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Abstract Ockham’s razor is the principle that, all other things being equal, scientists ought
to prefer simpler theories. In recent years, philosophers have argued that simpler theories
make better predictions, possess theoretical virtues like explanatory power, and have other
pragmatic virtues like computational tractability. However, such arguments fail to explain
how and why a preference for simplicity can help one find true theories in scientific inquiry,
unless one already assumes that the truth is simple. One new solution to that problem is the
Ockham efficiency theorem (Kelly 2002, 2004, 2007a-d, Kelly and Glymour 2004), which
states that scientists who heed Ockham’s razor retract their opinions less often and sooner
than do their non-Ockham competitors. The theorem neglects, however, to consider com-
petitors following random (“mixed”) strategies and in many applications random strategies
are known to achieve better worst-case loss than deterministic strategies. In this paper, we
describe two ways to extend the result to a very general class of random, empirical strate-
gies. The first extension concerns expected retractions, retraction times, and errors and the
second extension concerns retractions in chance, times of retractions in chance, and chances
of errors.

Kevin Kelly
Department of Philosophy
Baker Hall 135K
Carnegie Mellon University
Pittsburgh, PA 15232
Tel.: 412.268.8567
E-mail: kk3n@andrew.cmu.edu

Conor Mayo-Wilson
Department of Philosophy
Baker Hall 143
Carnegie Mellon University
Tel.: 412.268.8148
Pittsburgh, PA 15232
E-mail: conormw@andrew.cmu.edu



2

1 Introduction

When confronted by a multitude of competing theories, all of which are compatible with
existing evidence, scientists prefer theories that minimize free parameters, causal factors,
independent hypotheses, or theoretical entities. Today, that bias toward simpler theories—
known popularly as “Ockham’s razor”—is explicitly built into statistical software packages
that have become everyday tools for working scientists. But how does Ockham’s razor help
one find true theories any better than competing strategies could?1

Some philosophers have argued that simpler theories are more virtuous than complex
theories. Simpler theories, they claim, are more explanatory, more easily falsified or tested,
more unified, or more syntactically concise.2 However, the scientific theory that truly de-
scribes the world might, for all we know in advance, involve multiple, fundamental con-
stants or independent postulates; it might be difficult to test and/or falsify, and it might be
“dappled” or lacking in underlying unity (Cartwright 1999). Since the virtuousness of scien-
tific truth is an empirical question, simplicity should be the conclusion of scientific inquiry,
rather than its underlying premise (Van Frassen 1980).

Recently, several philosophers have harnessed mathematical theorems from frequentist
statistics and machine learning to argue that simpler theories make more accurate predic-
tions.3 There are three potential shortcomings with such arguments. First, simpler theories
can improve predictive accuracy even when it is known that the truth is complex (Vapnik
1998). Thus, one is led to an anti-realist stance according to which the theories recom-
mended by Ockham’s razor should be used as predictive instruments rather than believed
as true explanations (Hitchcock and Sober 2004). Second, the argument depends essentially
on randomness in the underlying observations (Forster and Sober 1994), whereas Ockham’s
razor seems no less compelling in cases in which the data are discrete and deterministic.
Third, the assumed notion of predictive accuracy does not extend to predictions of the effects
of novel interventions on the system under study. For example, a regression equation may
accurately predict cancer rates from the prevalence of ash-trays but might be extremely inac-
curate at predicting the impact on cancer rates of a government ban on ash-trays.4 Scientific
realists are unlikely to agree that simplicity has nothing to do with finding true explanations
and even the most ardent instrumentalist would be disappointed to learn that Ockham’s razor
is irrelevant to vital questions of policy. Hence, the question remains, “How can a systematic
preference for simpler theories help one find potentially complex, true theories?”

Bayesians and confirmation theorists have argued that simpler theories merit stronger
belief in light of simple data than do complex theories. Such arguments, however, assume
either explicitly or implicitly that simpler possibilities are more probable a priori.5 That
argument is circular—a prior bias toward complex possibilities yields the opposite result.
So it remains to explain, without begging the question, why a prior bias toward simplicity is
better for finding true theories than is a prior bias toward complexity.

One potential connection between Ockham’s razor and truth is that a systematic bias
toward simple theories allows for convergence to the truth in the long run even if the truth is
not simple (Sklar 1977, Friedman 1983, Rosenkrantz 1983). In particular, Bayesians argue
that prior biases “wash out” in the limit (Savage 1972), so that one’s degree of belief in
a theory converges to the theory’s truth value as the data accumulate. But prior biases to-
ward complex theories also allow for eventual convergence to the truth (Reichenbach 1938,
Hempel 1966, Salmon 1966), for one can dogmatically assert some complex theory until a
specified time t0, and then revise back to a simple theory after t0 if the anticipated complex-
ities have not yet been vindicated. One might even find the truth immediately that way, if
the truth happens to be complex. Hence, mere convergence to the truth does not single out
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simplicity as the best prior bias in the short run. So the elusive, intuitive connection between
simplicity and theoretical truth is not explained by standard appeals to theoretical virtue,
predictive accuracy, confirmation, or convergence in the limit.

It is, nonetheless, possible to explain, without circularity, how Ockham’s razor finds true
theories better than competing methods can. The Ockham efficiency theorems (Kelly 2002,
2004, 2007a-e, Kelly 2010, Kelly and Glymour 2004) imply that scientists who systemati-
cally favor simpler hypotheses converge to the truth in the long run more efficiently than can
scientists with alternative biases, where efficiency is a matter of minimizing, in the worst
case, such epistemic losses as the total number of errors committed prior to convergence,
the total number of retractions performed prior to convergence, and the times at which the
retractions occur. The efficiency theorems are sufficiently general to connect Ockham’s ra-
zor with truth in paradigmatic scientific problems such as curve-fitting, causal inference, and
discovering conservation laws in particle physics.

One gap in the efficiency argument for Ockham’s razor is that worst-case loss minimiza-
tion is demonstrated only with respect to deterministic scientific methods. Among game
theorists, it is a familiar fact that random strategies can achieve lower bounds on worst-case
loss than deterministic strategies can, as in the game “rock-paper-scissors”, in which playing
each of the three actions with equal probability achieves better worst-case loss than playing
any single option deterministically can. Thus, an important question is: “Do scientists who
employ Ockham strategies find true theories more efficiently than do arbitrary, randomized
scientific strategies?” In this paper, we present a new stochastic Ockham efficiency theorem
that answers the question in the affirmative. The theorem implies that scientists who deter-
ministically favor simpler hypotheses fare no worse, in terms of the losses considered, than
those who employ randomizing devices to select theories from data. The argument is carried
out in two distinct ways, for expected losses and for losses in chance. For example, expected
retractions are the expected number of times an answer is dropped prior to convergence,
whereas retractions in chance are the total drops in probability of producing some answer
or another. A larger ambition for this project is to justify Ockham’s razor as the optimal
means for inferring true statistical theories, such as acyclic causal networks. It is expected
that the techniques developed here will serve as a bridge to any such theory—especially
those pertaining to losses in chance.

2 Empirical Questions

Scientific theory choice can depend crucially upon subtle or arcane effects that can be impos-
sible to detect without sensitive instrumentation, large numbers of observations, or sufficient
experimental ingenuity and perseverance. For example, in curve fitting with inexact data6

(Kelly and Glymour 2004, Kelly 2007a-e, 2008), a quadratic or second-order effect occurs
when the data rule out linear laws, and a cubic or third-order effect occurs when the data
rule out quadratic laws, etc. (figure 62). Such effects are subtle in the above sense because,
for example, a very flat parabola may generate data that appear linear even in fairly large
samples. For a second example, when explaining particle reactions by means of conser-
vation laws, an effect corresponds to a reaction violating some conservation law (Schulte
2001). When explaining patterns of correlation with a linear causal network, an effect corre-
sponds to the discovery of new partial correlations that imply a new causal connection in the
network (Spirtes et al. 2000, Schulte, Luo, and Greiner 2007, Kelly 2008, Kelly 2010). To
model such cases, we assume that each potential theory is uniquely determined by the em-
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pirical effects it implies and we assume that empirical effects are phenomena that may take
arbitrarily long to appear but that, once discovered, never disappear from scientific memory.

Formally, let E be a non-empty, countable (finite or countably infinite) set of empirical
effects.7 Let K be the collection of possible effect sets, any one of which might be the set
of all effects that will ever be observed. We assume in this paper that each effect set in
K is finite. The true effect set is assumed to determine the correctness (truth or empirical
adequacy) of a unique theory, but one theory may be correct of several, distinct effect sets.
Therefore, let T , the set of possible theories, be a partition of K. Say that a theory T is
correct of effect set S in K just in case S is an element of T . If S is in K, let TS denote
the partition cell of T that contains S, so that TS represents the unique theory in T that is
correct if S is the set of effects that will ever be observed. Say that Q=(K,T ) is an empirical
question, in which K is the empirical presupposition and T is the set of informative answers.
Call K the uninformative answer to Q, as it represents the assertion that some effect set will
be observed. Let AQ be the set of all answers to Q, informative or uninformative.

An empirical world w is an infinite sequence of finite effect sets, so that the nth coordi-
nate of w is the set of effects observed or detected at stage n of inquiry. Let Sw denote the
union of all the effect sets occurring in w. An empirical world w is said to be compatible
with K just in case Sw is a member of K. Let WK be the set of all empirical worlds compatible
with K. If w is in WK , then let Tw = TSw , which is the unique theory correct in w. Let w|n
denote the finite initial segment of w received by stage n of inquiry. Let FK denote the set of
all finite, initial segments of worlds in WK . If e is in FK , say that e is a finite input sequence
and let e− denote the result of deleting the last entry in e when e is non-empty. The set of
effects presented along e is denoted by Se, and let Ke denote the restriction of K to finite sets
of effects that include Se. Similarly, let Te be the set of theories T ∈ T such that there is
some S in Ke such that TS = T . The restriction Qe of question Q to finite input sequence e is
defined as (Ke,Te).

3 Deterministic Methodology

A deterministic method or pure strategy for pursuing the truth in problem Q is a function
M that maps each finite input sequence in FK to some answer in AQ. Method M converges
to the truth in Q (or converges in Q for short) if and only if limi→∞ M(w|i) = Tw, for each
world w compatible with K. Our focus is on how best to find the truth, so we consider only
deterministic methods that converge to the truth.

Methodological principles impose short-run restrictions on methods. For example, say
that M is logically consistent in Q if and only if M never produces an answer refuted by
experience, i.e., M(e) is in AQe , for all e ∈ FK .

The methodological principle of main concern in this paper is Ockham’s razor. Consid-
eration of the polynomial degree example suggests that more complex theories are theories
that predict more relevant effects, where an effect is relevant only if it changes the correct
answer to Q. To capture this intuition, define a path in K to be a nested, increasing sequence
of effects sets in K. A path (S0, . . . ,Sn) is skeptical if and only if TSi is distinct from TSi+1 , for
each i less than n. Each step along a skeptical path poses the classical problem of induction
to the scientist, since effects in the next effect set could be revealed at any time in the future.

Define the empirical complexity cQ,e(S) of effect set S in K to be the result of subtracting
1 from the length of the longest skeptical path to S in Ke (we subtract 1 so that the complexity
of the simplest effect sets in K is zero). Henceforth, the subscript Q will be dropped to reduce
clutter when the question is clear from context. The complexity ce(T ) of theory T in T is
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defined to be the least empirical complexity ce(S) such that S is in T . For example, it seems
that the theory “either linear or cubic” is simpler, in light of linear data, than the hypothesis
“quadratic” and that the theory “quadratic” is simpler in light of quadratic data than “linear
or cubic”. The complexity ce(w) of world w is just ce(Sw). The nth empirical complexity cell
Ce(n) in the empirical complexity partition of WK is defined to be the set of all worlds w in
K such that ce(w) = n.

