strategies that are ic but not uc. In addition, if 〈Ω, A,O, p〉 is a non-trivial
learning problem in which there are constants k2 > k1 > 0 such that p(o|a, ω) =
0 if o 6∈ [k1, k2], then all RL methods are ic but not uc.

The general result that not all ic strategies are uc is unsurprising given the
generality of the definitions of strategies, actions, and worlds. One can simply
define a pathological strategy that behaves well in isolation, but chooses subop-
timal actions when in networks. The important feature of the above theorem is
that plausible strategies, like some RL and SA strategies, are ic but fail to be
uc. The reason for such failure is rather easy to explain. Consider SA strategies
first. Recall the “cooling schedule” of a SA strategy specifies the probability
with which a learner will choose some seemingly inferior action. In SA strate-
gies, the cooling schedule must be finely tuned so as to ensure that learners
experiment (i) sufficiently often so as to ensure they find an optimal action, and
(ii) sufficiently infrequently so as to ensure they play an optimal action with
probability approaching one in the long-run. Such fine-tuning is very fragile:
in large networks, learners might acquire information too quickly and fail to
experiment enough to find an optimal action. Similar remarks apply to εG and
δε methods.

RL strategies fail to be uc for a different reason. At each stage of inquiry,
RL learners calculate the total utility that has been obtained by playing some
action in the past, where the totals include the utilities obtained by all of one’s
neighbors. If a reinforcement learner is surrounded by enough neighbors who
are choosing inferior actions, then the cumulative utility obtained by plays of
suboptimal actions might be higher than that of optimal actions. Thus, a RL
method might converge to playing suboptimal actions with positive probability
in the limit.

This argument that RL-strategies fail to be uc, however, trades on the exis-
tence of learners with no interest in finding optimal actions. It seems unfair to
require a learner to find optimal actions when his or her neighbors are intent on
deceiving him or her. When only RL methods are present in a finite network,
then Theorem 6 below shows that, under most assumptions, every learner is
guaranteed to find optimal actions. That is, RL methods work well together as
a group.

To introduce more general definitions of group rationality, however, a little
care is necessary. One natural idea is to impose no constraints on the network
in which the group is situated. For example, the most natural generalization of
universal consistency to groups of agents might seem to be the following. Let
S = 〈G,M〉 be a strategic network, G′ ⊆ G, and M ′ a sequence of strategies of
the same cardinality as G′. Let SG′,M ′ denote the strategic network with the
same vertices and edges as S, but in which the strategy of each learner g ∈ G′ is
switched from mg ∈ M to the corresponding strategy m′g ∈ M ′. In the special
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case in which G′ = {g} and M ′ = 〈m〉 have size one, SG′,M ′ is equal to the
network Sg,m defined above.

Definition 3. A sequence of strategies M ′ is universally consistent (uc) if for
any strategic network S = 〈G,M〉, any group G′ ⊆ G such that G′ has the same
cardinality as M ′, any g ∈ G′, and any state of the world ω:

lim
n→∞

p
SG′,M′
ω (hA(n, g) ∈ Aω) = 1

By the following theorem, however, nothing is gained by considering uc se-
quences of strategies of length greater than one:

Theorem 3. Let M be a sequence of methods. Then M is uc if and only if
each m in the sequence M is uc.

Corollary 1. There exist uc sequences of methods of any finite length.

The proof of Theorem 3, we think, shows that the definition of uc sequences
is uninteresting. The proof relies critically on the fact that we have not required
our networks to be connected. Say a network is connected if there is a finite
sequence of edges between any two learners. Consider now individuals in uncon-
nected networks: these learners never communicate at all, and so it makes little
sense to think of such networks as social groups. Moreover, as the above theo-
rem shows, there are few interesting theoretical connections that can be drawn
when one requires convergence of a “group” even in unconnected networks. We
thus restrict our attention to connected networks, where far more interesting
relationships between group and individual rationality emerge. To see why, we
first introduce some definitions.

Definition 4 (N -Network). Let S = 〈G,M〉 be a strategic network, and let
N be a sequence of methods of the same length as M . Then S is called a
N -network if N ∼= M .

Definition 5 (Group Isolation Consistency). Let N be a sequence of methods.
Then N is group isolation consistent (gic) if for all connected N -networks S =
〈G,M〉, all g ∈ G, and all ω ∈ Ω:

lim
n→∞

pSω(hA(n, g) ∈ Aω) = 1

Definition 6 (Group Universal Consistency). Let N be a sequence of methods.
Then N is group universally consistent (guc) if for all networks S = 〈G,M〉,
if S′ = 〈G′,M ′〉 is a connected N -subnetwork of S, then for all g ∈ G′ and all
ω ∈ Ω:

lim
n→∞

pSω(hA(n, g) ∈ Aω) = 1

Characterizing group rationality in terms of sequences of methods is important
because doing so allows one to characterize exactly how many of a given strat-
egy are employed in a network. However, in many circumstances, one is only
interested in the underlying set of methods used in a network. To this end,
define:
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Definition 7 (Group Universal/Isolation Consistency (Sets)). Let M be a set
of methods. Then M is gic (respectively, guc) if for for every sequence of
methods M such that ran(M) = M, the sequence M is gic (respectively,
guc).

So a set M is gic if, for all connected networks that have only methods in M
and each method in M is occurs at least once in the network, each learner in
the network converges to playing optimal actions. A set M is guc if, for all
networks in which each method in M is represented at least once and those
employing M are connected by paths of learners using M, each agent in the
subnetwork employing M converges.

The names encode a deliberate analogy: gic stands to guc as ic stands to
uc. Just as an ic method is only required to converge when no other methods
are present, so a gic sequence of methods is only required to find optimal actions
when no other methods are present in the network. And just as a uc method
must converge regardless of the other methods around it, a guc sequence of
methods must converge to optimal actions regardless of other methods in the
network.

Clearly, any sequence (respectively set) of uc strategies M is both guc and
gic, since the uc methods are just those that converge regardless of those around
them. It thus follows immediately that guc and gic groups exist. However,
not all sequences (respectively sets) of methods that are gic or guc need to be
uc. Consider, for instance, the set of strategies consisting of one uc method,
and another method that “imitates” the best strategy amongst one’s neighbors
(other than oneself) and defaults to some fixed action if one has no neighbors.
Such imitators will fail to converge in networks in which they are isolated from
better learners, and hence, the sequence of methods is not uc. However, if a
connected network consists of at least one uc method and such imitators, then
all agents will always play EU-maximizing actions in the limit, and hence, the
sequence if gic. Why? Since there is a learner g employing a uc method, he
or she will play EU-maximizing actions with probability one in the limit. All
of g’s neighbors, by definition, either imitate g or employ the same method as
g, and therefore, they also play EU maximizing actions with probability one in
the limit. Thus, neighbors of neighbors of g also play EU maximizing actions
with probability one in the limit. And so on. Because the network is connected,
g’s optimal behavior cascades through the entire network.

This argument, however, trades on the fact that at least one learner in the
network employs a uc strategy. Surprisingly, there are sequences and sets of
strategies that are guc, but such that no strategy itself is ic (let alone uc).

Theorem 4. In non-trivial learning problems, there are sequences and sets of
δε methods M such that M is guc, but no m in M is ic.

