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A Tutorial On Causal Inference 

Peter Spirtes1 

1. Introduction 

The goal of many sciences is to understand the mechanisms by which variables came 

to take on the values they have (i.e. to find a generative model), and to predict what the 

values of those variables would be if the naturally occurring mechanisms in a population2 

were subject to outside manipulations. For example, a randomized experiment is one kind 

of manipulation, which substitutes the outcome of a randomizing device to set the value 

of a variable, such as whether or not a particular diet is used, instead of the naturally 

occurring mechanism that determines diet. In non-experimental settings, biologists gather 

data about the gene activation levels in normally operating systems, and seek to 

understand which genes affect the activation levels of which other genes, and seek to 

predict what the effects of intervening to turn some genes on or off would be; 

epidemiologists gather data about dietary habits and life expectancy in the general 

population and seek to find what dietary factors affect life expectancy and to predict the 

effects of advising people to change their diets; econometricians gather data on many 

econometric variables and seek to find what causes growth in GDP and inflation, and to 

predict the effects of policies a central bank could adopt. Finding answers to questions 

about the mechanisms by which variables come to take on values, or predicting the value 

of a variable after some other variable has been manipulated, is characteristic of causal 

inference. If only observational (non-experimental) data is available, predicting the 

effects of manipulations typically involves drawing samples from one density (of the 

unmanipulated population) and making inferences about the values of a variable in a 

population that has a different density (of the manipulation population).  

The problem of causal inference is one that occurs in many domains, and there have 

been a wide variety of different causal models and inference algorithms that have been 

developed. Nevertheless, many of the basic problems and basic assumptions remain the 

                                                 
1 I would like to thank Isabelle Guyon, Constantin Aliferis, and Greg Cooper for many helpful comments. 
2 Here, the “population” is simply a collection of instantiations of a set of random variables. For example, it 
could consist of a set of barometer readings and atmospheric pressures in different locations at a given 
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same across domains. In addition, although there are some superficial similarities 

between traditional supervised machine learning problems and causal inference (e.g. both 

employ model search and feature selection, the kinds of models employed overlap, some 

model scores can be used for both purposes), these similarities can mask some very 

important differences between the two kinds of problems.  

The goal of this tutorial is twofold: to provide a description of some basic causal 

inference problems, models, algorithms, and assumptions in enough detail to understand 

recent developments in these areas; and to compare and contrast these with machine 

learning problems, models, algorithms, and assumptions.  

1.1. History 

Traditionally, there have been a number of different approaches to causal discovery. 

The gold standard of causal discovery has typically been to perform planned or 

randomized experiments [Fisher, 1971, #91994]. There are obvious practical and ethical 

considerations that limit the application of randomized experiments in many instances, 

particularly on human beings. Moreover, recent data collection techniques and causal 

inference problems raise several practical difficulties regarding the number of 

experiments that need to be performed in order to answer all of the outstanding questions 

(Eberhardt & Clark Glymour, 2006; Eberhardt, Glymour, & Scheines, 2005). First, there 

may be thousands of potential causes of a given effect that need to be investigated. For 

example, a given gene may have thousands of other genes that are potential regulators. 

Also, the number of genes for which it would be desirable to know which genes they 

were regulated by also numbers in the thousands. In addition, biologists would also like 

to understand the pathways by which genes regulate each other. For example, is gene X 

an indirect cause of gene Y (that is it regulates the activity level of gene Y via modifying 

the activity level of gene Z), or is it a direct cause of gene Y (that is, X modifies the 

behavior of Y not via modifying the activity level of other genes)? And if the former, 

which genes are the intermediate genes, and do they occur on the same pathway, or on 

parallel pathways? Questions about causal pathways might require manipulating multiple 

genes simultaneously (e.g. manipulating gene X to different values while holding gene Z 

                                                                                                                                                 

time, or the readings of a single barometer and atmospheric pressure over time, or a combination of these.  
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fixed to see whether Z is on a causal pathway from X to Y). Currently, it is not feasible to 

perform the number of experiments that would be required to answer all of these 

questions. Similar problems (on a smaller scale) exist in discovering cell signaling 

involving protein-protein interactions, where experimental manipulations have been 

combined with recently developed causal discovery algorithms (Sachs, Perez, Pe'er, 

Laurrenburger, & Nolan, 2005).  