Answer A is Ockham in K at e if and only if A = K or A is the unique theory T such that
ce(T ) = 0. Method M satisfies Ockham’s razor in K at e if and only if M(e) is Ockham at e.
Note that Ockham’s razor entails logical consistency and does not condone choices between
equally simple theories. A companion principle, called stalwartness, is satisfied at e if and
only if M(e)=M(e−) when M(e−) is Ockham at e. Ockham’s razor and stalwartness impose
a plausible, diachronic pattern on inquiry. Together, they ensure that theories are visited in
order of ascending complexity, and each time a theory is dropped, there may be a long run
of uninformative answers until a new, uniquely simplest theory emerges and the method
becomes confident enough in that theory to stop suspending judgment.

Say that a skeptical path in Q is short if and only if, first, it is not a proper sub-sequence
of any skeptical path in Q and second, there exists at least one longer skeptical path in Q.
Then Q has no short skeptical paths if and only if for each e in FK , there exists no short
skeptical path in Qe. Commonly satisfied sufficient conditions for non-existence of short
skeptical paths are (i) that all skeptical paths in Q are extendable and (ii) that (K,⊂) is a
ranked lattice and each theory in T implies a unique effect set. The problem of finding poly-
nomial laws of unbounded degree and the problem of finding the true causal network over
an arbitrarily large number of variables both satisfy condition (i). The problem of finding
polynomial laws and the problem of finding the true causal network over a fixed, finite set
of variables both satisfy condition (ii) (Kelly and Mayo-Wilson 2010b).

4 Deterministic Inquiry

We consider only methods that converge to the truth, but justification requires more than
that—a justified method should pursue the truth as directly as possible. Directness is a
matter of reversing course no more than necessary. A fighter jet may have to zig-zag to
pursue its quarry, but needless course reversals during the chase (e.g., performance of acro-
batic loops) would likely invite disciplinary action. Similarly, empirical science may have
to retract its earlier conclusions as a necessary consequence of seeking true theories, in the
sense that a theory chosen later may fail to logically entail the theory chosen previously
(Kuhn 1970, Gärdenfors 1988), but needless or gratuitous reversals en route to the truth
should be avoided. We sometimes hear the view that minimizing retractions is a merely
pragmatic rather than a properly epistemic consideration. We disagree. Epistemic justifica-
tion is grounded primarily in a method’s connection with the truth. Methods that needlessly
reverse course or that chase their own tails have a weaker connection with the truth than do
methods guaranteed to follow the most direct pursuit curve to the truth.

Let M be a method and let w be a world compatible with K (or some finite initial seg-
ment of one). Let ρ(M,w, i) be 1 if M retracts at stage i in w, and let the total retraction
loss in world w be ρ(M,w) = ∑

∞
i=0 ρ(M,w, i). If e is a finite input sequence, define the pref-

erence order M ≤ρ
e,n M′ among convergent methods to hold if and only if for each world

w in complexity set Ce(n), there exists world w′ in empirical complexity cell Ce(n) such
that ρ(M,w) ≤ ρ(M′,w′). That amounts to saying that M does as well as M′ in terms of
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retractions, in the worst case, over worlds of complexity n that extend e. Now define:

M <ρ
e,n M′ iff M ≤ρ

e,n M′ and M′ 6≤ρ
e,n M;

M ≤ρ
e M′ iff M ≤ρ

e,n M′, for each n;

M�ρ
e M′ iff M ≤ρ

e,n M′, for each n such that Ce(n) is nonempty.

Consider the comparison of M with alternative methods one might adopt when the last
entry of finite input sequence e has just been received (and no theory has yet been chosen in
response thereto). There is no point comparing one’s method M in light of e with methods
that did something different from M in the past along e, since the past cannot be changed.
Accordingly, say that M is efficient in terms of retractions given e if and only if M is conver-
gent and for each convergent competitor M′ that produces the same outputs as M along e−,
the relation M ≤ρ

e M′ holds. In contrast, say that M is beaten in terms of retractions given e
if and only if there exists convergent M′ that agrees with M along e− such that M′�ρ

e M.
The concepts of efficiency and being beaten are relative to e. When such a concept holds
for every e in FK , say that it holds always and when the concept holds at each e′ in FK that
extends e, say that it holds from e onward.

5 Deterministic Ockham Efficiency Theorems

A stalwart, Ockham strategy M is guaranteed to converge to the truth as long as M does
not return the uninformative answer K for eternity. But other strategies also converge to the
truth, so it remains to explain why one should follow Ockham’s razor now. The Ockham
efficiency theorems answer that more difficult question.

Theorem 1 (deterministic Ockham efficiency theorem) Let the loss be retractions. As-
sume that question Q = (K,T ) has no short skeptical paths, that each theory in T is
correct for a unique effect set, and that method M converges to the truth and is logically
consistent. Then the following are equivalent:

1. method M is always Ockham and stalwart;
2. method M is always efficient;
3. method M is always unbeaten.

Proof: Consequence of theorem 4 below. a

The above theorem asserts that Ockham’s razor and stalwartness are not merely sufficient
for efficiency; they are both necessary. Furthermore, any method that is ever inefficient is
also beaten at some time. Thus, convergent methods are cleanly partitioned into two classes:
those that are efficient, Ockham, and stalwart, and those that are either not Ockham or not
stalwart and are, therefore, beaten.

The main idea behind the proof is that nature is in a position to force an arbitrary, conver-
gent method to produce successive theories (TS0 , . . . ,TSn), with arbitrary time delays between
the successive retractions, if there exists a skeptical path (S0, . . . ,Sn) in Q.

Lemma 1 (forcing deterministic changes of opinion) Let e be a finite input sequence of
length l, and suppose that M converge to the truth in Qe. Let (S0, . . . ,Sn) be a skeptical
path in Qe such that ce(Sn) = n, let ε > 0 be arbitrarily small and let natural number m be
arbitrarily large. Then there exists world w in Ce(n) and stages of inquiry l = s0 < .. . < sn+1
such that for each i from 0 to n, stage si+1 occurs more than m stages after si and Mw| j = TSi ,
at each stage j such that si+1−m≤ j ≤ si+1.
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Proof: To construct w, set e0 = e and s0 = l. For each i from 0 to n, do the following. Ex-
tend ei with world wi such that Swi = Si. Since M converges in probability to the truth, there
exists a stage s such that for each stage j ≥ s, Mw| j = TSi . Let s′ be the least such s. Let
si+1 = max(s′,si)+m. Set ei+1 = wi|si+1. The desired world is wn, which is in Ce(n), since
Swn = Sn. a

Any non-circular argument for the unique truth-conduciveness of Ockham’s razor must
address the awkward question of how one does worse at finding the truth by choosing a com-
plex theory even if that theory happens to be true. The Ockham efficiency argument resolves
the puzzle like this. Suppose that convergent M violates Ockham’s razor at e by producing
complex theory TSn of complexity n. Then there exists a skeptical path (S0, . . . ,Sn) in Qe.
Nature is then in a position to force M back to TS0 and then up through TS1 , . . . ,TSn , by the
retraction forcing lemma, for a total of n+1 retractions. A stalwart, Ockham method, on the
other hand, would have incurred only n retractions by choosing TS0 through TSn in ascending
order. Therefore, the Ockham violator is beaten by each convergent, stalwart Ockham com-
petitor (figure 62.b). Incidentally, the Ockham violator also traverses a needless, epistemic
loop Tn,T0, . . . ,Tn, an embarrassment that cannot befall an Ockham method. A similar beat-
ing argument can be given for stalwartness. Non-stalwart methods are beaten, since they start
out with an avoidable, extra retraction. Furthermore, the retraction-forcing lemma allows na-
ture to force every convergent method through the ascending sequence TS0 ,TS1 , . . . ,TSn , so
normal Ockham methods are efficient (figure 62.a). Thus, normal Ockham strategies are ef-
ficient and all non-Ockham or non-stalwart strategies are not just inefficient, but beaten as
well. This sketch is suggestive but ignores some crucial cases; the details are spelled out in
the proof of the more general theorem 4, which is provided in full detail in the appendix.

Theorem 1 does not imply that stalwart Ockham methods dominate alternative methods,
in the sense of doing better in every world or even as well in every world—a violation of
Ockham’s razor can result in no retractions at all if nature is kind enough to refute all sim-
pler theories immediately after the violation occurs. Nor are stalwart Ockham methods min-
imax solutions, in the usual sense that they achieve lower worst-case loss simpliciter—every
method’s overall worst-case loss is infinite if there are worlds of every empirical complexity,
as in the case of discovering polynomial laws. The unique superiority of stalwart Ockham
strategies emerges only when one considers a hybrid decision rule: dominance in terms of
worst-case bounds over the cells of a complexity-based partition of possible worlds. The
same idea is familiar in the theory of computational complexity (Garey and Johnson 1979).
There, it is also the case that cumulative computational losses such as the total number of
steps of computation are unbounded over all possible worlds (i.e., input strings). The idea in
computational complexity theory is to partition input strings according to length, so that the
worst-case computational time over each partition cell exists and is finite. That partition is
not arbitrary, as it is expected that computational time rises, more or less, with input length.
In the case of inquiry, inputs never cease, so we plausibly substitute empirical complexity for
length. Again, it is expected that retractions rise with empirical complexity. Then we seek
methods that do as well as an arbitrary, convergent method, in terms of worst-case bounds
over every cell of the empirical complexity partition.

Theorem 1 provides a motive for staying on the stalwart, Ockham path, but does not
motivate returning to the path after having once deviated from it. In other words, theorem 1
provides an unstable justification for Ockham’s razor. For example, suppose that method M
selects T1 twice in a row before any effects are observed, and suppose that method O reverts
to a stalwart, Ockham strategy at the second stage of inquiry. Then nature can still force M
to retract in the future to T0, but O has already performed that retraction, so reversion to
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Ockham’s razor does not result in fewer retractions. However, the inveterate Ockham vio-
lator retracts later than necessary, and efficient convergence to the truth also demands that
one retract as soon as possible, if one is going to retract at all. It is common in economic
analysis to discount losses incurred later, which may suggest the opposite view that retrac-
tions should be delayed as long as possible. Epistemology suggests otherwise. If nature is
in a position to force one to retract T in the future by presenting only true information, then
one’s belief that T does not constitute knowledge, even if T is true.8 By a natural extension
of that insight, more retractions prior to arriving at the truth imply greater distance from
knowledge, so getting one’s retractions over with earlier brings one closer to knowledge and
reduces epistemic loss.

To make this idea precise, let γ(M,w, i) be a local loss function, which is a function
that assigns some nonnegative quantity to M in w at stage i (e.g., ρ(M,w, i) is a local loss
function). Define the delay to accumulate quantity u of loss γ , where u is a non-negative real
number, as:

(Di) (γ(M,w, i)≥ u) = the least stage j such that
j

∑
i=0

γ(M,w, i)≥ u,

with the important proviso that the expression denotes 0 if there is no such stage j. In the
deterministic case, ρ(M,w) is always a natural number. The time delay to the kth retraction
is just:

τ(M,w,k) = (Di) (ρ(M,w, i)≥ k).

It remains to compare methods in terms of worst-case retraction times. It is not quite right
to compare each method’s delay to each retraction; for consider the output sequences σ =
(T0,T1,T2) and σ ′ = (T0,T0,T2). Sequence σ has an earlier elapsed time to the first retrac-
tion, but it still seems strictly worse than σ ′; for the retraction delays in σ are at least as
late as those in σ ′ if one views the first retraction in σ as an “extra” retraction and ig-
nores it. Ignoring extra retractions amounts to considering a local loss function γ such that
γ(M,w, i) ≤ ρ(M,w, i), for each M,w, i. In that case, say that γ ≤ ρ . Accordingly, define
M ≤τ

e,n M′ to hold if and only if there exists local loss function γ ≤ ρ such that for each w
in Ce(n) there exists w′ in Ce(n) such that:

τ(M,w,k)≤ (Di) (γ(M,w′, i)≥ k).

Define <τ
e,n,≤τ

e and�τ
e as was done for ρ . Now define efficiency and beating from e onward

in terms of retraction times by substituting τ for ρ in the corresponding definitions provided
in the preceding section.