Still more surprising is the fact that there are ic methods that form groups that
fail to be gic:

Theorem 5. In difficult learning problems, there are sequences M (respectively
sets) of δεmethods that are not gic, but such that every coordinate (respectively
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element) m of M is ic. In fact, M can even be a constant sequence consisting
of one method repeated some finite number of times. Similarly for SA and εG
methods.

Finally, because all εG strategies are δε strategies, we obtain the following
corollary that shows that, depending on the balance between dogmatism and
tendency to experiment, a method may behave in any number of ways when
employed in isolation and when in networks.

Corollary 2. In difficult learning problems, there exist different sequences (re-
spectively sets) M of δε methods such that

1. Each member (respectively, coordinate) of M is ic but not uc; or

2. Each member (respectively, coordinate) of M is ic, but M is not gic; or

3. M is guc but not uc.

4. M is guc, but no member (respectively, coordinate) of M is ic.

The only conceptual relationship not discussed in the above corollary is the
relationship between guc and gic. It is clear that if M is guc, then it is also
gic. The converse is false in general, and RL methods provide an especially
strong counterexample:

Theorem 6. Suppose 〈Ω, A,O, p〉 is a non-trivial learning problem in which
there are constants k2 > k1 > 0 such that p(o|a, ω) = 0 if o 6∈ [k1, k2]. Then
every finite sequence of RL methods is gic, but no such sequence is guc.

4 Discussion

We believe that the most important part of our results is the demonstration that
judgments of individual rationality and group rationality need not coincide. Ra-
tional (by one standard) individuals can form an irrational group, and rational
groups can be composed of irrational individuals. Recent interest in the “wis-
dom of crowds” has already suggested that groups might outperform individual
members, and our analyses demonstrate a different way in which the group can
be wiser than the individual. Conversely, the popular notion of “groupthink,”
in which a group of intelligent individuals converge prematurely on an incor-
rect conclusion, is one instance of our more general finding that certain types
of strategies succeed in isolation but fail when collected into a group. These
formal results thus highlight the importance of clarity when one argues that a
particular method is “rational” or “intelligent”: much can depend on how that
term is specified, regardless of whether one is focused on individuals or groups.

These analyses are, however, only a first step in understanding the connec-
tions between individual and group rationality in learning. There are a variety
of methods which satisfy none of the conditions specified above, but are nonethe-
less convergent in a particular setting. Bala and Goyal (2008) provide one such
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illustration. We also have focused on reinforcement learning as it is understood
in the game theory literature; the related-but-different RL methods in psychol-
ogy and machine learning presumably exhibit different convergence properties.
Additional investigation into more limited notions of group rationality than the
ones offered here are likely to illustrate the virtues of other boundedly rational
learning rules, and may potentially reveal further conceptual distinctions.

In addition to considering other methods, these analyses should be extended
to different formal frameworks for representing inquiry. We have focused on the
case of multi-armed bandit problems, but these are clearly only one way to model
learning and inquiry. It is unknown how our formal results translate to different
settings. One natural connection is to consider learning in competitive game-
theoretic contexts. Theorems about the performance in multi-armed bandits
are often used to help understand how these rules perform in games, and so our
convergence results should be extended to these domains.

There are also a range of natural applications for this framework. As already
suggested, understanding how various boundedly rational strategies perform in
a multi-armed bandit problem can have important implications to a variety of
different economic phenomena, and in particular, on models of the influence
that social factors can have on various strategies for learning in multi-armed
bandits. This framework also provides a natural representation of many cases
of inquiry by a scientific community.

More generally, this investigation provides crucial groundwork for under-
standing the difference between judgments of convergence of various types by
boundedly rational strategies. It thus provides a means by which one can better
understand the behavior of such methods in isolation and in groups.
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5 Formal Definitions

5.1 Notational Conventions

In the following appendix, 2S will denote the power set of S. Denote the cardi-
nality of S by |S|, which, if S is a sequence, is also its length.4 Let S<N denote
all finite sequences over S, and let SN be the set of all infinite sequences over S.
All sequences, both finite and infinite, will be demarcated by angled brackets, so
that, for example, 〈1, 2〉 is the ordered pair with first coordinate one and second
coordinate two, and 〈1, 2, 3 . . .〉 denotes an infinite sequence such that the first
three entries are one, two, and three respectively. We will use 〈−〉 to denote the
empty sequence. For any two sequences σ and σ′ on any set, write σ � σ′ if the
former is an initial segment of the latter, and write σ ≺ σ′ if the initial segment
is strict. Write σn to denote the nth coordinate of σ, and let σ � n to denote
the initial segment of the sequence σ of length n; we stipulate that σ � n = σ if
n is greater than the length of σ.

If σ is a subsequence of σ′ (i.e. there is an injective mapping from the set
of coordinates of σ to those of σ′ preserving order), then write σ v σ′, and
write σ @ σ′ if the subsequence is strict. If σ � σ′, then σ v σ′, but not vice
versa. For example 〈1, 2〉 v 〈3, 1, 5, 2〉, but the former sequence is not an initial
segment of the latter.

If σ is a sequence, then ran(σ) denotes its range when the sequence is con-
sidered as a function. For example, ran(〈m1,m2,m3〉) is the set {m1,m2,m3}
and ran(〈m1,m2,m1〉) is the set {m1,m2}. Abusing notation, we will often
write s ∈ σ to mean that s ∈ ran(σ). When two sequences σ and σ′ differ only
by order of their entries (e.g. 〈1, 2, 3〉 and 〈2, 1, 3〉), write σ ∼= σ′

In the following proofs, we make use of the following version of the Borel-
Cantelli Lemma:5

Lemma 1 (Borel-Cantelli). Let 〈En〉n∈N be a countable sequence of events over
some probability space, and let [En i.o.] = ∩n∈N ∪k≥n Ek be the event that En
occur infinitely often. Then

4Because all sequences in this paper are either finite or have order type equal to the first
countable ordinal, there is no potential confusion between cardinality and order type.

5The first statement is what is standardly called the First Borel-Cantelli Lemma, and the
second statement is a strengthened version of what is typically called the Second Borel Cantelli
Lemma.
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1. Suppose
∑
n∈N p(En) <∞. Then p(En i.o.) = 0.

2. Suppose that for all k ∈ N∑
n>k

p(En | ∩k≤j<n Ecj ) =∞

where Ecj is the complement of Ej . Then p(En i.o.) = 1.

5.2 Histories and Complete Histories

In the body of the paper, we defined the sets H, HG′ , HG, and so on, which
represent finite histories of different groups. Because (i) the sets of actions,
outcomes, and agents are all at most countable and (ii) the set of finite sequences
over countable sets is countable, we obtain:

Lemma 2. H, HG′ , HG, Hn, HG′,n, and HG,n are countable.

Write hA(n, g) to denote the action taken by g on the nth stage of inquiry,
and hO(n, g) to denote the outcome obtained. If h ∈ HG′ has length 1 (i.e.
h represents the actions/outcomes of group G′ at the first stage of inquiry),
however, it will be easier to simply write hA(g) and hO(g) to denote the initial
action taken and outcome obtained by the learner g ∈ G′. Similarly, if h ∈ HG′

is such that |hn| = 1 for all n ≤ |h| ( i.e. h represents the history of exactly
one learner), then we write hA(n) and hO(n) to denote the action and outcome
respectively taken/obtained at stage n. Finally, for any group history h ∈ HG′ ,
define QG′(h, a) := {〈n, g〉 ∈ N×G′ : hA(n, g) = a}, to bet the set of ordered
pairs 〈n, g〉 such that g plays a at stage n in h.