In the absence of experiments, search for causal models is often informal, and based 

on a combination of background knowledge together with statistical tests of the causal 

models, especially in the social sciences. If a model is rejected by a statistical test, the 

researcher looks for a modification of the original hypothesized model that will pass a 

statistical test. The search typically halts when a model that is compatible with 

background knowledge does not fail a statistical test. Often, the final model is presented, 

and the search itself is not described. Informal searches of this kind fail to account for 

multiple testing problems, can potentially lead to severe overfitting problems, and can 

only be as reliable as the reliability of the background knowledge, and to the extent to 

which the space of alternatives compatible with the background knowledge was searched. 

(For an example of a case where a search is described, see  Rodgers & Maranto, 1989). 

Rodgers and Maranto show that different social science disciplines often start from very 

different causal models, and have different background “knowledge”.  Furthermore, 

unless the background knowledge is very extensive, or the number of variables is tiny, it 

is not feasible to estimate and test all of the models compatible with background 

knowledge. This is further complicated by the fact that for reliable causal inference it is 

not sufficient to find one model that passes a statistical test; instead it is necessary to find 

all such models. (See section 5.2.) 

In the last several decades, new kinds of causal models have been proposed: causal 

Bayesian networks (Pearl, 2000; Spirtes, Glymour, & Scheines, 1993), chain graphs 

(Lauritzen & Richardson, 2002), mixed ancestral graphs (Richardson & Spirtes, 2002b)) 

and many others. In addition, a host of new automated searches for causal inference have 

been developed (Spirtes et al., 1993; Heckerman, 1998; Chickering, 2003).  

Causal inference is a complex process that can involve a great deal of pre-processing 

of the data (e.g. to correct for measurement errors of various kinds), many different kinds 
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of data (e.g. observational, experimental) and study designs (e.g. case-control, time 

series, meta-analyses). Results from one study may suggest further studies of the same or 

different kinds. There are also a wide variety of different kinds of models that can be 

given causal interpretations that are employed in the sciences, e.g. differential equation 

models, finite difference models, structural equation models (both linear and non-linear), 

graphical models (Bayesian networks of various kinds), HMMs (Hidden Markov 

Models), ICA models (Independent Component Analysis), Factor Analysis models, 

neural networks, etc. (Mitchell, 1997). 

In order to highlight what is distinctive about causal inference, rather than describing 

the entire complex process of causal inference or surveying all of the kinds of causal 

models, this tutorial will examine in detail some very simplified examples of causal 

inference. The examples illustrate a number of distinctive features of causal inference as 

opposed to machine learning. The basic examples concern predicting the value of a target 

variable after a population has been subjected to some external intervention or 

manipulation from sample data that has been collected prior to the manipulation. For 

example, under normal operation, atmospheric pressure and barometer readings are 

highly associated, and either variable can be accurately predicted from the other. If the 

atmospheric pressure is manipulated somehow, then the new value of the atmospheric 

pressure still accurately predicts the barometer reading; however, if the barometer reading 

is manipulated (e.g. by spinning the dial) the new barometer reading does not accurately 

predict atmospheric pressure. There are several varieties of problems that will be 

discussed, but the fundamental question is when and how it is possible to tell from data 

collected prior to a manipulation (e.g. on the normal relation between the barometer 

reading and the atmospheric pressure) how to accurately predict a target variable after a 

manipulation. (The contrast between typical machine learning problems and typical 

causal inference problems is drawn more formally and in more detail in sections 3.2 and 

7 respectively.) In some cases, such predictions cannot be reliably made at all from non-

experimental data (thus the maxim “correlation is not causation”), but in other cases there 

are reliable inference methods. If the time order in which events occurred is known, and 

there are no hidden common causes, and no deterministic relationships among variables, 

then finding the causes of a variable X reduces to the problem of finding the smallest set 
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of predictors among the temporal predecessors of X that contained as much information 

about X as all of the predecessors of X do.3 However, this simple algorithm  

Section 2 provides an introduction to one kind of causal model and explains the 

concept of “manipulation” in more detail. Sections 3 and 4 give a statistical perspective 

on standard supervised machine learning problems. Sections 5, 6 and 7 contrast the 

standard supervised machine learning problem with an analogous causal inference 

problem, and describe the three basic steps in solving the causal inference problem. 