Theorem 2 (deterministic, stable Ockham efficiency theorem) Let the loss be retraction
times. Assume that question Qe has no short skeptical paths and that method M converges
to the truth. Then the following are equivalent:

1. method M is Ockham and stalwart from e onward;
2. method M is efficient from e onward;
3. method M is unbeaten from e onward.

Proof: Consequence of theorem 4 below. a

Retraction may be viewed as a strategy for eliminating error, so it is of interest to check
whether theorem 2 can be strengthened to include the total number of errors committed as a
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loss. Let ε(M,w, i) assume value 1 if M produces a theory incorrect of Sw at stage i and value
0 otherwise. Define the cumulative errors of M in w as ε(M,w) = ∑

∞
i=0 ε(M,w, i). Violating

Ockham’s razor at e also increases the worst-case error bound over complexity cell Ce(0).
Why? We claim that any method that is Ockham from e onward never errs after e in any
world in Ce(0), whereas any method that violates Ockham’s razor at e errs at least once in
some world in Ce(0). In every world w in Ce(0), there is some stage nw at which Tw becomes
the uniquely simplest theory compatible with experience, and moreover, there is no stage
between e and nw such that some other theory T 6= Tw is uniquely simplest. Because every
Ockham method refuses to answer anything other than the unique simplest theory (when it
exists) after e, it follows such methods commit no errors in any world in Ce(0). In contrast, if
M violates Ockham’s razor at e, then M returns some theory T that is not uniquely simplest
at e. Hence, there is some theory T ′ 6= T such that ce(T ′) = 0, and it follows that M commits
at least one error in every world in which T ′ is true.

We focus on retractions and their times primarily because violating Ockham’s razor at
e yields more retractions in every non-empty complexity cell Ce(n), whereas the Ockham
violator does worse in terms of errors only in Ce(0). The reason for the weaker result in
the error case is, in a sense, trivial—the worst-case bound on total errors is infinite in every
non-empty complexity cell Ce(n) other than Ce(0) for all convergent methods, including the
stalwart, Ockham methods. To see why, recall that nature can force an arbitrary, convergent
method M to converge to some theory T of complexity n and and to produce it arbitrarily
often before refuting T (by lemma 1). Thereafter, nature can extend the data to a world w
of complexity n+ 1 in which T is false, so M incurs arbitrarily many errors, in the worst
case, in Ce(n+1). Retractions and retraction times are not more important than errors; they
are simply more sensitive than errors at exposing the untoward epistemic consequences of
violating Ockham’s razor.

Nonetheless, one may worry that retractions and errors trade off in an awkward manner,
since avoiding retractions seems to promote dogmatism, whereas avoiding errors seems to
motivate skeptical suspension of belief. Such tradeoffs are inevitable in some cases, but not
in the worst cases that matter for the Ockham efficiency theorems. Consider, again, just the
easy (Pareto) comparisons in which one method does as well as another with respect to
every loss under consideration. Let L be some subset of the loss functions {ρ,ε,τ}. Then
the worst-case Pareto order and worst-case Pareto dominance relations in L are defined as:

M ≤L
e M′ iff M ≤γ

e M′, for all γ ∈L ;

M�L
e M′ iff M ≤L

e M′ and M�γ
e M′, for some γ ∈L .

Efficiency and beating may now be defined in terms of ≤L
e and�L

e , just as in the case of
ρ . The following theorem says that the Ockham efficiency theorems are driven primarily by
retractions or retraction times, but errors can go along peacefully for the ride as long as only
easy loss comparisons are made.

Theorem 3 (Ockham efficiency with errors) Assume that L ⊆ {ρ,ε,τ} and that the loss
concept is ≤L . Then:

1. theorem 1 continues to hold if ρ ∈L or τ ∈L ;
2. theorem 2 continues to hold if τ ∈L .

Proof: Consequence of theorem 4 below.9 a
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6 Stochastic Inquiry

The aim of the paper is to extend the preceding theorems to mixed strategies. As discussed
above, the extension is of interest since the Ockham efficiency theorems are based on worst-
case loss with respect to the cells of an empirical complexity partition and, in some games,
stochastic (mixed) strategies can achieve better worst case loss than can deterministic (pure)
strategies. We begin by introducing a very general collection of stochastic strategies.

Recall that a deterministic method M returns an answer A when finite input sequence
e is provided, so that p(M(e) = A) = 1. Now conceive of a method more generally as a
random process that produces answers with various probabilities in response to e. Then
one may think of Me as a random variable, defined on a probability space (Ω ,F , p), that
assumes values in A . A random variable is a function defined on Ω , so that Me(ω) denotes
a particular answer in A . A method is then a collection {Me : e is in FK} of random variables
assuming values in A that are all defined on an underlying probability space (Ω ,F , p).10

In the special case in which p(Me = A) is 0 or 1 for each e and answer A, say that M is a
deterministic method or a pure strategy.

Let M be a method and let e in FK have length l. Then the random output sequence of M
in response to e with respect to ω is the random sequence M[e](ω) = (Me|0(ω), . . . ,Me|l(ω)).
Note that the length of M[e](ω) is l+1, so the length of M[e−](ω) is l. In particular, M[()](ω)=
(), so M[()] = () expresses the vacuous event Ω . If S is an arbitrary collection of random
output sequences of M along e and D is an event in F of nonzero probability, then the
conditional probability p(M[e] ∈S | D) is defined.

Consider the situation of a scientist who is deciding whether to keep method M or to
switch to some alternative method M′ after e has been received. In the deterministic case, it
doesn’t really matter whether the decision is undertaken before M produces its deterministic
response to e or after, since the scientist can predict perfectly from the deterministic laws
governing M how M will respond to e. That is no longer the case for methods in general—
the probability that Me = A may be fractional prior to the production of A but becomes 1
thereafter. However, the case of deciding after the production of A reduces to the problem
of deciding before because we can model the former case by replacing Me with a method
that produces A in response to e deterministically. Therefore, without loss of generality, we
consider only the former case.

The methodological principles of interest must be generalized to apply to stochastic
methods. Let e be in FK and let D be an event of nonzero probability. Say that M is logically
consistent at e given D if and only if:

p(Me ∈AQe | D) = 1.

Say that M is Ockham at e given D if and only if:

p(Me is Ockham at e | D) = 1.

Finally, say that M is stalwart at e given D if and only if:

p(Me = T |Me− = T ∧D) = 1,

when T is Ockham at e and p(Me− = T ∧D)> 0. This plausibly generalizes the deterministic
version of stalwartness—given that you produced an answer before and it is still Ockham,
keep it for sure.
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The concepts pertaining to inquiry and efficiency must also be generalized. Say that M
converges to the truth over Ke given event D if and only if:

limi→∞ p(Mw|i = Tw | D) = 1,

for each world world w in WKe .
Each of the above methodological properties is a relation of form Φ(M,e | D). In par-

ticular, one can consider Φ(M,e | M[e−] = σ), for some random output sequence σ of M
along e− such that p(M[e−] = σ)> 0, in which case Φ is said to hold of M at (e,σ). When
Φ holds of M at each pair (e′,σ ′) such that e′ is in FK,e and σ ′ is a random output sequence
of M along e′− such that p(M[e′−]

= σ ′)> 0, then say that Φ holds from (e,σ) onward. When
Φ holds from ((),()) onward, say that Φ holds always. For example, one can speak of M
always being stalwart or of M converging to the truth from (e,σ) onward.

Turn next to epistemic losses. There are two ways to think about the loss of a stochastic
method: as loss in chance or as expected loss. For example, T is retracted in chance at e if
the probability that the method produces T drops at e. Define, respectively, the total errors
in chance and retractions in chance at i in w given D such that p(D)> 0 to be:

ε̂(M,w, i | D) = ∑
T 6=Tw

p(Mw|i = T | D);

ρ̂(M,w, i | D) = ∑
T∈T

p(Mw|(i−1) = T | D)	 p(Mw|i = T | D),

where x	 y = max(x− y,0). For γ̂ ranging over ρ̂ , ε̂ , define the total loss in chance to be:
γ̂(M,w | D) = ∑

∞
i=0 γ̂(M,w, i | D). Retractions in chance can be fractional. Define the delay

to accumulate u retractions in chance as τ̂(M,w,u | D) = (Di) (γ̂(M,w, i)≥ u).
Now consider expected losses. Think of losses as random variables. A random local loss

function is a nonnegative function of form γ(M,w, i,ω), where ω ranges over the samples
space Ω . For example, define ρ(M,w, i,ω) to have value 1 if M[w](ω) exhibits a retraction
at stage i and to have value 0 otherwise. For fixed M,w, i, let γM,w,i(ω) = γ(M,w, i,ω). Then
ρM,w,i and εM,w,i are random variables. If γM,w,i(ω) is a random variable, then the delay time
(Di) (γM,w,i(ω) ≥ k) is a random variable and the sum ∑

∞
i=0 γM,w,i(ω) is a random variable

on the extended real numbers; so ρM,w(ω), εM,w(ω), and τM,w,k(ω) are random variables on
the extended real line.

The next problem is to compare two methods M,M′ in terms of worst-case loss in chance
or expected loss at e of length l. Each stochastic method has its own probability space
(Ω ,F , p) and (Ω ′,F ′, p′), respectively. Recall that M and M′ are being compared when the
last entry of e has been presented and M,M′ have yet to randomly produce corresponding
outputs. Suppose that, as a matter of fact, both M and M′ responded to e− by producing,
with chances greater than zero, the same random trajectory σ of length l. Let γ̂ be ρ̂ or
ε̂ , and let γ be ρ or ε . Then, as in the deterministic case, define M ≤γ̂

e,σ ,n M′ (respectively
M ≤γ

e,σ ,n M′) to hold if and only if for each w in Ce(n), there exists w′ in Ce(n) such that:

γ̂(M,w |M[e−] = σ) ≤ γ̂(M′,w′ |M′[e−] = σ);

Expp(γM,w |M[e−] = σ) ≤ Expp′(γM′,w′ |M′[e−] = σ).

Methods can be compared in terms of expected retraction times just as in the determin-
istic case. Define the comparison M≤τ

e,σ ,n M′ to hold if and only if there exists random local
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loss function γ ≤ ρ such that for every world w in Ce(n), there exists world w′ in Ce(n) such
that for each k:

Expp(τM,w,k |M[e−] = σ)≤ Expp′((Di) (γM′,w′,i(ω)≥ k) |M′[e−] = σ).

Comparing retraction times in chance is similar to comparing expected retraction times.
Let γ̂, δ̂ map methods, worlds, stages of inquiry, and measurable events to real numbers.
A local loss in chance is a mapping γ̂(M,w, i | D) that assumes nonnegative real values,
where D is a measurable event of nonzero probability. Define γ̂ ≤ δ̂ to hold if and only if
γ̂(M,w, i | D) ≤ δ̂ (M,w, i | D), for each method M, world w, and measurable event D of
nonzero probability. Define the comparison M ≤τ̂

e,σ ,n M′ to hold if and only if there exists
local loss in chance γ̂ ≤ ρ̂ such that for all w in Ce(n) and for all ε > 0 there exists w′ in
Ce(n) and there exists open interval I of length≤ ε such that for all real numbers u≥ 0 such
that u is not in I,

τ̂(M,w,u′ |M[e−] = σ)≤ (Di) (γ̂(M′,w, i |M′[e−] = σ)≥ u′).

The only obvious difference from the definition for expected retraction times is the exemp-
tion of an arbitrarily small interval I of possible values for cumulative retractions in chance.
The reason for the exemption is that stalwart, Ockham strategies can be forced by nature
to retract fully at each step down a skeptical path, whereas some convergent methods can
only be forced to perform 1− ε retractions in chance at each step, for arbitrarily small ε .
Since the time of non-occurring retractions in chance is 0, the retraction times in chance of
an Ockham method would be incomparable with those of some convergent methods, under-
mining the efficiency argument. Allowing an arbitrarily small open interval of exceptions
introduces no bias into the argument, since non-Ockham methods equally benefit from the
exceptions. Still, they do worse.