All of the histories described above are finite in length. For purposes of
this paper, however, it will often be helpful to discuss complete histories, which
specify what agents, groups of agents, and entire networks do for the entirety of
eternity. Set theoretically, there are many ways of defining complete histories.
The most convenient way for the ensuing discussion is as follows. For a network
G and a group G′ ⊆ G, a complete group history for G′ is an infinite sequence
〈hn〉n∈N of (finite) group histories such that hn ∈ HG′,n and hn ≺ hk for all
n < k. Denote the set of complete group histories for G′ by HG′ . Define
complete individual histories Hg, and complete network histories HG similarly.
The motivation for the notation HG is that, in the appropriate topology to
be introduced presently, a complete history is a limit point (and hence, in the
closure) of the finite histories it contains.

5.3 Measurable Spaces of Histories

We will need a measurable space rich enough so that it contains all of the events
described in the body of the paper, for example, that a particular action is played
infinitely often. To this end, let G be a network. Define HG = ∪G′⊆GHG′ to be
the set of all complete histories for all groups G′ in the network G. Because the
sets of actions, outcomes, and agents are all either finite or countably infinite,
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one can think of HG as the set of all infinite sequences of natural numbers, i.e.
one can think of HG as the set NN, which is known as the Baire Space.6

The Baire space is known to be a metric space by taking the distance between
two sequences to be zero if the two sequences are identical, and 1

2n otherwise,
where n is the first coordinate on which the two sequences differ. Under this
metric, the space is separable, and its topology is easily described as follows. For
a finite sequence of natural numbers, say 〈3, 7, 1〉, define [〈3, 7, 1〉] to be the set
of infinite sequences in Baire Space extending 〈3, 7, 1〉. The sets [σ] form a basis
for the topology on the Baire space. One can then speak of the Borel algebra
on the Baire space (i.e. the σ-algebra generated by the topology), and define a
measure on the Borel algebra by extending an appropriate set function defined
on the open sets. We shall complete this construction of the Borel algebra on
HG below.

For any group history h ∈ HG′,n of length n, define:

[h] = {h ∈ HG′ : hn = h}

In other words, [h] is the set of complete group histories extending the finite
group history h. One can define similar sets for the special cases when G’ is a
single learner g or the entire network G. It is easy to see that the sets [h] form
a basis for a topology, and so let τG be the topology generated by sets of the
form [h], i.e. τG is arbitrary unions of sets of the form [h], where G′ ⊆ G and
h ∈ HG′ . The topology τG is also the collection of open sets under the following
metric:

d(h, h
′
) =

{
0 if h = h

′

1
2n otherwise, where n = min{m ∈ N : hm 6= h

′
m}

Let FG = σ(τG) be the σ-closure of τG, i.e. FG is the Borel algebra generated
by τG. Then 〈HG,FG〉 is a measurable space. Notice the definition of the
measurable spaceHG depends only upon a network, and not upon any strategies
employed by the learners in the network.

Lemma 3. The following sets are measurable (i.e. events) in 〈HG,FG〉:

1. [hA(n, g) = a] = {h ∈ HG : h
A

n (n, g) = a} for fixed a ∈ A and g ∈ G

2. [hO(n, g) = o] = {h ∈ HG : h
O

n (n, g) = o} for fixed o ∈ O and g ∈ G

3. [(∃g ∈ G′) hA(n, g) ∈ A′] = {h ∈ HG : (∃g ∈ G′)hAn (n, g) ∈ A′} for fixed
A′ ⊆ A and G′ ⊆ G

4. [(∃g ∈ G′)hO(n,G′) ∈ O′] = {h ∈ HG : (∃g ∈ G′)h
O

n (n, g) ∈ O′} for
fixed O′ ⊆ O and G′ ⊆ G.

6The term “Baire space” is often used to describe a topological space in which the inter-
section of countably many dense sets is dense; that usage is not followed here. Instead, we
follow the usage standard in logic and descriptive set theory. See Moschovakis (1980) for a
standard discussion of the Baire Space.
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5. [(∀g ∈ G′) hA(n, g) ∈ A′] = {h ∈ HG : (∀g ∈ G′)h
A

n (n, g) ∈ A′)} for
fixed A′ ⊆ A and G′ ⊆ G

6. [(∀g ∈ G′)hO(n,G′) ∈ O′] = {h ∈ HG : (∀g ∈ G′)hOn (n, g) ∈ O′)} for
fixed O′ ⊆ O and G′ ⊆ G.

7. [G′ plays A′ infinitely often] = {h ∈ HG : ∀n ∈ N∃k ≥ n∃g ∈ G′(hAk (k, g) ∈
A′)} for fixed A′ ⊆ A and G′ ⊆ G

8. [ |estg(a, hn) − r| < ε| ] = {h ∈ HG : |estg(a, hn) − r| < ε} for fixed
a ∈ A, g ∈ G, n ∈ N, and r ∈ R and ε > 0.

9. [limn→∞ estg(a, hn) = r ] = {h ∈ HG : limn→∞ estg(a, hn) = r} for
fixed a ∈ A, g ∈ G, and r ∈ R.

10. [limn→∞m(hn)(Aω) = 1] = {h ∈ HG : limn→∞m(hn)(Aω) = 1}, where
ω is a fixed state of the world, and m is a fixed method.

Proof:
(1) Notice that [hA(n, g) = a] =

⋃
{[h] ⊆ HG : h ∈ H and hAn (n, g) = a}.

Because H is countable by Lemma 2, it follows that the union on the right-
hand side of the last equation is a countable union of members of τG. Hence, it
is a measurable set by the definition of FG.
(2) Similar to the Proof of 1, except one uses the fact that O is countable.
(3) Notice that [(∃g ∈ G′)hA(n, g) ∈ A′] = ∪g∈G′ ∪a∈A′ [hA(n, g) = a]. Because
G′ and A′ are countable, the right hand side of this equation is a countable
union of countable events by (1).
(4) Similar to (3), using the fact that O is countable.
(5 and 6) Similar to 3 and 4 respectively except ∪g∈G′ is replaced by ∩g∈G′

(7) [G′ plays A′ infinitely often] = ∩n∈N ∪k≥n [(∃g ∈ G′) hA(n, g) ∈ A′]
(8) Notice that

[ |estg(a, hn)−r| < ε| ] =
⋃
{[h] ⊆ HG : h ∈ HN(g),n & |estg(a, hn)−r| < ε|}

and recall the union on the right-hand side is countable because HN(g),n is.
(9) [limn→∞ estg(a, hn) = r] = ∩ε∈Q ∪n∈N ∩k≥n[|estg(a, hk)− r| < ε].
(10) Let l = |Aω| and for any ε > 0, let Qlε := {q ∈ Ql :

∑
i≤l qi ≥ 1 − ε}.

Then

[ lim
n→∞

m(hn)(Aω) = 1] = ∩ε∈Q∩(0,1)∪n∈N∩k≥n∪q∈Qlε∩a∈Aω{[h] ⊆ HG : h ∈ H and m(hn)(a) > qi}

For purely technical reasons, there is another measurable space that will be
employed in several lemmas and theorems below. For a fixed a ∈ A, let Ha

be the set of individual histories such that only the action a is played by the
individual, i.e.