Section 8 describes the extra complications in causal inference introduced by the 

possibility of unmeasured common causes. Section 9 briefly describes some open 

problems in causal inference. Section 10 provides a brief summary, and section 11 is an 

appendix defining some statistical and graph theoretic terms. 

2. Manipulating versus conditioning 

A (parametric) statistical model (with free parameters) is a set of probability 

densities, that can be mapped into a single density by specifying the values of the free 

parameters (e.g. a family of multivariate Gaussian densities)4. For example, a Hidden 

Markov Model with a fixed structure but free parameters is a statistical model that 

represents a certain set of densities. A causal model  (with free parameters) not only 

specifies a set of probability densities over a given set of variables, it also specifies the 

post-manipulation probability density over a given set of variables, for each manipulation 

that can be performed on the population. A causal model with free parameters is mapped 

into a single probability densities given the values of the free parameters and a 

specification of a manipulation. 

For example, given an imperfect barometer, atmospheric pressures (plus some noise) 

causes barometer readings, but barometer readings do not cause atmospheric pressures. A 

causal model entails a joint density if the barometer readings are manipulated: if the 

                                                 
3 Given the Causal Markov assumption described in section 5.1.1, X is independent of all temporal 
predecessors that are not direct causes conditional on its direct causes. This set is unique under the 
conditions given [Pearl, 2000, #15729]. This method for inferring causation is similar to “Granger 
causation” [Granger, 1969, #68098]. 
4 In the nomenclature of machine learning, what this tutorial calls a “model (with free parameters)” is often 
called a “model family” or “learning machine” and a “model (with fixed parameter values)” is often called 
a “model instance” or “model”. 
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barometer readings are set to x (by spinning the dial by force) then the probability density 

of the atmospheric pressures would remain the same and the probability of the barometer 

readings being x equals 1. Similarly, a causal model entails a different post-manipulation 

density if the atmospheric pressure is manipulated to y. (See section Error! Reference 

source not found. for more details.) 

Often, a causal model is specified by giving a statistical model with free parameters, 

and a causal graph that describes the causal relations between variables. Together the 

statistical model and the causal graph entail a function of the free parameters and the 

manipulation that determine a unique (post-manipulation) probability density. This is 

described in more detail in section 2.4. 

The most frequently used causal models belong to two broad families. One kind of 

model, including structural equation models (SEMs) specifies the value of a variable as a 

function of the values of its causes (typically including some unmeasured noise.) Causal 

Bayesian networks (and related models), specify a probability density for a variable as a 

function of the values of its causes. However, the two kinds of models are closely linked, 

as explained in section Error! Reference source not found..  

2.1. Structural Equation Models (SEMs) 

Although this tutorial focuses, for didactic reasons, on a simple linear model, the 

setting purposely bears similarity with the classical machine learning setting. Estimating 

the value of a continuous variable in classical statistics is nothing but a regression 

problem (and if the variable is categorical it is a classification problem). One goal of this 

tutorial is to contrast regression with causal inference, which is a problem involving a 

specified change to the underlying structure of the data generating system that leads to a 

change in data density between model construction and model use. (There is an important 

distinction between the data generating “system” (the world) and the causal “model”  (a 

theory about the world) used to make predictions, since the latter need not be identical or 

even from the same family as the former). In the example, the data are assumed to be 

generated by a structural equation model, and the predictive models also come from the 

same model family. 
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The statistical setup is a standard one. There is a population of units, where depending 

upon the problem, the units could be people, cities, cells, genes, etc. It is assumed that 

there is a probability distribution over the population, which assigns probabilities to each 

measurable subset (event) of the population.5 Each unit also has a set of properties at a 

time, where the properties are represented by random variables, which are functions from 

the units to real numbers.6 For example, the property of height at a time can be 

represented by a number representing height in inches, and if the height is constant over 

the temporal interval relevant to the problem, the time index can be suppressed. Although 

the suppression of the time index is not always possible, in the simplified cases 

considered here, the temporal indices of the random variables will be suppressed. The 

probability distribution over the random variables is determined by the probability 

distribution over the units in the population. I will assume that the joint probability 

distribution over the random variables can be represented by a probability density 

function [Bickel and Doksum, 2000, #90811].  