Now define the obvious analogues of all the order relations in the deterministic case to
arrive at the worst-case Pareto relations ≤L

e,σ and�L
e,σ , where L is a set of losses γ or of

losses in chance γ̂ .
It remains to define efficiency and beating in terms of L . The scientist cannot change

the past, so if the scientist elects at e to follow a different method M′ than her old method
M, she is stuck with the theory choices σ made by M along e−. So it is as if she always
followed a method that produces σ deterministically in response to e− and that acts like M
thereafter. Accordingly, if e,σ have the same length l, define M′[σ/e−] to be just like M′

except that M′[σ/e−][e−](ω) = σ , for each ω in Ω . Let p(M[e−] = σ)> 0. Say that method
M is efficient in Q at (e,σ) with respect to the losses in L if and only if:

1. M converges to the truth given M[e−] = σ ;
2. M ≤L

e,σ M′[σ/e−], for each alternative method M′ that converges to the truth in Qe.

Say that method M is beaten in Q at (e,σ) with respect to losses in L if and only if the
second condition above holds with�L

e,σ in place of≤L
e,σ . Efficiency and being unbeaten are

again relations of form Φ(M,e | D), so one can speak of them as holding always or from
(e,σ) onward.

7 Stochastic Ockham Efficiency Theorem

Here is the main result.



13

Theorem 4 (stochastic Ockham efficiency theorem) Theorem 3 extends to stochastic meth-
ods and losses in chance when “from e onward” is replaced with “from (e,σ) onward”, for
all (e,σ) such that p(M[e−] = σ)> 0. The same is true for expected losses.

The proof of the theorem is presented in its entirety in the appendix. The basic idea is that
nature can still force a random method to produce the successive theories along a skeptical
path with arbitrarily high chance, if the method converges in probability to the truth. The
following result entails lemma 1 as a special case and is nearly identical in phrasing and
proof.

Lemma 2 (forcing changes of opinion in chance) Let e be a finite input sequence of length
l, and suppose that M converge to the truth in Qe. Let p(D) > 0. Let (S0, . . . ,Sn) be a
skeptical path in Qe such that ce(Sn) = n and let ε > 0 be arbitrarily small and let natural
number m be arbitrarily large. Then there exists world w in Ce(n) and stages of inquiry
l = s0 < .. . < sn+1 such that for each i from 0 to n, stage si+1 occurs more than m stages
after si and p(Mw| j = TSi | D)> 1− ε , at each stage j such that si+1−m≤ j ≤ si+1.

Proof: To construct w, set e0 = e and s0 = l. For each i from 0 to n, do the following. Extend
ei with world wi such that Swi = Si. Since M converges in probability to the truth, there exists
a stage s such that for each stage j ≥ s, p(Mw| j = TSi | D) > 1− ε . Let s′ be the least such
s. Let si+1 = max(s′,si)+m. Set ei+1 = wi|si+1. The desired world is wn, which is in Ce(n),
since Swn = Sn. a

Hence, expected retractions are forcible from convergent, stochastic methods pretty
much as they are from deterministic methods (lemma 5). Retractions in chance are a lower
bound on expected retractions (lemma 4). On the other hand, it can be shown that a stochas-
tic, stalwart, Ockham method incurs expected retractions only when its current theory is no
longer uniquely simplest with respect to the data (lemma 8), so such a method incurs at
most n expected retractions or retractions in chance after the end of e in Ce(n). Violating
Ockham’s razor or stalwartness adds some extra retractions in chance (and expected retrac-
tions) that an Ockham method would not perform in every nonempty complexity cell Ce(n),
as in the deterministic case (lemmas 6 and 7).

The worst-case errors of stochastic methods are closely analogous those in the deter-
ministic case. Ockham methods produce no expected errors or errors in chance in Ce(0)
(lemma 10) and all methods produce arbitrarily many expected errors or errors in chance, in
the worst case, in each nonempty Ce(n) such that n > 0 (lemma 11).

The retraction times of stochastic methods are a bit different from those of deterministic
methods. Retraction times in chance are closely analogous to retraction times in the deter-
ministic case, except that one must consider the times of fractional retractions in chance. The
relevant lower bounds are provided by lemmas 15 and 16 and the upper bounds are provided
by lemma 17. Expected retraction times are a bit different. For example, a stochastic method
that produces fewer than n expected retractions may still have a nonzero time for retraction
m > n, if the mth retraction is very improbable. That disanalogy is actually exploited in the
proof of theorem 4. To force expected retraction times to be arbitrarily late in Ce(n), for
n > 0, one may choose the delay time m in lemma 2 to be large enough to swamp the small
chance 1−nε that n retractions fail to occur (lemmas 13, 16). But the anomaly does not arise
for stalwart, Ockham methods, which satisfy upper bounds agreeing with the deterministic
case, so the logic of the Ockham efficiency argument still goes through (lemma 17).
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8 Conclusion and Future Directions

According to theorem 4, the situation with stochastic methods is essentially the same as
in the deterministic case—obvious, stochastic analogues of Ockham’s razor and stalwart-
ness are necessary and sufficient for efficiency and for being unbeaten, when losses include
retractions, retraction times, and errors. Every deterministic method counts as a stochas-
tic method, so deterministic, convergent, stalwart, Ockham methods are efficient over all
convergent, stochastic methods. Therefore, the game of inquiry is different from the game
“rock-paper-scissors” and many other games in that respect. In fact, flipping a fair coin se-
quentially to decide between the uninformative answer K and the current Ockham answer
T is a bad idea in terms of expected retractions—it is a violation of stalwartness that gen-
erates extra retractions in chance and expected retractions at each time one does it, from
the second flip onward. That resolves the main question posed in the introduction: whether
deterministic, stalwart, Ockham strategies are still efficient in comparison with convergent,
stochastic strategies. In fact, the Ockham efficiency argument survives with aplomb, whether
expected losses or losses in chance are considered and for a variety of Pareto combinations
of epistemic losses including total retractions, total errors, and retraction times.

The second ambition mentioned in the introduction concerns statistical inference, in
which outputs are stochastic due to randomness in the data rather than in the method. Let
the question be whether the mean µ of a normal distribution of known variance is 0 or not.
According to statistical testing theory, one calls theory Tµ=0 that µ = 0 the null hypothesis
and one fixes a bound α on the probability that one’s test rejects Tµ=0 given that Tµ=0
is true. A statistical test at a given sample size N partitions possible values of the sample
mean X into those at which Tµ=0 is accepted and into those at which Tµ=0 is rejected.
The test has significance α if the chance that the test rejects Tµ=0 is no greater than α

assuming that Tµ=0 is true. It is a familiar fact that such a test does not converge to the
true answer as sample size increases unless the significance is tuned downward according
to an appropriate schedule. However, there are many significance-level schedules that yield
statistically consistent procedures. We propose that retraction efficiency can plausibly bound
the rate at which α may be dropped to the rate at which sample variance decreases.

Retractions in chance and, hence, expected retractions arise unavoidably, in the follow-
ing way, in the problem of determining whether or not µ = 0.11 Suppose that the chance that
a statistical test M accepts Tµ=0 at sample size N when µ = 0 exceeds 1−ε/2, where ε > 0
is as small as you please. Then there is a sufficiently small r > 0 such that the chance that
M accepts Tµ=0 at sample size N given that µ = r still exceeds 1− ε/2. But as sample size
is increased, one reaches a sample size N′ at which the test M “powers up” and the chance
that M rejects Tµ=0 given that µ = r is greater than 1− ε/2. We have forced the test into a
retraction in chance of more than 1− ε .

The preceding argument is exactly analogous to the proofs of the stochastic Ockham
efficiency theorems, in which it is shown that any consistent method accrues at least one
expected retractions in complexity class one. If one assumes, as is natural, that C(0) contains
just µ = 0 and C(1) contains all values of µ other than 0, then the number of forcible
retractions in chance equals the complexity of the statistical hypotheses in question, just as
in our model of inquiry.12

Generalizing the Efficiency Theorems to statistical inference requires, therefore, only
three further steps: (1) proving that methods that prefer simpler statistical hypotheses ap-
proximate the theoretical lower loss bounds, (2) proving that methods that violate Ockham’s
razor do not approximate those bounds, and (3) generalizing (1) and (2) to multiple retrac-
tions.
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The first step, we conjecture, is straightforward for one-dimensional problems like de-
termining whether the mean µ of a normally distributed random variable is zero or not—if
losses are considered in chance. It appears that expected retractions may be unbounded even
for simple statistical tests because there are values of µ at which the chance of accepting the
null hypothesis hovers around 1/2 for arbitrarily many sample sizes.13 Retractions in chance
are more promising (and also agree with standard testing theory, in which power is an “in
chance” concept). Suppose statistical method M ignores the traditional logic of statistical
testing, and accepts the complex hypothesis that µ 6= 0 with high chance 1−α , contrary to
the usual practice of favoring the null hypothesis. If µ is chosen to be small enough, then
M is forced, with high probability, to accept that µ = 0 with arbitrarily high chance, if M
converges in probability to the true answer. Thereafter, M can be forced back to µ 6= 0 when
µ = r, for r suitably near to 0. Thus, M incurs an extra retraction, in the worst case, of nearly
1−α , both in C(0) and in C(1).

The second and third steps, in contrast, are significantly more difficult, because statistical
methods that converge to the truth in probability cannot help but produce random “mixtures”
of simple and complex answers. Therefore, efficiency and adherence to Ockham’s razor and
to stalwartness can only be approximate in statistical inference.
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10 Appendix - Comparison with Game Theory

The model of scientific inquiry described above might be represented any number of ways
as a game in the economist’s sense. Thus, the reader might be interested in the relationship
between our results and those typically found in game theory. We remark upon at least five
important differences.14

First, as stated in the introduction, the most general equilibrium existence theorems of
game theory yield little information about what the equilibria are like. In contrast, our re-
sults uniquely pick out a particular important class of strategies, namely, the Ockham ones,
as uniquely optimal. Some game-theoretic results specify properties of the equilibria. For
instance, Von Neumann’s minimax theorem shows that, in equilibria for finite, two-person,
zero-sum games, both players employ minimax strategies, i.e. strategies that minimize the
maximum possible loss. Although that theorem appears especially relevant to our results,
the worst-case loss vectors that we consider are with respect to cells of a complexity based
partition of worlds, and not with respect to all possible worlds. There are no minimax (sim-
pliciter) actions in our model of inquiry (for either the scientist or Nature in our model of
inquiry) and, as a result, Von Neumann’s theorem is of little help.
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Second, in our model of inquiry, the scientist’s preferences cannot be represented by
utilities. The chief difficulty is that the scientist’s preferences involve lexicographic compo-
nents: among all losses of inquiry, the scientist values eventually finding the truth highest
and considers all other losses (e.g. minimization of errors and minimization of retractions)
secondary. It is well-known that, in games in which players’ preferences contain lexico-
graphic components, even the simplest theorems guaranteeing the existence of equilibria
fail.15 Moreover, our players’ preferences are not representable as utilities because they are
also pre-ordered, and not totally ordered. That feature immediately threatens the existence
of Nash equilibria in even the simplest games: consider, for example, a one-person game
in which the only player has two actions, whose outcomes have incomparable value. Then
there is no Nash equilibrium in the standard sense, as there is no action that is even weakly
better than all others. One can show that in competitive games in which players’ preferences
are represented by vectors of real numbers with the Pareto ordering (again, such preferences
do not have lexicographic components), there are “weak” Nash equilibria, in the sense that
there are strategy profiles from which no player has reason to deviate.16 However, the equi-
libria guaranteed by such proofs are “weak” in the sense that players may not prefer the
equilibrium strategy profile to all others in which only his or her action were changed; they
may have no preference whatsoever. In contrast, the result we obtain here is more anal-
ogous to a “strong” Nash equilibrium; the scientist prefers playing Ockham strategies to
non-Ockham ones and that preference is strict!