Ha := {h ∈ H : |hn| = 1 and hA(n) = a for all n ≤ |h|}
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Similarly, define Ha = Ha, τa, and Fa to be respectively the sets (i) of complete
individual histories in which only action a is played, (ii) the topology generated
by the basic open sets [ha], where ha ∈ Ha, and (iii) the σ-algebra generated by
τa. Then just as in Lemma 3, one obtains that the following sets are measurable
in 〈Ha,Fa〉:

Lemma 4. The following sets are measurable (i.e. events) in 〈Ha,Fa〉:

1. [hO(n) ∈ O′] := {h ∈ Ha : h
O

n (n) ∈ O′} for fixed O′ ⊆ O.

2. [limn→∞ est(a, hn) = r] := {h ∈ Ha : limn→∞ est(a, hn) = r} for fixed
a ∈ A, and r ∈ R.

Notice the parameters G′ and g are dropped from the above events because
there is, by definition, only one learner in each of the histories in Ha.

5.4 Probabilities of Histories and Complete Histories

Given a strategic network S = 〈G,M〉, a collection of learners G′ ⊆ G, and
a state of the world ω, one can define, by recursion on the length of a history
h ∈ HG′ , the probability pSG′,n,ω(h) that each learner g ∈ G′ performs the action
and obtains the outcomes specified by the history h ∈ HG′,n.

pSG′,ω,0(〈−〉) = 1

pSG′,ω,n+1(h) := pSG′,ω,n(h � n) · Πg∈G′ mg(h � n)(hA(n+ 1, g))

·p(hO(n+ 1, g)|hA(n+ 1, g), ω)

This is a notational nightmare, but the equations can be explained easily. The
first equation merely says that some history that extends the empty sequence
will occur. For the second equation, recall mg assigns every history a probability
measure, and so mg(h � n) is a probability measure representing learner g’s
disposition to perform any given action after the history h � n. Hence, mg(h �
n)(a) is the probability that learner g plays a after the first n stages of the
history h. In particular, mg(h � n)(hA(n+ 1, g)) is the probability that learner
g performs the action hA(n + 1, g) as specified by h for g on the n + 1st stage
of inquiry. The term p(hO(n+ 1, g)|hA(n+ 1, g), ω) is the chance that learner g
obtains the outcome specified by h on the n+1st stage of inquiry, given the true
state of the world is ω and that he took the action specified by h at that stage.
Because individuals choose their actions simultaneously and independently of
one another, the probability that every learner g ∈ G′ performs the action
specified by h and obtains the corresponding outcome is simply the product of
all such probabilities. Finally, the probability of any group history h ∈ HG′,n+1

of length n + 1 is the product of the probability pSG′,ω,n(h � n) of the initial
segment h � n of length n, with the probability that each agent in the group
obtains the action/outcome pair specified by h at stage n+ 1.

The above calculations show how the probabilities of finite sequences of
action/outcome pairs might be computed. How might compute probabilities of
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sets of complete histories? Here, we follow the obvious approach, namely, to
define the probabilities of complete histories to be a function of probabilities of
the initial segments. Above, we defined a rich measurable space on the set of
complete histories. Hence, given a strategic network S = 〈G,M〉 and a state
of the world ω ∈ Ω, one can define pSω to be the unique, countably additive
probability measure on 〈HG,FG〉 such that

pSω([h]) = pSG′,ω,n(h) for all G′ ⊆ G and all h ∈ HG′ .

The measure pSω exists and is unique by Caratheodory’s Extension theorem. De-
tails are below. By abuse of notation, we do not distinguish between pSG′,ω,n(h)

and its extension pSω([h]) in the ensuing proofs, as the expressions denote the
same quantities. Hence, for any state of the world ω ∈ Ω and strategic network
S = 〈G,M〉, the triple 〈HG,FG, pSω〉 is a measure space.

5.5 Construction of pSω

For any set J ⊆ HG, define:

pSω,∗(J) = inf{
∑
h∈I

pSω([h]) : I ⊆
⋃
G′⊆G

HG′ and J ⊆
⋃
h∈I

[h]}

Notice that
∑
h∈I p

S
ω([h]) is a countable sum as HG′ is countable. We note that,

trivially, pSω,∗([h]) = pSω,G′,|h|(h) for any G′ ⊆ G and any finite history h ∈ HG′ .

We claim that pSω,∗ is a metric exterior measure, and therefore, extends uniquely
to a countably additive measure on FG, by the following theorem:

Theorem 7. [Extension Theorem] If µ∗ is a metric exterior measure on a metric
space X, then the Borel sets in X are measurable, and hence, µ∗ is a measure
on the Borel algebra of X.

Proof: See Theorem 1.2 on page 267 of Stein and Shakarchi (2005)

Recall, an exterior measure µ∗ on a set X is a function µ∗ : 2X → [0,∞] such
that

1. µ∗(∅) = 0

2. (Monotonicity) If E ⊆ F , then µ∗(E) ≤ µ∗(F ).

3. (Countable Subadditivity) If {En}n∈N is a countable collection of subsets
of X, then µ∗(

⋃
n∈NEn) ≤

∑
n∈N µ∗(En).

An exterior measure on metric space 〈X, d〉 is called a metric exterior measure
just in case d(E,F ) := inf{d(x, y) : x ∈ E, y ∈ F} > 0 implies that µ∗(E∪F ) =
µ∗(E) + µ∗(F ).

Lemma 5. pSω,∗ is a metric exterior measure on HG. By Theorem 7, it follows

that pSω,∗ is a measure on the measurable space 〈HG,FG〉.
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Proof: First we show that pSω,∗(∅) = 0. To do so, let g ∈ G and pick a1 ∈ A
such that mg(a1) ≤ 1

2 ; such an a1 exists because we assume A to have at least
two elements. Let h1 ∈ Hg,1 be any history in which (h1)A(1, g) = a1. Then
choose a2 ∈ A such that mg(h

1)(a2) ≤ 1
2 ; again such an a2 exists because A has

more than two actions. Let h2 ∈ Hg,2 be any history extending h1 such that
(h2)A(2, g) = a2. In this way, construct a sequence of finite histories hn such
that pSg,ω,n+1(hn+1) ≤ 1

2 ·p
S
g,ω,n(hn), so that, in particular, infn∈N p

S
ω,g,n(hn) = 0.

It follows that

pSω,∗(∅) = inf{
∑
h∈I

pSω([h]) : I ⊆
⋃
G′⊆G

HG′ and J ⊆
⋃
h∈I

[h]}

≤ inf
n∈N

pSω,∗([h
n])

= inf
n∈N

pSω,n(hn) = 0

Next, we prove monotonicity. Note that if E ⊆ F , then it immediately
follows that pSω,∗(E) ≤ pSω,∗(F ), as any cover of F is also a cover of E. For
countable subadditivity, let {En}n∈N be a countable collection of subsets of HG
and let E =

⋃
n∈N En. Pick ε > 0. For each En, by definition of the function

pSω,∗, there is a countable cover {[hn,k]}k∈N of En such that∑
k∈N

pSω,∗([h
n,k]) ≤ pSω,∗(En) +

ε

2n+1

It follows that {[hn,k]}n,k∈N is a countable cover of E, and thus:

pSω,∗(E) ≤
∑
n∈N

∑
k∈N

pSω,∗([h
n,k])

≤
∑
n∈N

pSω,∗(En) +
ε

2n+1

= ε+
∑
n∈N

pSω,∗(En)

As ε > 0 was arbitrary, it follows that pSω,∗(E) ≤
∑
n∈N p

S
ω,∗(En) as desired.

Finally, we show that if d(E,F ) := inf{d(x, y) : x ∈ E, y ∈ F} > 0, then
pSω,∗(E∪F ) = pSω,∗(E)+pSω,∗(F ). To do so, two remarks are in order. First, note
that if h is a finite history of length n, then any two elements of [h] are no more
than a distance of 1

2n+1 apart. This follows from the definition of the metric on

the space HG, as h is of length n and any two complete histories h, h
′ ∈ [h] that

extend h must therefore share the first n coordinates. Second, given a finite
history h ∈ HG′,n of length n and a natural number m > n, because HG′,m is
countable, it follows that the set of histories of length m extending h, namely
Em(h) = {h′ ∈ HG′,m : h ≺ h′}, is likewise countable.

To finish the proof, note that countable subadditivity implies that pSω,∗(E ∪
F ) ≤ pSω,∗(E) + pSω,∗(F ), so it suffices to show that pSω,∗(E ∪ F ) ≥ pSω,∗(E) +
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pSω,∗(F ). To do so, let ε > 0, and let IE∪F be a countable cover of E ∪ F such
that ∑

[h]∈IE∪F

pSω(h) ≤ pSω,∗(E ∪ F ) + ε

As d(E,F ) := inf{d(x, y) : x ∈ E, y ∈ F} > 0, it follows that there is
some natural number n0 for which d(E,F ) > 1

2n0
. For any [h] ∈ IE∪F , let

G(h) = {[h′] ⊆ HG : h′ ∈ En0
(h)}. Notice that, for all [h] ∈ IE∪F , one has

[h] =
⋃

[h′]∈G(h)[h
′], and so it follows that

⋃⋃
[h]∈IE∪F

G(h) =
⋃
IE∪F . Hence,⋃

[h]∈IE∪F
G(h) is cover of E ∪ F .

By the second remark above, moreover, the sets En0(h) are countable for
each [h] ∈ IE∪F , and hence,

⋃
[h]∈IE∪F

G(h) is likewise countable. Further, by

the first remark above, since d(E,F ) > 0, it follows that, for any h′ ∈ En0
(h),

the set [h′] has non-empty intersection with at most one of the sets E and F .
Thus, we may partition

⋃
[h]∈IE∪F

G(h) into two disjoint sets IE and IF that

respectively cover E and F . By definition of pSω,∗, it follows that:

pSω,∗(E) + pSω,∗(F ) ≤
∑

[h]∈IE

pSω,|h|([h]) +
∑

[h]∈IF

pSω,|h|([h])

=
∑

[h]∈IE∪F

pSω,n([h])

≤ pSω,∗(E ∪ F ) + ε

As ε > 0 was chosen arbitrarily, it follows that pSω,∗ is countably sub-additive as
desired.

Hence, one can define pSω to be the measure obtained by restricting pSω,∗ to

FG. Notice that pSω is a probability measure on the measurable space 〈HG,FG〉,
as

pSω(HG) = pSω([〈−〉]) = pSω,0(〈−〉) = 1

Hence, in particular, pSω is σ-finite. Because any two σ-finite, countably additive
measures that agree on the generating set of a σ algebra are identical, it follows
that pSω is the unique countably additive measure on FG for which pSω([h]) =
pSω,G,n(h) for all G′ ⊆ G and all h ∈ HG′,n.

6 Learning Problems and Basic Lemmas

A learning problem 〈Ω, A,O, p〉 is non-trivial if for all strategic networks S =
〈G,M〉, and all network histories h ∈ HG, if pSω1

(h) > 0 for some ω1 ∈ Ω, then
there exists ω2 ∈ Ω such that Aω1∩Aω2 = ∅ and pSω2

(h) > 0. A learning problem
is difficult if it is non-trivial and 1 > p(0|a, ω) > 0 for all ω ∈ Ω and all a ∈ A.

For technical reasons, it will also be helpful to specify a probability measure
on the space 〈Ha,Fa〉. Let ma be the method that always plays action a, and
Sa = 〈{g}, 〈ma〉〉 be a network with one agent who employs ma. For each ω ∈ Ω,
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define paω := pSaω . it immediately follows that:

paω([h]) = Πn≤|h| p(h
O(n, g)|a, ω)

for all h ∈ Ha.

Lemma 6. paω(limn→∞ estg(a, hn) = Eω[a]) = 1

Proof: This is an immediate consequence of the strong law of large numbers.

Let On : Ha → R be the mapping h 7→ h
O

n (n, g). It is easy to check that
On is a random variable (as the set of outcomes is countable) for all n ∈ N.
Furthermore, it is easy to check that the On’s are independent. The result
follows from observing that

estg(a, hn) =

∑
j≤nOj(hn)

n

and then applying the strong law of large numbers to the On’s.

Lemma 7. Let S = 〈G,M〉 be any strategic network, G′ ⊆ G, a ∈ A, ha ∈ Ha,
and h ∈ HG′ . Suppose ha v h. Then for all ω ∈ Ω:

paω([ha]) ≥ pSω([h]).

Proof: Recall that both paω([ha]) and pSω([h]) are defined to be products of
numbers less than or equal to one. Because ha v h, every term in the product
paω([ha]) appears in the product pSω([h]). Hence, paω([ha]) ≥ pSω([h]).

Lemma 8. Let S = 〈G,M〉 be any strategic network, G′ ⊆ G, and a ∈ A,
ha ∈ Ha, and h ∈ HG′ . Suppose that for every h ∈ E, there is ha ∈ Ea such
that ha v h. Then paω(Ea) ≥ pSω(E).

Proof: It suffices to show that (*) for every cover Ia = {[hn,a]}n∈N of Ea, there
is a cover I = {[hn]}n∈N of E such that hn,a v hn for all n. Why does (*)
suffice? Fix ε > 0. Then by definition of pSω, there is a cover Ia = {[hn,a]}n∈N
of Ea such that: ∑

n∈N
paω([hn,a]) ≤ paω(Ea) + ε

By (*), there is a cover I = {[hn]}n∈N of E such that hn,a v hn for all n. Hence,

paω(Ea) + ε ≥
∑
n∈N

paω([hn,a])

≥
∑
n∈N

paω([hn]) by Lemma 7

≥ pSω(E)

And as ε > 0 was arbitrary, the result follows.
So it remains to prove (*). Let Ia = {[hn,a]}n∈N cover Ea. For any ha ∈ Ea,

define J(ha) be the set of all h in E such that ha v h, and let J be the union
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of all such J(ha). As Ia covers Ea, for all ha ∈ Ea, there is some hn,a such that
ha ∈ [hn,a]. Hence, for each h ∈ J there is some finite sequence hn ∈ HG′ such
that hn,a v hn and h ∈ [hn]. Let I be the set of all events of the form [hn],
where hn is obtained from h ∈ J in this way. Then I is countable because the
set of histories is countable. It suffices to show that I is a cover of E.

To show that I is a cover of E, let h ∈ E. By assumption, there is h
a ∈ Ea

such that ha v h. By definition, the complete history h is an element of J(ha).
By definition of I, it follows that h ∈ ∪I as desired.