Third, both the scientist and ”Nature” have access to infinitely many actions in our model
of inquiry. There are well-known results guaranteeing the existence of countably-additive
equilibria in infinite games, but generally, such theorems also contain strong restrictions
on the player’s preference relations, in addition to assuming that they are representable by
utilities. For instance, it is often assumed that players’ utility functions are continuous or
bounded functions with respect to an appropriate topology on the outcome space.17 No
such assumptions hold in our model: the scientist’s losses are potentially unbounded (even
within complexity classes), and the obvious topology to impose on our outcome space does
not yield continuous preference relations. If one permits players to employ merely-finitely
additive mixed strategies, one can drop these assumptions on preference relations (but not
the assumption that they are representable by utilities) and obtain existence of equilibria
in zero-sum games.18 However, the randomized strategies considered here are countably-
additive, which makes our result even more surprising.

Fourth, in game-theory, if one player is permitted to employ mixed strategies (or behav-
ior strategies), it is typical to assume that all players are permitted to do so. The model of
inquiry presented here does not permit the second player, “Nature”, to employ mixed strate-
gies. That raises the question: Can one make sense of Nature employing “mixed strategies”
and if so, does it change the result stated here? We do think, in fact, that one can reasonably
interpret Nature’s mixed strategies as a scientist’s prior probabilities over possible worlds,
and one can prove the existence of (merely finitely-additive) equilibria in particular presen-
tations of our model of inquiry when represented as game.19 However, the main result of
this paper employs no such prior probabilities.

Fifth, and finally, the last major hurdle in representing our theorems as game-theoretic
equilibria is the development of a more general theory of simplicity. The definition of sim-
plicity stated in this paper is very narrow, allowing only for prior knowledge about which
finite sets of effects might occur—knowledge about timing and order of effects is not al-
lowed for. But nothing prevents nature from choosing a mixed strategy that implies knowl-
edge about timing or order of effects (recall that nature’s mixture is to be understood as
the scientist’s prior probability). Such knowledge may essentially alter the structure of the
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problem. For example, if nature chooses a mixing distribution according to which effect a is
always followed immediately by effect b, then the sequence a,b ought properly to be viewed
as a single effect rather than as two separate effects.20 But if simplicity is altered by nature’s
choice of a mixing distribution, then so is Ockham’s razor and, hence, what counts as an
Ockham strategy for the scientist. Therefore, in order to say what it means for Ockham’s
razor to be a “best response” to Nature, it is necessary to define simplicity with sufficient
generality to apply to every possible restriction of the set of worlds compatible with K to
a narrower range of worlds. More general theories of simplicity than the one presented in
this paper have been proposed and have been shown to support Ockham efficiency theorems
(Kelly 2007d, 2008), but those concepts are still not general enough to cover all possible
restrictions of WK . Of course, a general Ockham efficiency theorem based on a general con-
cept of simplicity would be of considerable interest quite independently of this exploratory
discussion of relations to game theory.

11 Proof of Deterministic Theorems

Proof of theorem 1. It is immediate from the definitions that 2 implies 3. To see that 1
implies 2, suppose that finite input sequence e is in FK and let O be a convergent method
that is always Ockham and stalwart. Suppose that O retracts k times along e− and that w
is an arbitrary world in complexity cell Ce(n). Method O retracts after e in w only when
the currently simplest theory is refuted by the data. Thus, ρ(O,w) ≤ k + n if O does not
retract at e and ρO,w ≤ k+ n+ 1 otherwise. Let M be an arbitrary, convergent method that
agrees with O along e−. Consider the case in which O retracts at e. Since O is stalwart, the
theory TS output jointly by O and by M at e− is not the uniquely simplest theory given e.
Since w is in complexity cell Ce(n), there exists a skeptical path π of length n+ 1 in Qe.
Since TS is not uniquely simplest and Q has no short skeptical paths, there exists S0 in Ke
such that S is distinct from S0. Since there are no short skeptical paths in Qe, the existence
of π implies the existence of a skeptical path (S0, . . . ,Sn) of length n+ 1 in Ke. Since Se
is a subset of S0, there exists world w0 extending e such that Sw0 = S0. Let e0 be the data
presented by w0 when M converges to TS0 , so M retracts TS after the end of e in e0. Apply
lemma 1 to obtain world w′ in Ce0(n) in which M retracts at least n times after e0. Then
ρ(M,w′)≥ k+n+1≥ ρ(O,w). In the alternative case in which O does not retract at e, the
forcing lemma yields immediately that ρ(M,w′) ≥ k+ n ≥ ρ(O,w). Thus, O ≤ρ

e M. Since
M is an arbitrary, convergent method that agrees with O along e−, we have that O is efficient
given e in terms of retractions, and since e is an arbitrary input sequence in FK , it follows
that O is always efficient.

For the proof that 3 implies 1, suppose that e is in FK and that M violates either Ock-
ham’s razor or stalwartness at e but not on any finite initial segment of e. Suppose that O
retracts k times along e−. Let O agree with M along e− and revert to a convergent, stalwart,
Ockham strategy thereafter. Consider the (hard) case in which M violates Ockham’s razor at
e and O retracts at e. The theory TS produced jointly by O and M at e− is uniquely simplest
at e− but not at e, by the stalwartness of O at e and the fact that M is Ockham at e−. Since
S is uniquely simplest at e− and each theory is correct for a unique effect set, it follows that
S is a subset of every S′ in Ke− . That would still be the case at e if Se were a subset of S, so
e must refute TS. Since M is logically consistent, it follows that TS differs from T , so both
M and O retract k+ 1 times along e. Suppose that Ce(n) is non-empty. Then there exists a
skeptical path π of length n+1 in Qe. Since TS is not uniquely simplest, there exists S0 dis-
tinct from S in Ke. Since there are no short skeptical paths in Ke, the existence of π implies
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the existence of a skeptical path (S0, . . . ,Sn) of length n+ 1 in Qe. Since Se is a subset of
S0, there exists world w0 extending e such that Sw0 = S0. Let e0 be the data presented from
w0 when M converges to TS0 , so M retracts TS after the end of e in e0, for a total of k+ 2
retractions along e0 after e. The second retraction is the penalty incurred by M for violating
Ockham’s razor. Apply lemma 1 to obtain world w′ in Ce0(n) such that ρM,w′ ≥ k+2+n. It
has already been shown that ρO,w ≤ k+1+n, for each w in Ce(n). Therefore, O <

ρ
e M, so M

is beaten at e in terms of retractions and, hence, is not always unbeaten. The case in which
O does not retract at e is easier, for one can simply drop the proof that M retracts at e from
the argument for the alternative case, with the result that ρO,w ≤ k+n and k+n+1≤ ρM,w.
The case in which M violates stalwartness at e is easier still, because M picks up a retraction
at e that O avoids and the forcing argument prevents M from catching up with O later. a

Proof of theorem 2. It is immediate from the definitions that 2 implies 3. To see that 1 implies
2, suppose that finite input sequence e of length l is in FK and let O be a convergent method
that is always Ockham and stalwart. Suppose that O retracts at times r1, . . . ,rk along e− and
that w is an arbitrary world in complexity cell Ce(n). Method O retracts after e in w only
when the currently simplest theory is refuted by the data. Thus, there exist s1 < .. . < sn such
that l < s−1 and:

τ(O,w)≤ (r1, . . . ,rk, l,s1, . . . ,sn).

Let M be an arbitrary, convergent method that agrees with O along e−. Consider the case in
which O retracts at e. As in the proof of theorem 1, there exists skeptical path (S0, . . . ,Sn)
of length n+1 in Ke. Since Se is a subset of S0, there exists world w0 extending e such that
Sw0 = S0. Let e0 be the data presented by w0 when M converges to TS0 , so M retracts TS no
sooner than stage l. Let m be the maximum of si+1− si, for i≤ n. Apply lemma 1 to obtain
world w′ in Ce0(n) in which M retracts at least n times after l with time lag ≥ m between
retractions. Then:

τ(M,w′)≥ (r1, . . . ,rk, l,s1, . . . ,sn)≥ tau(0,w).

In the alternative case in which O does not retract at e, delete l from τ(O,w) and τ(M,w′).
Since M is an arbitrary, convergent method that agrees with O along e−, we have that O is
efficient given e in terms of timed retractions, and since e is an arbitrary input sequence in
FK , it follows that O is always efficient.

The proof that 3 implies 1 is simpler than in the proof of theorem 1, because M can
be beaten in terms of times rather than overall retractions. Suppose that e is in FK and that
M violates either Ockham’s razor or stalwartness at e, not necessarily for the first time. Let
(r1, . . . ,rk) be the times at which M retracts along e−. Let O agree with M along e− and
revert to a convergent, stalwart, Ockham strategy thereafter. Consider the hard case in which
M violates Ockham’s razor at e by producing TS and O retracts at e. Since O is stalwart at e,
the theory TS produced jointly by O and M at e− is not uniquely simplest at e−. Suppose that
Ce(n) is non-empty. As in the proof of theorem 1, there exists a skeptical path (S0, . . . ,Sn)
of length n+1 in Qe such that S0 differs from S. Nature is free to present just the effects in
S0 until M retracts T in favor of T0, which happens after e. This late retraction is the penalty
incurred by M for violating Ockham’s razor. Now lemma 1 yields a world w′ in Ce(n) such
that:

τ(M,w′)≥ (r1, . . . ,rk, l +1,s1, . . . ,sn).

Since O retracts at most n times along arbitrary world w in Ce(n), there exist s1, . . . ,sn such
that:

τ(O,w)≤ (r1, . . . ,rk, l,s1, . . . ,sn)< (r1, . . . ,rk, l +1,s1, . . . ,sn)≤ τ(M,w′).
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Thus, M 6≤τ
e O. Since it has already been shown that O ≤τ

e M, it follows that O <τ
e M. The

other cases are easier because M also retracts more times than O in those cases. a

Proof of theorem 3. When ρ suffices to show Ockham efficiency, so does τ , since lemma 1
yields retractions that come arbitrarily late in Ce(n+ 1). Thus, stalwart, Ockham strategies
are efficient in terms of τ even though their retractions come arbitrarily late. Furthermore,
non-Ockham or non-stalwart strategies are beaten in terms of retractions and, hence, in terms
of retraction times. Extending the Pareto ordering to errors does no harm, since lemma 1
yields arbitrarily many errors in each non-empty complexity cell Ce(n+ 1) and Ockham
methods produce no errors in Ce(0). a

12 Proof of Stochastic Theorem and Lemmas

The proof of theorem 4 breaks down naturally into two principal cases. Assume that e of
length l is in FK , that M is a method, that σ is an output sequence of length l such that
p(M[e−] = σ) > 0. In the defeat case, the last entry in σ is some informative answer T to
Q that is not Ockham with respect to e (i.e., any justification for T derived from Ockham’s
razor is defeated by e). Thus, Ockham methods pick up a retraction at e in the defeat case
and non-Ockham methods may fail to retract at e. The non-defeat case holds whenever the
defeat case does not.

Proof of theorem 4: We begin by proving the case of theorem 4 that corresponds to
the second clause of theorem 3. Assume that Qe has no short skeptical paths. We begin
by showing that convergent methods that are stalwart and Ockham from (e,σ) onward are
efficient from (e,σ) onward. Let stochastic method O be stalwart and Ockham from (e,σ).
Let e in FK of length l be given and let σ be an answer sequence of length l such that
p(O[e−] = σ) > 0. Let M converge to the truth in Qe. Then for each n such that Ce(n) is
non-empty, we have:

O≤ρ

e,σ ,n M[σ/e−] and O≤ρ̂

e,σ ,n M[σ/e−], by lemmas 5 and 9;

O≤ε
e,σ ,n M[σ/e−] and O≤ε̂

e,σ ,n M[σ/e−], by lemmas 10and11.