Lemma 9. Let S = 〈G,M〉 be any strategic network, g ∈ G, and a ∈ A. Then
for all ω ∈ Ω:

pSω( lim
n→∞

estg(a, hn) = Eω[a] | NG(g) plays a infinitely often) = 1

so long as pSω(NG(g) plays a infinitely often) > 0.

Proof: Fix g ∈ G and let

Eg := [ lim
n→∞

estg(a, hn) 6= Eω[a]] ∩ [NG(g) plays a infinitely often].

For all h ∈ Eg, let ha be the sequence consisting of all of the coordinates of
h in which the action a is played; because a is played infinitely often in h (by
definition of Eg), the sequence ha is infinitely long. Define

Eg,a := {ha ∈ Ha : h ∈ Eg}

Because the limit of estimates of the EU of a is wrong in every h ∈ Eg, it is
likewise wrong in every ha ∈ Eg,a. By Lemma 6, it follows that paω(Eg,a) = 0.
By Lemma 8, it follows that pSω(Eg) ≤ paω(Eg,a) = 0.

6.1 Basic Lemmas

The following series of lemmas relates some of the events discussed in previous
sections to consistency of methods in isolation and in networks more broadly.

Lemma 10. Let S = 〈G,M〉 be a strategic network, g ∈ G, ω ∈ Ω. Suppose
that pSω(limn→∞mg(hn)(Aω) = 1) = 1. Then limn→∞ pSω(hA(n, g) ∈ Aω) = 1.

Proof: Let ε ∈ Q ∩ (0, 1), and let n ∈ N. Define:

Fn,ε := {h ∈ HN(g),n : mg(h)(Aω) > 1− ε}

Fn,ε := {h ∈ HN(g) : mg(hn)(Aω) > 1− ε} =
⋃

h∈Fn,ε

[h]

En,ε := {h ∈ HN(g) : mg(hk)(Aω) > 1− ε for all k ≥ n}
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Clearly, En,ε ⊆ Fn,ε. It follows that:

pSω(hA(n+ 1, g) ∈ Aω) =
∑

h∈HN(g),n

pSω(h) ·mg(h)(Aω)

=
∑

h∈Fn,ε

pSω(h) ·mg(h)(Aω) +
∑

h∈HN(g),n\Fn,ε

pSω(h) ·mg(h)(Aω)

≥
∑

h∈Fn,ε

pSω(h) ·mg(h)(Aω)

≥
∑

h∈Fn,ε

pSω(h) · (1− ε)

= pSω(Fn,ε) · (1− ε)
≥ pSω(En,ε) · (1− ε)

Notice that E1,ε ⊆ E2,ε ⊆ . . ., and so it follows that limn→∞ pSω(En,ε) =
pSω(∪n∈NEn,ε). Now by assumption:

pSω( lim
n→∞

mg(hn)(Aω) = 1) = 1

Notice that

[ lim
n→∞

mg(hn)(Aω) = 1] = ∩δ∈Q∩(0,1) ∪n∈N En,δ.

So it follows that

1 = pSω( lim
n→∞

mg(hn)(Aω) = 1)

= pSω(∩δ∈Q∩(0,1) ∪n∈N En,δ)
≤ pSω(∪n∈N En,ε)
= lim

n→∞
pSω(En,ε)

≤ 1

1− ε
· lim
n→∞

pSω(hA(n+ 1, g) ∈ Aω) by the argument above

As ε was chosen arbitrarily from the Q ∩ (0, 1), the result follows.

Lemma 11. Let S = 〈G,M〉 be a strategic network, g ∈ G, A′ ⊆ A, and ω ∈ Ω.
Suppose limn→∞ pSω(hA(n, g) ∈ A′) = 1. Then:

pSω(g plays A′ infinitely often ) = 1.

Proof: By contraposition. Suppose

pSω(g does not play A′ infinitely often ) > 0.

By definition:

[g does not play A′ infinitely often ] = ∪n∈N ∩k≥n [hA(k, g) 6∈ A′]
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and so (by countable additivity), there is some j ∈ N such that

pSω(∩k≥j [hA(k, g) 6∈ A′]) = r > 0.

It follows that for all k ≥ j

pSω(hA(k, g) ∈ A′) ≤ 1− r.

Hence, limn→∞ pSω(hA(n, g) ∈ A′) ≤ 1− r < 1.

Corollary 3. Let S = 〈G,M〉 be a strategic network, g ∈ G, and ω ∈ Ω.
Suppose that there is some n ∈ N such that

pSω(
⋂
k>n

[hA(k, g) 6∈ Aω]) > 0

Then limn→∞ pSω(hA(n, g) ∈ Aω) < 1.

7 Appendix - Proofs of Major Lemmas

In the following two propositions, let mε be εG method defined as follows. Let
〈wa〉a∈A be a vector of strictly positive real numbers, and ε : H → R≥0 be the
function ε(h) = 1

|h||h1| . Define:

mε(h)(a) =

{
(1− ε(h)) · wa∑

a′∈A(g,h) wa′
if a ∈ A(g, h)

ε(h) · wa∑
a′∈A\A(g,h) wa′

if a 6∈ A(g, h)

Proposition 1. In all learning problems, mε is ic.

Proof: Let Smε be the isolated network consisting of one learner g employing
mε. Let a ∈ A and n ∈ N. Define:

En = [hA(n) = a]

Then by definition of the method mε action a is chosen on stage n is always
played with probability at least 1

n ·
wa∑

a′∈A wa′
> 0, regardless of history, by

assumption the initial weights are positive. It follows that: p
Smε
ω (En | ∩k≤j<n

Ecj ) ≥ wa∑
a′∈A wa′

· 1n for any pair of natural numbers n and k such that k < n.

Hence, for all k ∈ N: ∑
n>k

p
Smε
ω (En | ∩k≤j<n Ecj ) =∞

By the Borel Cantelli-Lemma, it follows that p
Smε
ω (En infinitely often ) = 1.

In other words, the only learner in Smε plays a infinitely often. As a was
chosen arbitrarily, every action in A is played infinitely often. By Lemma 9,
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g’s estimates of the expected utility of each action approach the true expected
utility in every possible state of the world with probability one, i.e.,

p
Smε
ω ((∀a ∈ A) lim

n→∞
estg(a, hn) = Eω[a]) = 1

Because mε plays the (estimated) EU maximizing actions with probability ap-
proaching one in every state of the world, it follows that:

p
Smε
ω ( lim

n→∞
mε(hn)(Aω) = 1) = 1.

By Lemma 10, the result follows.

Proposition 2. Let 〈Ω, A,O, p〉 be a difficult learning problem. Then 〈mε,mε〉
is not gic.

Proof: Let S = 〈G = {g1, g2}, 〈mε,mε〉〉 be the strategic network consisting of
exactly two researchers, both of whom employ the method mε. Let ω1 ∈ Ω. As
the learning problem is non-trivial, there is some ω2 ∈ Ω such that Aω1∩Aω2 = ∅.
As the learning problem is difficult, there is some history h ∈ HG such that (i)
every action in Aω1

has garnered zero payoff along h, (ii) some action in Aω2

has garnered positive payoff along h, and (iii) pSω1
(h) > 0. Suppose h has length

n. Define:

E = [h] ∩
⋂
g∈G

⋂
j>n

[hA(j, g) 6∈ Aω1
]

F = [h] ∩
⋂
g∈G

⋂
j>n

[hA(j, g) ∈ Aω2 ]

Fk = [h] ∩
⋂
g∈G

⋂
n<j<n+k

[hA(j, g) ∈ Aω2
]

Notice first that F ⊆ E, and so pSω1
(F ) ≤ pSω1

(E). Thus, it suffices to show
that pSω1

(F ) > 0. Next notice that F1 ⊇ F2 ⊇ . . . F , and so limk→∞ pSω1
(Fk) =

pSω1
(F ). Because mε chooses actions in A\A(g, h) with probability at most 1

|h|2 ,

it is easy to check, by induction on k, that

pSω1
(Fk) ≥ pSω1

([h]) ·Πn<j<k (1− 1

j2
)2.

The term under the product sign is squared because g1 and g2 choose their
actions independently of one another. It follows that:

pSω1
(F ) = lim

k→∞
pSω1

(Fk) ≥ lim
k→∞

pSω1
([h]) ·Πn<j<k (1− 1

j2
)2 > 0

where the last inequality follows from the fact that pSω1
(h) > 0. By Corollary 3,

the result follows. Notice the same proof works for any finite sequence that has
range mε and length greater than or equal to two.
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Proposition 3. Let 〈Ω, A,O, p〉 be a difficult learning problem. Let m be the
SA method determined by the following. Fix a0 ∈ A, and choose qa0,a > 0
however one pleases so that

∑
a∈A qa0,a = 1. Set qa,a′ = qa0,a′ for all a, a′ ∈ A.

Set the cooling schedule T : H → R to be the function T (h) = log(|h||h1|) (here,
log is the natural logarithm). Then m is ic.

Proof: The proof is exactly analogous to that of Proposition 1. First, one
shows that the probability that every action is played infinitely often when m is
employed is one, using the Second Borel-Cantelli Lemma. Hence, by Lemma 9,
the limit of the estimates of each action’s utility approaches the true expected
utility with probability one. By definition of an SA method, then, it follows
that, with probability one, the chance of switching to an EU-maximizing action
on a given stage approaches one, and the chance of departing from an EU-
maximizing action, once it has been played, approaches zero. By Lemma 10, it
then follows that m is isolation consistent.

In detail, fix some action a ∈ A and ω ∈ Ω. Define

En = [hA(n) = a].

Then by definition of the method m, action a is always played with probability
at least qa0,a · e− log(|h|) = qa0,a · 1

|h| for any history h. Hence, on the nth

stage of inquiry, action a is played with probability at least qa0,a · 1
n . Thus,∑∞

n=1 p
Sm
ω (En | ∩k≤j<nEcj ) =∞ for any pair of natural numbers n and k such

that k < n. By the Second Borel-Cantelli Lemma. It follows that:

pSmω (En infinitely often ) = 1.

As a was arbitrary, by Lemma 9:

(†) pSmω ((∀a ∈ A) lim
n→∞

estg(a, hn) = Eω[a]) = 1

Recall that, for any a ∈ A, we defined:

s(h, a) = T (h) ·max{0,estg(hA(n, g), h � n)− estg(a, h � n)}

And so by (†):

pSmω ({h ∈ H : lim
n→∞

s(hn, a) = 0 for all a ∈ Aω}) = 1

Now limn→∞ s(hn, a) = 0 almost surely implies that

lim
n→∞

m(hn)(a) = qhA(n,g),a · e−s(hn,a) = qhA(n,g),a

almost surely. In contrast, if a 6∈ Aω, then by definition of the method m and
by (†), for almost every hn:

lim
n→∞

mg(hn)(a) = lim
n→∞

qa0,a · e− log(|hn|) = 0.

It follows that:
pSmω ( lim

n→∞
m(hn)(Aω) = 1) = 1.

By Lemma 10, we’re done.
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Proposition 4. Let 〈Ω, A,O, p〉 be a difficult learning problem. Let m be the
SA method in the previous proposition. Then 〈m,m〉 is not gic.

Proof: Exactly analogous to Proposition 2.

In the following two propositions, let mδε
a be the δε method determined by the

quadruple 〈w = 〈wa〉, A∗ = {a}, ε, δ〉 such that ε(h) = 0, and wa′ = 0 for all
a′ ∈ A, and

δ(h) =

{
1 if a ∈ A(g, h)
1
|h| otherwise

Proposition 5. Let 〈Ω, A,O, p〉 be a non-trivial learning problem. Then mδε
a

is not ic.

Proof: Let S be the isolated network consisting of one learner g employing
the method mδε

a . As the learning problem is non-trivial, there is some ω ∈ Ω
such that a 6∈ Aω. This implies that [hA(n) 6∈ Aω] ⊆ [hA(n) = a]. Define
E to be the set of histories along which only the action a is played, i.e., E =⋂
n∈N [hA(n) = a]. By Corollary 3, it suffices to show that pSω(E) > 0. In fact,

we show E has probability one. To do so, note that, by convention, the initial
weights assigned to each action in A are zero, so that a appears to be an optimal
action on the first stage, i.e. a ∈ A(g, 〈−〉). So g plays a with probability one
on the first stage. Because outcomes are non-negative, it follows that regardless
of the outcome of the first play, a remains seemingly optimal at stage 2, and
so on. Hence, regardless of the state of the world, in every history h for the
isolated network S with positive probability, the only action played along h is
a. It follows that pSω(E) = 1.

Proposition 6. Let 〈Ω, A,O, p〉 be any learning problem, and M = 〈mδε
a 〉a∈A,

where mδε
a is defined as in Proposition 5. Then M is guc.

Proof: Let S = 〈G,N〉 be any strategic network containing a connected M -
subnetwork S′ = 〈G′,M〉. Let ω ∈ Ω. Pick some a ∈ Aω, and some g ∈ G′ such
that mg = mδε

a . Let En = [hA(n, g) = a], so that pSω(En | ∩k≤j<n Ecj ) ≥ 1
n

for any pair of natural numbers k < n (by definition of mδε
a ). By the Second

Borel-Cantelli Lemma, it follows that

pSω(g plays a infinitely often ) = 1.

By Lemma 9, it follows that, almost surely, every learner in NG(g) has an
estimate of the EU of a that approaches the actual EU of a in ω. Because
a ∈ Aω, by the definition of the strategies {mδε

a′}a′∈A and Lemma 10, it then
follows that, almost surely, every learner in NG(g)∩G′ plays actions in Aω with
probability approaching one.

Continuing, by Lemma 11, it follows that, almost surely, every learner in
NG(g) ∩ G′ plays plays actions in Aω infinitely often. Because Aω is finite, by
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the pigeonhole principle, it follows that if an individual plays actions from Aω
infinitely often, then there is some a′ ∈ Aω that he plays infinitely often. It
follows that, almost surely, for every learner in g′ ∈ NG(g) ∩ G′, there is some
action ag′ ∈ Aω that g′ plays infinitely often.

Let g′′ ∈ G′ be an agent such that g′′ is a neighbor of some neighbor g′ of
g. Now we can repeat the argument above. Since g′ plays some optimal action
ag′ ∈ Aω infinitely often almost surely, then by Lemma 9, it follows that g′′ has
an estimate of the EU of ag′ that approaches the actual EU of ag′ almost surely.
By the definition of the strategies {mδε

a′}a′∈A and Lemma 10, it then follows that
g′′ plays plays actions in Aω with probability approaching one. So neighbors of
neighbors of g play EU maximizing actions with probability approaching one if
they are in G′.