Furthermore, these statements are trivially true if Ce(n) is empty, so they hold for all n.
Let w be in Ce(n) and let k be the number of retractions in σ . Apply lemma 13 with

m set to maxi Exp(τO,w,k+i | O[e−] = σ) in order to obtain world wm in Ce(n) and local loss
function γm ≤ ρ . Let n′ ≤ n. The lower bounds for Exp((Di) (γM,wm,i ≥ n′) | M[e−] = σ)
obtained from lemma 13 meet the upper bounds for Exp(τO,w,n′ | M[e−] = σ) obtained from
lemma 17. Furthermore, γ is a function of w and wm 6= wm′ if m 6= m′, so there is a single γ

such that γm(M,wm, i,ω) = γ(M,wm, i,ω), for each m. Hence, O≤τ
e,σ ,n M[σ/e−].

The argument that O≤τ̂
e,σ ,n M[σ/e−] is similar. Let ε > 0. Apply lemma 13 with m set to

maxi τ̂(O,w,k+ i | O[e−] = σ) in order to obtain world wm,ε in Ce(n) and local loss function
in chance γ̂m,ε ≤ ρ̂ . Then by lemmas 15 and 17, there exists open interval I of length ε such
that for all u not in I, we have τ̂(O,w,u | O[e−] = σ) ≤ (Di) (γ̂m,ε(M,wm,ε ,u | O[e−] = σ).
Therefore, if L is a subset of either {ρ,ε,τ} or {ρ̂, ε̂, τ̂}, we have that O ≤L

e,σ ,n M[σ/e−],
for each n, so O is efficient with respect to L .

It is immediate that efficiency from (e,σ) onward implies being unbeaten from (e,σ)
onward.

To show that being convergent and unbeaten from (e,σ) onward implies being stalwart
and Ockham from (e,σ) onward, assume that M is convergent but violates either Ockham’s
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razor or stalwartness at (e′,σ ′), where (i) e′ is in FKe , (ii) σ ′ is an answer sequence extending
σ , and (iii) both e′ and σ ′− have length l′. Let O be a convergent method that is always
stalwart and Ockham.

Consider first the case for expected losses, in which τ is in L , which is a subset of
{ρ,ε,τ}. It must be shown that O[σ ′/e′−]�L

e′,σ ′ M. By the preceding efficiency argument,
O[σ ′/e′−] ≤L

e′,σ ′ M, so it suffices to show that O[σ ′/e′−]�τ

e′,σ ′ M, for which it suffices,
in turn, to show that M 6≤τ

e′,σ ′,n O[σ ′/e′−], for each n for which Ce′(n) is non-empty. Sup-
pose that Ce′(n) is nonempty. Then lemma 16 provides a world w in Ce′(n) such that either
Exp(τM,w,k+1 | M[e′−]

= σ ′) > l′ or Exp(τM,w,k+n+2 | M[e′−]
= σ ′) > 0. But by lemma 17,

whether or not the defeat case obtains, we have that Exp(τO[σ ′/e′−],w′,k+1 | O[σ ′/e′−][e′−] =
σ ′) ≤ l′ and Exp(τO[σ ′/e′−],w′,k+n+2 | O[σ ′/e′−][e′−] = σ ′) = 0, for each w′ in Ce′(n). There
is, therefore, no choice of γ ≤ ρ such that Exp((Di) (γO[σ ′/e′−],w′,i

≥ k+1) | O[σ ′/e′−][e′−] =
σ ′)> l′ or Exp((Di) (γO,w′,i ≥ k+n+2) | O[σ ′/e′−][e′−] = σ ′)> 0, so M 6≤τ

e′,σ ′,n O[σ ′/e′−].
Next consider the case for losses in chance, in which τ̂ is in L , which is a subset of

{ρ̂, ε̂, τ̂}. Follow the preceding argument down to the invocation of lemma 16. The same
lemma, in this case, provides a world w in Ce′(n) and an α > 0 such that either τ̂(M,w,k+
1 | M[e′−]

= σ ′) > l′ or τ̂(M,w,k+ n+ 1+α | M[e′−]
= σ ′) > 0. By lemma 12, there exists

ε > 0 such that the preceding inequalities hold for each v such that k+ 1− ε < v ≤ k+ 1
or k+ n+ 1+α − ε < v ≤ k+ n+ 1+α , respectively. So by lemma 17, there is no open
interval I in the real numbers that witnesses M ≤τ

e′,σ ′,n O[σ/e′−].
Next, we prove the case of theorem 4 that corresponds to the first clause of theorem 3.

Focus first on the case of expected losses. Note that “always” is the special case of “from
(e,σ) onward” in which e,σ are both the empty sequence. Therefore, the case in which τ is
in L drops out as a special case of the preceding argument. For the case in which ρ is in L ,
it suffices to show that if every theory is correct of a unique effect set and if M ever violates
Ockham’s razor or stalwartness, then M is beaten in terms of ρ at the first violation of either
principle. Suppose that M violates either Ockham’s razor or stalwartness at (e,σ), so that
p(M[e−] = σ) > 0. Further, suppose that (e,σ) is the first time that M violates Ockham’s
razor, so that there are no proper subsequences e′ and σ ′ of e and σ where some violation
occurs. Let O be a convergent, stalwart, Ockham method, and suppose Ce(n) is nonempty.
Then M 6≤ρ

e,σ ,n O[σ/e−] by the defeat and non-defeat cases of lemmas 6 and 9. Suppose that
stalwartness is violated at (e,σ). Then M 6≤ρ

e,σ ,n O[σ/e−] by lemmas 7 and 9. Note that only
the non-defeat case of lemma 9 applies in this case due to lemma 7. The argument based on
losses in chance is similar and appeals to the same lemmas. a

Lemma 3 (forcing retractions in chance) Suppose that M converges to the truth in Qe and
that (S0, . . . ,Sn) is a skeptical path in Ke such that ce(Sn) = n. Then for each ε > 0, there
exists world w in Ce(n) such that:

∑
∞
i=l+1 ρ̂(M,w, i | D)> n− ε .

Proof: Let ε > 0. Using the skeptical path (S0, . . . ,Sn), apply lemma 2 to obtain a world w
in Ce(n) and stages l = s0 < .. . < sn+1 such that s0 = l and si+1− si ≥ m and p(Mw|si+1 =
TSi | D) > 1− ε/2n, for each i from 0 to n. It follows that M incurs more than 1− ε/n
retractions in chance from si + 1 to si+1 in w, since Ti drops in probability from more than
1− ε/2n to less than ε/2n. Since there are at least n such drops, there are more than n− ε

retractions in chance. a
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In all the lemmas that follow, assume that e of length l is in FK , that M is a method, that
σ is an output sequence of length l such that p(M[e−] = σ)> 0, and that p(D)> 0.

Lemma 4 (losses in chance that bound expected losses)

1. ρ̂(M,w | D)≤ Exp(ρM,w | D);
2. ε̂(M,w | D) = Exp(εM,w | D).

Proof: Let S be an arbitrary set of natural numbers.

∑
i∈S

ρ̂(M,w, i | D) = ∑
i∈S

∑
T∈T

p(Mw|i−1 = T | D)	 p(Mw|i = T | D)

≤ ∑
i∈S

∑
T∈T

p(Mw|i−1 = T ∧Mw|i 6= T | D)

= ∑
i∈S

Exp(ρM,w,i | D) = Exp(∑
i∈S

ρM,w,i | D).

Furthermore:

∑
i∈S

ε̂(M,w, i | D) = ∑
i∈S

p(Mw|i−1 6= Tw | D) = ∑
i∈S

Exp(εM,w,i | D) = Exp(∑
i∈S

εM,w,i | D).

a

Lemma 5 (retractions: lower bound) Suppose that Qe has no short paths, that M con-
verges to the truth in Qe, and that Ce(n) is non-empty. Then for each ε > 0, there exists w in
Ce(n) such that:

1. ρ̂(M,w |M[e−] = σ)≥ n+1− ε in the defeat case;
2. ρ̂(M,w |M[e−] = σ)≥ n− ε otherwise.

The same is true if ρ̂(M,w |M[e−] = σ) is replaced with Exp(ρM,w |M[e−] = σ).

Proof: Let ε ′ > 0. In the defeat case, the last entry T in σ is not Ockham at e. Hence, there
exists S0 in Ke such that ce(S0) = 0 and T 6= TS0 . Extend e with just effects from S0 until e′ is
presented such that p(Me′ = TS0 |M[e−] = σ)> 1− ε ′/2, which yields nearly one retraction
in chance from l to the end of e′. Since there are no short paths, there exists a skeptical path
(S0, . . . ,Sn) in Ke such that ce(Sn) = n. Apply lemma 3 to (S0, . . . ,Sn) with e set to e′, ε set
to ε ′/2, and arbitrary m > 0 to obtain another n− ε ′/2 retractions in chance after the end
of e′, for a total of more than n+ 1− ε ′ retractions in chance from l + 1 onward. The non-
defeat case is easier—just apply lemma 3 directly to (S0, . . . ,Sn) to obtain n− ε retractions
in chance. To obtain the results for expected retractions, apply lemma 4. a

Lemma 6 (retractions: lower bound for Ockham violators) Suppose that Qe has no short
paths, that M converges to the truth in Qe, and that Ce(n) is non-empty. Assume, further,
that each theory is correct of a unique effect set, that M is logically consistent, and that M
violates Ockham’s razor for the first time at (e,σ). Then there exists w in Ce(n) such that:

1. ρ̂(M,w |M[e−] = σ)> n+1 in the defeat case;
2. ρ̂(M,w |M[e−] = σ)> n otherwise.

The same is true if ρ̂(M,w |M[e−] = σ) is replaced with Exp(ρM,w |M[e−] = σ).
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Proof: Suppose that M violates Ockham’s razor for the first time at (e,σ) so that for some
TS that is not Ockham at e, we have that p(Me = TS | M[e−] = σ) = α ′ > 0. Consider the
defeat case. Then the last entry TS of σ is not Ockham at e. So there exists S0 in Ke such that
ce(S0) = 0 and TS0 6= TS. Since each theory is true of at most one effect set and M was Ock-
ham at e− (since e is the first Ockham violation by M) and is no longer Ockham at e, it fol-
lows that Se is not a subset of S. Since M is logically consistent, p(Me = TS |M[e−] = σ) = 0.
But since TS is the last entry in σ , we have that p(Me− = TS | M[e−] = σ) = 1, so there is 1
retraction in chance already at e. Since there are no short paths, there exists skeptical path
(S0, . . . ,Sn) such that ce(Sn) = n. Choose 0 < ε ′ < α ′ and let α = α ′−ε ′. Extend e with just
the effects in S0 until M produces TS0 with chance 1− ε ′. That entails a retraction in chance
of at least α . Choose 0 < ε < α . The effects presented are still compatible with S0, so one
may apply lemma 3 to obtain w in which n− ε more retractions in chance occur, for a total
of n+ 1+α − ε > n+ 1 retractions in chance in w. The non-defeat case simply drops the
argument for the first full retraction. For the expected case results, apply lemma 4. a

Lemma 7 (retractions: lower bound for stalwartness violators) Suppose that M con-
verges to the truth in Qe and that Ce(n) is non-empty. Assume, further, that M violates the
stalwartness property at (e,σ). Then the non-defeat case obtains and for each n such that
Ce(n) is non-empty, ρ̂(M,w |M[e−] = σ)> n and Exp(ρM,w |M[e−] = σ)> n.

Proof: Suppose that T is Ockham given e and that:

0 < p(Me− = T ∧M[e−] = σ);

1 > p(Me = T |Me− = TS∧M[e−] = σ).

The last entry in σ is T (by the first statement), so p(Me− = T | M[e−] = σ) = 1. By the
second statement, p(Me− = T | M[e] = σ) < 1. So ρ̂(M,e, l | M[e−] = σ) = α > 0. Choose
ε > 0 such that α > ε , and apply lemma 3 to obtain w in Ce(n) in which M has n− ε more
retractions in chance, for a total of n+α− ε > n. For the expected case, apply lemma 4 a

Lemma 8 Suppose that method M is stalwart and Ockham from (e,σ) onward. Let w be in
WKe and let i> l. Then the uniquely simplest theory in light of w|(i−1) is no longer uniquely
simplest at w|i, if:

either ρ̂(M,w, i |M[e−] = σ)> 0 or Exp(ρM,w,i |M[e−] = σ)> 0.

Proof: By lemma 4, ρ̂(M,w, i |M[e−] = σ)> 0 implies that Exp(ρM,w,i |M[e−] = σ)> 0, so
it suffices to consider the latter case. It follows that there exists random output sequence σ ′

of length i+1 with some theory T as penultimate entry and with final entry T ′ 6= T such that
p(M[w|i] = σ ′ |M[e−] = σ)> 0. Hence, p(Mw|(i−1) = T |M[e−] = σ)> 0, so by the Ockham
property, T is uniquely simplest for w|(i− 1). Also, since p(M[e−] = σ) > 0, we have that
p(Mw|(i−1) = T ∧M[e−] = σ)> 0. Furthermore, we have that:

p(Mw|i = T |Mw|(i−1) = T ∧M[e−] = σ)< 1,

so by the stalwartness property, T is not uniquely simplest for w|i. a

Lemma 9 (retractions: upper bound) Suppose that M is stalwart and Ockham from (e,σ)
onward, where p(M[e−] = σ)> 0. Then:
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1. supw∈Ce(n) Exp
(
ρM,w |M[e−] = σ

)
≤ n+1 in the defeat case;

2. supw∈Ce(n) Exp
(
ρM,w |M[e−] = σ

)
≤ n otherwise.

The same is true when Exp
(
ρM,w |M[e−] = σ

)
is replaced by ρ̂(M,w |M[e−] = σ).

Proof: The expected retraction case is an immediate consequence of lemma 8, allowing for
an extra full retraction at e in the defeat case that stalwartness prevents in the non-defeat
case. For the bound on retractions in chance, apply lemma 4. a

Lemma 10 (errors: upper bound) Suppose that M is Ockham from (e,σ) onward. Then:

sup
w∈Ce(0)

Exp(εM,w |M[e−] = σ) = 0.

The same is true when Exp
(
εM,w |M[e−] = σ

)
is replaced by ε̂(M,w |M[e−] = σ).

Proof: For all w in Ce(0) and all i≥ l, the Ockham answer at w|i is either K or Tw. Because
M is Ockham from (e,σ) onward, it follows that M returns either T or K with probability
one after l in w, thereby accruing no expected errors. For the error in chance case, apply
lemma 4. a

Lemma 11 (errors: lower bound) If M converges to the truth in Qe and n > 0 and Ce(n)
is nonempty, then for each natural number m there exists w in Ce(n) such that:

ε̂(M,w |M[e−] = σ)> m.

The same is true when ε̂(M,w |M[e−] = σ) is replaced by Exp
(
εM,w |M[e−] = σ

)
.

Proof. Suppose that Ce(n) is nonempty and n> 0. Let m be given. Then there exists a skepti-
cal path (S0, . . . ,Sn) in Ke such that ce(Sn) = n. Choose ε > 0 and let m′ > m/(1−ε). Obtain
w in Ce(n) from lemma 2. Since the path is skeptical, TSn+1 6= TSn , so TSn+1 is incorrect of Sw.
Since there are at least m′ stages j along w at which p(Mw| j = TSn+1 |M[e−] = σ)> 1− ε , it
follows that ε̂(M,w | M[e−] = σ)> m′(1− ε)> m. For the bound on expected errors, apply
lemma 4. a

Lemma 12 Suppose that τ̂(M,w,u |D)= j. Then there exists ε > 0 such that τ̂(M,w,v |D)=
j, for each v such that u− ε < v≤ u.

Proof: Suppose that τ̂(M,w,u | D) = j. Let ε = u−∑
j−1
i=0 ρ̂(M,w, i). Then ε > 0, because

τ̂(M,w,u |D)= j implies that ∑
j−1
i=0 ρ̂(M,w, i)< u. Let u−ε < v≤ u. Then ∑

j−1
i=0 ρ̂(M,w, i)<

v. So τ̂(M,w,v | D) = j. a

In the following lemmas, assume that there are exactly k retractions in σ .

Lemma 13 (expected retraction times: lower bound) Suppose that Qe has no short paths,
that M converges to the truth in Qe, and that Ce(n) is nonempty. Let m be a positive natural
number. Then there exists w in Ce(n) and loss function γ ≤ ρ such that:

1. Exp
(
(Di) (γM,w,i ≥ k+1) |M[e−] = σ

)
≥ l in the defeat case;

2. Exp
(
(Di) (γM,w,i ≥ j) |M[e−] = σ

)
> m

(a) for all j such that k+1 < j ≤ n+ k+1 in the defeat case;
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(b) for all j such that k < j ≤ n+ k in the non-defeat case.

Proof: Let m > 0 be given. Consider the defeat case, in which the last entry T in σ is
not Ockham at e. Hence, there exists S0 in Ke such that ce(S0) = 0 and T 6= TS0 . Let p =
p(Me = TS0 | M[e−] = σ). We now use p to construct a finite input sequence e′, which we
use in turn to construct w in Ce(n) and γ ≤ ρ . If p = 1, then set e′ = e. If p < 1, then
p(M[e−] = σ ∧Me 6= TS0)> 0, and one can choose ε > 0 sufficiently small so that:

pl +(1− p)(l +1)(1− ε)> l.

To see that ε exists, note that pl +(1− p)(l + 1) > l when p < 1. Let w′ in Ce(0) be such
that Sw′ = S0. As M is convergent in Qe, there exists m′ > m/(1− (n+1)ε) such that:

p(Mw′|m′ = TS0 |M[e−] = σ) > 1− ε.

Set e′ = w′|m′. Since Ce(n) is nonempty and Qe has no short paths, there exists a skeptical
path (S0, . . . ,Sn) in Ke′ such that ce′(Sn) = n. Apply lemma 2 to (S0, . . . ,Sn), ε , and e′ to
obtain w in Ce′(n) and stages m′ = s0 < .. . < sn+1 such that for all 0 ≤ i ≤ n, one has
si+1−si >m′ and p(Mw| j = TSi |M[e−] =σ)≥ 1−ε , for each j such that si+1−m≤ j≤ si+1.
Let U be the set of all ω in Ω such that

∧n
i=0 Mw|si+1(ω) = TSi . Let ω be in U . Then since T 6=

TS0 and TSi 6= TSi+1 for all 0≤ i≤ n, the random output sequence M[w|sn](ω) has retractions
at some positions r0, . . . ,rn, such that l < r0 = m′ ≤ s0 < r1 ≤ s1 < .. .sn < rn+1 ≤ sn+1. Let
γ be just like ρ except that for each ω in U , the function γ(M,w, i,ω) has value 0 at each
stage i between m′+ 1 and sn+1 along M[w|sn](ω) except at the n+ 1 stages r0, . . . ,rn. Note
that the retraction at stage r j is the k+ j+1th retraction of M along w, as M retracts k times
along e−. Now by construction of w and m′:

p(Mw|m′ = TS0 |M[e−] = σ ∧Me 6= TS0) > 1− ε.

So since p(Me 6= TS0 |M[e−] = σ) = 1− p, it follows that:

p(Mw|m′ = TS0 ∧Me 6= TS0 |M[e−] = σ) > (1− p)(1− ε
′).

Thus, if p < 1, we have:

Exp
(
(Di) (γM,w,i ≥ k+1) |M[e−] = σ

)
> pl +(1− p)(1− ε

′)(l +1)> l,

and if p = 1, the expectation is just pl = l. So w and γ satisfy condition 1. Moreover, by
construction of γ and w:

Exp
(
(Di) (γM,w,i ≥ k+ j+1) |M[e−] = σ

)
> m′ · (1− (n+1)ε)> m,

so world w and γ satisfy condition 2a. The argument for 2(b) is similar but easier, since in
the non-defeat case one may skip directly to the existence of (S0, . . . ,Sn) in the preceding
argument. a

Lemma 14 (push) If γ̂ is is a local loss function in chance and γ̂(M,w)≥ v and u< v, then:

(Di) (γ̂(M,w, i |M[e−] = σ)≥ u)≤ (Di) (γ̂(M,w, i |M[e−] = σ)≥ v).

Furthermore, if v > 0, then for each natural number s, if ∑
s
i=1 γ̂(M,w, i)< v, then

(Di) (γ̂(M,w, i |M[e−] = σ)≥ v)≥ s+1.
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Proof: Immediate consequence of the definition of (Di) (γ̂(M,w, i |M[e−] = σ)≥ u). a

Lemma 15 (retraction times in chance: lower bound) Suppose that Qe has no short
paths, that M converges to the truth in Qe, and that Ce(n) is nonempty. Let m be a posi-
tive natural number. Then there exists γ̂ ≤ ρ̂ such that for all ε > 0 there exists world w in
Ce(n) such that:

1. (Di) (γ̂(M,w, i |M[e−] = σ)≥ u)≥ l,
for all u such that k < u≤ k+n+1− ε in the defeat case;

2. (Di) (γ̂(M,w, i |M[e−] = σ)≥ u)> m,
(a) for all u such that k+1 < u≤ n+ k+1− ε in the defeat case;
(b) for all u such that k < u≤ n+ k− ε in the non-defeat case.

Proof: Let ε,m > 0. Consider the defeat case. The last entry T in σ is not Ockham at e.
Hence, there exists S0 in Ke such that ce(S0) = 0 and T 6= TS0 . Since Ce(n) is nonempty and
Qe has no short paths, there exists a skeptical path (S0, . . . ,Sn) in Qe such that ce(Sn) = n.
Let ε ′ < ε/2(n+ 1). Apply lemma 2 to obtain w in Ce(n) such that there exist stages of
inquiry l = s0 < .. . < sn+1 such that for each i from 0 to n, stage si+1 occurs more than m
stages after si and p(Mw| j = TSi | D)> 1− ε ′, at each stage j such that si+1−m≤ j ≤ si+1.

With respect to w, define γ̂ recursively as follows. Let γ̂ agree with ρ̂ except that (i)
at stages s such that l ≤ s < s1, we let γ̂(M,w,s | M[e−] = σ) = min(a,b), where a =

ρ̂(M,w,s | M[e−] = σ) and b = k+ 1	∑
s−1
i=0 γ̂(M,w, i | M[e−] = σ). The idea is that γ̂ ac-

cumulates fractional retractions greater than k+ 1 only after stage s1, but s1 occurs after a
delay longer than m stages after stage s0 = l.

By definition of γ̂ , method M accumulates quantity k of γ̂ along e−. Further, since
p(Mw|(l−1) = T | D) ≥ 1 and T 6= TS0 6= . . . 6= TSn , method M accumulates at least 1− ε ′

quantity of γ̂ over stages s from l− 1 to s1 and at least 1− 2ε ′ quantity of γ̂ over stages s
such that si < s≤ si+1, for i from 1 to n. Thus:

(∗) γ̂(M,w)≥ k+(n+1)−2(n+1)ε ′ > k+n+1− ε.

Let u be such that k < u≤ k+n+1− ε . By hypothesis, ∑
l−1
i=1 γ̂(M,w, i |M[e−] = σ) = k. So

by statement (*) and lemma 14, we have that (Di) (γ̂(M,w, i |M[e−] = σ)≥ u)≥ l, for all u
such that k < u≤ k+n+1− ε . That establishes statement 1.

Statements 2(a) and 2(b) are trivially true when n = 0. Suppose that n > 0. Let u be such
that k+ 1 < u ≤ k+ n+ 1− ε . By statement 1, (Di) (γ̂(M,w, i | M[e−] = σ) ≥ k+ 1) ≥ l.
Furthermore, γ̂ accumulates no more than quantity k+1 before stage s1 >m. So by statement
(*) and lemma 14, statement 2(a) follows.