In general, let π(g, g′) be the length of the shortest path between g and g′ in
G. By induction n ∈ N, we see that for any agent g′ ∈ G′ such that π(g, g′) = n,
g′ plays EU maximizing actions with probability approaching one. Because the
subnetwork S = 〈G′,M〉 is connected, for all g′ ∈ G, there is a finite path
between g and g′, and so we’re done.

8 Appendix - Proofs of Theorems

Proof of Theorem 1: That all RL strategies are ic under the assumptions
of the theorem follows from Theorem 6, which is a trivial generalization of the
proof of Theorem 1 in Beggs (2005). That some εG methods are isolation con-
sistent follows from Proposition 1. Because every εG method is a δε method,
it follows that some δε methods are ic. Finally, that some SA methods are
isolation consistent follows from Proposition 3, and for conditions characteriz-
ing when a wide class of SA methods are ic, see Bertsimas and Tsitsiklis (1993).

Proof of Theorem 2: This is an immediate consequence of Theorems 5 and 6.

Proof of Theorem 3: If each m ∈ M is uc, it is trivial to show M is uc.
Conversely, suppose that M is uc. Let m ∈ M . We must show that m is uc.
To do so, let S = 〈G,M1〉 be a strategic network and ω be some state of the
world. We must show that if a learner g ∈ G adopts m rather than his current
strategy, then he will play EU-maximizing actions relative to ω with probability
approaching one as inquiry progresses, i.e., we must show that g plays an EU
maximizing action relative to ω with probability approaching one in Sg,m.

To do so, let S∗ = 〈G∗,M∗〉 be a strategic network obtained by expanding
Sg,m in the following way. For every m′ ∈M \ {m}, add a node to the network
G and assign the learner to employ the strategy m′. Add no additional edges,
so each of the additional learners is isolated. Because M is uc, it follows that
each agent in S∗ = 〈G∗,M∗〉 employing some method from M will play an
EU-maximizing action with probability approaching one in S∗. In particular,
g will play an EU-maximizing action with probability approaching one in S∗.
Because G is a closed subnetwork of G∗, the probability that a learner in G
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plays some action depends only on the state of the world and the actions of
others in G. It follows that, since g ∈ G plays an EU-maximizing action with
probability approaching one in S∗ as inquiry progresses, he likewise plays an
EU-maximizing action with probability approaching one in Sg,m, which is what
we desired to prove.

Proof of Theorem 4: Follows immediately from Propositions 5 and 6.
Proof of Theorem 5: Follows immediately from Propositions 1, 2, 3, and 4.
Proof of Theorem 6: First, we show that every finite sequence of RL methods
is gic. Let M be any finite sequence of RL methods, and let S = 〈G,N〉 be
any M -network (in fact, one need not assume G is connected). Pick g ∈ G and
ω ∈ Ω. We must show that limn→∞ pSω(hA(n, g) ∈ Aω) = 1.

To do so, we adopt the proof of Theorem 1 in Beggs (2005) in the following
way. As in Beggs’ proof, it suffices to consider the consider the case in which
A contains exactly two actions a1 and a2. Beggs defines two random variables
Ai(n) and πi(n) (where i = 1, 2), which respectively represent the total util-
ity acquired by playing action ai through stage n and the payoff acquired by
playing action ai on stage n. In our model, these two random variables are the
mappings Ai(n) : HG → R+ and πi(n) : HG → R+ defined respectively by the

equations Ai(n)(h) = rai,N(g)(hn) and πi(n)(h) =
∑
g′∈N(g) h

O

n (n, g). Because
neighborhoods contain only finitely many agents by assumption, the assump-
tions of the theorem imply that the variables Ai(n) and πi(n) are bounded and
can be plugged directly into the proof of Theorem 1 in Beggs (2005) to yield
the result.

Next we show that no finite sequence of RL methods is guc in any non-
trivial learning problem in which there are constants k2 > k1 > 0 such that
p(o|a, ω) = 0 if o 6∈ [k1, k2]. Let M be a finite sequence of RL methods. It suffices
to find (i) a strategic network S = 〈G,N〉 with a connected M -subnetwork
S′ = 〈G′,M〉, (ii) a learner g ∈ G′, and (iii) a state of the world ω ∈ Ω such
that limn→∞ pSω(hA(n, g) ∈ Aω) 6= 1.

To construct S, first take a sequence of learners of the same cardinality as
M and place them in a singly-connected row, so that the first is the neighbor
to the second, the second is a neighbor to the first and third, the third is a
neighbor to the second and fourth, and so on. Assign the first learner on the
line to play the first strategy in M , the second to play the second, and so on.
Denote the resulting strategic network by S′ = 〈G′,M〉; notice S′ is a connected
M -network.

Next, we augment S′ to form a larger network S as follows. Find the least
natural number n ∈ N such that n · k1 > 3 · k2. Add n agents to G′ and add an
edge from each of the n new agents to each old agent g ∈ G′. Call the resulting
network G. Pick some action a ∈ A, and assign each new agent the strategy ma,
which plays the action a deterministically. Call the resulting strategic network
S; notice that S contains S′ as a connected M -subnetwork.

Let ω be a state of the world in which a 6∈ Aω (such an a exists because the
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learning problem is non-trivial by assumption). We claim that

(∗) lim
k→∞

pSω(hA(k, g) ∈ Aω) < 1

for all g ∈ G′, and so M is not guc. Let g ∈ G′. By construction, regardless of
history, g has at least n neighbors each playing the action a at any stage. By
assumption, p(o|a, ω) > 0 only if o ≥ k1 > 0, and so it follows that the sum
of the payoffs to the agents playing a in g’s neighborhood is at least n · k1 at
every stage. In contrast, g has at most 3 neighbors playing any other action
a′ ∈ A. Since payoffs are bounded above by k2, the sum of payoffs to agents
playing actions other than a in g’s neighborhood is at most 3 · k2 < n · k1.
It follows that, in the limit, one half is strictly less than ratio of (i) the total
utility accumulated by agents playing a in g′ neighborhood to (ii) the total
utility accumulated by playing all actions. As g is a reinforcement learner, g,
therefore, plays action a 6∈ Aω with probability greater than one half in the
limit, and (∗) follows. In symbols:

lim
k→∞

pSω(hA(k + 1, g) 6∈ Aω) = lim
k→∞

∑
h∈HN(g),k

pSω([h]) ·mg(h)(A \Aω)

≥ lim
k→∞

∑
h∈HN(g),k

pSω([h]) ·mg(h)(a)

= lim
k→∞

∑
h∈HN(g),k

pSω([h]) ·
ra,N(g)(h)

ra,N(g)(h) +
∑
a′∈A\{a} ra′,N(g)(h)

= lim
k→∞

∑
h∈HN(g),k

pSω([h]) · wa + k · (n · k1)

wa + k · (n · k1) + k · (3 · k2)

> lim
k→∞

∑
h∈HN(g),k

pSω([h]) · wa + k · n · k1
wa + 2k · (n · k1)

=
1

2

where the strict inequality follows by choice of n, and the last equality follows
from the fact that the constant wa can be ignored in the limit.
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