Now consider the non-defeat case when n > 0. Let ε ′ > ε/2n, and apply lemma 2 to
obtain a world w in Ce(n). Define γ̂ to accumulate nothing at each s along w such that
l ≤ s < s1 and to agree with ρ̂ along w otherwise. Arguing as before, but without the first
retraction due to the defeat case, obtain:

(†) γ̂(M,w)≥ k+n−2nε
′ > k+n− ε.

By hypothesis, (Di) (γ̂(M,w, i | M[e−] = σ) ≥ k) ≥ l− 1. Furthermore, γ̂ accumulates no
more than quantity k before stage s1 > m. So by statement (†) and lemma 14, statement 2(b)
follows. a
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Lemma 16 (retraction times: lower bound for violators) Suppose that Qe has no short
paths, that M converges to the truth in Qe, and that Ce(n) is nonempty. Let m be a positive
natural number. Then there exists w in Ce(n) such that if τ̂(M,w,k+1 |M[e−] = σ)≤ l, then
there exists α > 0 such that:

1. τ̂(M,w,k+ n+ 1+α | M[e−] = σ) > 0 and Exp
(
τM,w,k+n+2 |M[e−] = σ

)
> 0, if Ock-

ham’s razor is violated at (e,σ);
2. τ̂(M,w,k+ n+α | M[e−] = σ) > 0 and Exp

(
τM,w,k+n+1 |M[e−] = σ

)
> 0 and the non-

defeat case obtains, if stalwartness is violated at (e,σ).

Proof: Begin with the bounds for retraction times in chance. Suppose that M violates Ock-
ham’s Razor at e by producing theory T . Then p(Me = T | M[e−] = σ) > α ′ for some
α ′ > 0, and moreover, there exists S0 such that T 6= TS0 and ce(S0) = 0. Since there are
no short paths and Ce(n) is nonempty, there exists skeptical path (S0, . . . ,Sn) in Qe such
that ce(Sn) = n. Choose ε such that 0 < ε < α ′/2n. Apply lemma 2 to (S0, . . . ,Sn) to ob-
tain w in Ce(n) and stages l = s0 < .. . < sn+1 such that si − si+1 > m and p(Mw|si+1 =
TSi |M[e−] = σ)≥ 1−ε , for each i from 0 to n. Suppose that τ̂(M,w,k+1 |M[e−] = σ)≤ l.
Then, since there are only k retractions along e−, there must be a full retraction in chance
at e = w|s0. Since T 6= TS0 6= . . . 6= TSn , there is at least α ′− ε retraction in chance by s1
and another 1−2ε retraction in chance between si and si+1, for 1≤ i≤ n. So it follows that
ρ̂(M,w |M[e−] = σ)≥ k+1+α ′+n(1−2ε)> k+n+1. Therefore, there exists α > 0 such
that τ̂(M,w,k+n+1+α |M[e−] = σ)> 0.

Next, suppose that M violates stalwartness at e. Then since stalwartness is violated, it
follows that the last entry of σ is some TS that is Ockham at e, so S is uniquely simplest at e
and we are in the non-defeat case. Since there are no short paths and Ce(n) is nonempty, there
exists skeptical path (S = S0, . . . ,Sn) in Qe such that ce(S′n) = n. Choose ε such that 0 < ε <
1/2n. Apply lemma 2 to (S0, . . . ,Sn) to obtain w in Ce(n) and stages l = s0 < .. . < sn+1 such
that si− si+1 > m and p(Mw|si+1 = TSi | M[e−] = σ)≥ 1− ε , for each i from 0 to n. Suppose
that Exp

(
τM,w,k+1 |M[e−] = σ

)
≤ l. Then, again, p(Me = TS |M[e−] = σ) = 0, which is one

full retraction in chance at e = w|s0. By choice of w, there is another 1− 2ε retraction in
chance between si and si+1, for 1≤ i≤ n. Thus, ρ̂(M,w |M[e−] = σ)≥ k+1+n(1−2ε)>
k+n. So there exists α > 0 such that τ̂(M,w,k+n+α) |M[e−] = σ)> 0.

For expected retraction times, first consider the Ockham violation case. Let w be con-
structed exactly as in the Ockham violation case of the proof of lemma 16. Suppose that
Exp

(
τM,w,k+1 |M[e−] = σ

)
≤ l. Then there is a full retraction at e, so τ̂(M,w,k+1 |M[e−] =

σ)≤ l. So τ̂(M,w,k+n+1+α |M[e−] = σ)> 0, by lemma 16. Therefore, ρ̂(M,w |M[e−] =

σ) > k+ n+ 1. Hence, Exp
(
ρM,w |M[e−] = σ

)
> k+ n+ 1, by lemma 4. Therefore, there

exists finite answer sequence σ ′ of length l′ extending σ such that more than k+ n+ 1 re-
tractions occur in σ ′ and p(M[w|l′] = σ ′ | M[e−] = σ) > 0. So at least k+ n+ 2 retractions
occur in σ ′. Hence, Exp

(
τM,w,k+n+2 |M[e−] = σ

)
> 0.

The stalwartness violation case is similar. a

Lemma 17 (retraction times: upper bound) Suppose that M is stalwart and Ockham from
(e,σ) onward, such that p(M[e−] = σ)> 0. Then for each w in Ce(n):

1. τ̂(M,w,u |M[e−] = σ)≤ l if u≤ k+1 in the defeat case;
2. τ̂(M,w,u |M[e−] = σ) = 0 if u > k+n+1 in the defeat case;
3. τ̂(M,w,u |M[e−] = σ) = 0 if u > k+n in the non-defeat case.

Furthermore, for each j ≥ n:
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4. Exp
(
τM,w,k+1 |M[e−] = σ

)
≤ l in the defeat case;

5. Exp
(
τM,w,k+ j+2 |M[e−] = σ

)
= 0 in the defeat case;

6. Exp
(
τM,w,k+ j+1 |M[e−] = σ

)
= 0 in the non-defeat case;

Proof: Let w be in Ce(n) and let M be stalwart and Ockham from (e,σ) onward. Let T
be the last entry in σ . Consider the defeat case. Then T is not Ockham at e. So p(Me− =
T |M[e−] = σ) = 1 and p(Me = T |M[e−] = σ) = 0, by Ockham’s razor. Thus, τ̂(M,w,u)≤ l,
for each u ≤ k+1, which establishes statement 1. For statement 4, note that if σ ′ of length
l +1 extends σ and is such that p(M[e] = σ ′) > 0, then, because M is Ockham from (σ ,e)
onward and T is not Ockham at e, it follows that the last entry of σ ′ is not T . So σ ′ contains
a retraction at stage l. Hence, Exp

(
τM,w,k+1 |M[e−] = σ

)
= l.

For statements 2 and 5, note that lemma 8 implies that M incurs expected retractions and
retractions in chance at most at n positions s1 < .. . < sn along w. Thus, τ̂(M,w,u) = 0 for
each u > k+n+1, which establishes statement 2. For statement 5, each output sequence σ ′

of length greater than l has a retraction at position l followed by at most n more retractions.
Thus, Exp

(
τM,w,k+ j+2 |M[e−] = σ

)
= 0 for each j ≥ n.

For statements 3 and 6, drop retraction at e from the argument for statements 2 and 5. a

Notes

1For discussion of the following, critical points, see (Kelly 2008, 2010) and (Kelly and Mayo-Wilson
2008).

2Nolan (1997), Baker (2003), and Baker (2007) claim that simpler theories are more explanatory. Popper
(1959) and Mayo and Spanos (2006) both claim that simpler theories are more severely testable. Friedman
(1983) claims unified theories are simpler, and finally, Li and Vitanyi (2001) and Simon (2001) claim that
simpler theories are syntactically more concise.

3See (Forster and Sober 1994), (Vapnik 1998), (Hitchcock and Sober 2004), and (Harman and Kulkarni
2007).

4More precisely, in regression and density estimation, the predictive accuracy of the model-selection tech-
niques endorsed by Forster, Sober, Harman, and Kulkarni are evaluated only with respect to the distribution
from which the data are sampled. Thus, for example, one can approximate, to arbitrary precision, the joint
density of a set of random variables and yet make arbitrarily bad predictions concerning the joint density when
one or more variables are manipulated. The objection can be overcome by estimating from experimental data,
but such data are often too expensive or unethical to obtain when policy predictions are most vital.

5See Jeffreys (1961) and Rosenkrantz (1977), respectively, for arguments that explicitly and implicitly
assume that simpler theories are more likely to true.

6It is usually assumed that the data are received according to a Gaussian distribution centered on the true
value of Y for a given value of X . Since our framework does not yet handle statistical inference, we idealize
by assuming that the successive data fall within ever smaller open intervals around the true value Y .

7In this paper, empirical effects are stipulated. It is also possible to define what the empirical effects are in
empirical problems in which they are not presupposed (Kelly 2007b, c). The same approach could have been
adopted here.

8In Plato’s dialogue Meno, knowledge is distinguished from true belief in terms of the former’s stability—
it is chained down by the evidence and does not run away. A similar moral is drawn by advocates of inde-
feasibility theories of knowledge (e.g., Lehrer 1990), according to which knowledge is true belief that true
information would never defeat. We thank the anonymous referee for pointing out this the apparent conflict
between delaying pain and accelerating retractions.

9For a simpler proof restricted to the deterministic case, cf. (Kelly and Mayo-Wilson 2010a), and similarly
for theorems 2 and 3.

10In other words, {Me : e ∈ FK} is a discrete, branching, stochastic process assuming values in A .
11 This argument was originally sketched, with some slight differences, by Kelly and Glymour (2004).
12For an outline of a more general theory of forceable retractions of statistical hypotheses, see (Kelly and

Mayo-Wilson 2010b). There, we define a partial order� on sets of probability distributions that are faithful to
directed acyclic graphs (considered as causal networks), and show that any consistent procedure for inferring
causal networks can be forced to accrue n expected retractions if there is a sequence of sets of distributions
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A1 � A2 . . . � An of length n. We expect the same partial-order can be employed in more general statistical
settings.

13We are indebted to Hanti Lin for bringing this important point to our attention.
14All but the first issue are discussed in depth in Mayo-Wilson (2009).
15See Fishburn (1972) for a proof that Von-Neumann’s theorem fails when players’ preferences are non-

Archimedean.
16See Mayo-Wilson (2009) for one proof; a second proof was suggested to us independently by both Teddy

Seidenfeld and an anonymous referee, and involves extending pre-orders to total orders (which requires use
of Zorn’s Lemma for infinite games) and then applying standard game-theoretic theorems guaranteeing the
existence of Nash equilibria in games in which players preferences are totally ordered.

17See, for example, Karlin (1959).
18The idea that purely-finitely additive strategies might be used to guarantee solutions in infinite games in

which standard assumptions fail was first suggested by Karlin (1950), in which it was proved that equilibria
exist in two person, zero sum games in which (a) pairs of players actions are points in the the unit square
in R2, and (b) payoffs to both players were bounded. The theorem was extended by Yanoskaya (1970) and
Heath and Sudderth (1972) for arbitrary two person-zero sum games in which one of the players payoffs is
a bounded function when the other player’s strategy is held fixed. Kadane, Schervish, and Seidenfeld (1999)
drop the boundedness assumption. It is important to note that evaluation of losses in games in which players
are permitted to employ finitely-additive strategies depends upon the order in which integration is specified, as
Fubini’s theorem fails for finitely-additive measures. Part of the importance of Yanoskaya, Kadane, Schervish,
and Seindenfeld’s result is that their formalism eliminates some arbitrariness in the specification of order of
integration.

19Again, see Mayo-Wilson (2009). Interpreting Nature’s mixed strategies for Nature as prior probabilities
is not novel. It was suggested, to our knowledge, first by Wald (1950).

20The difficulties are exacerbated when scientist’s prior probability (i.e. Nature’s mixed strategy) is only
finitely additive, as there is no obvious concept of “support” in that case, even over countable sets of worlds.
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Fig. 1 empirical effects and polynomial degree
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Fig. 2 the Ockham efficiency argument