The set of random variables in a structural equation model (SEM) can be divided into 

two subsets, the “error variables” or “error terms,” and the substantive variables (for 

which there is no standard terminology in the literature). The substantive variables are the 

variables of interest, but they are not necessarily all observed. Which variables are 

substantive, and which variables are error terms can vary with the analysis of the 

problem. In SEM K, shown in  

 

 

 

 

 

Figure 1, the substantive variables are the variables B (Barometer Reading), A 

(Atmospheric Pressure), and R (Rainfall). For each substantive variable such as B there is 

                                                 
5 More formally, there is a probability space consisting of a population S, a sigma-field of events over S, 
and a probability function mapping members of the sigma-field into the real interval from 0 to 1 inclusive 
that obeys the Kolmorogov axioms of probability.  
6 Every random variable is a function f such that the inverse function f-1 is such that each Lebesgue 
measurable set of real numbers is mapped back to an event, i.e. a member of the sigma field. 
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a corresponding error term for B that represents all of the causes of B that are not 

substantive variables, e.g. B - for example, noise in the reading of the barometer. Each 

substantive variable such as B occurs on the left hand side of one equation that relates the 

value of B to the direct causes of B plus the error term B on the right hand side of the 

equation, e.g. = B = bB,A  A + B, where bB,A is a linear coefficient of A in the structural 

equation for B. (Bollen, 1989).  

To simplify the examples, the error terms will (unrealistically) be assumed to be 

Gaussian and the structural equations will assumed to be linear, unless explicitly stated 

otherwise. In addition, the parameter values were chosen in order to simplify the 

calculations, rather than to be realistic. 

SEMs have two forms - a free parameter form, and a fixed parameter form. These are 

illustrated in  

 

 

Figure 1 and Figure 2 respectively (and the various terms in the figures are explained 

in the following paragraphs). In the free parameter form, the linear coefficients in the 

structural equations (e.g. bB,A), and the covariance matrix of the error terms (e.g. 2B)) 

are variables. In the fixed parameter form, the linear coefficients in the structural 

equations (e.g. bB,A), and the covariance matrix among the error terms (e.g. the variance 

2(A)) are constants. The context will make it clear whether bB,A refers to a variable (in a 

SEM with free parameters) or a constant (in a SEM with fixed parameters.)  

 

 

 

 

 





 

 

 

 Causal Graph 

      A 

 

  B               R 

Equations 
A = A 

B = bB,A  A + B 
R = bR,A  A + R 

 
Free Parameters 

2(A), 2(B), 2(R) 
bR,A, bB,A, E(A), E(B), E(R) 

Entailed Covariance Matrix 
 A B R 
A 2(A) bB,A2() bR,A2() 
B bB,A2() bB,A

2 2() + 2(B) bB,A  bR,A2() 

R bR,A2() bB,A  bR,A2() bR,A
2 2() + 2(R) 

 
Example of Conditional Expected value 

EK((A|B=m) =  
E(A) + bB,A  2()/2()  (m – bR,A  E(A) + E(B)) 

 
Example of Total Effect 
Total Effect of B on A = 0 

 
Example of Manipulated Expected value 

EK((A||B=m) = 0 
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Figure 1: SEM K With Free Parameters 

Each SEM is associated with a directed graph whose vertices include the substantive 

variables, and that represents both the causal structure of the model and the form of the 

structural equations. (Typically, the graph is selected prior to the form of the equations or 

the coefficients, from causal background knowledge, together with an informal or formal 

search. See sections 3.2.2, 7.1.1, 8.1.1 for more details about search.) There is a directed 

edge from A to B (A  B) if the coefficient of A in the structural equation for B is non-

zero. The coefficient bB,A of A in the structural equation for B is the structural coefficient 

associated with the edge A  B. In general, the graph of a SEM may have cycles (i.e. 

directed paths from a variable to itself), and may explicitly include error terms with 

double-headed arrows between them to represent that the error terms are dependent (e.g. 

A  B); if no such edge exists in the graph, the error terms are assumed to be 

independent. If a variable has no arrow directed into it, then it is exogenous; otherwise it 

is endogenous. In K, A is exogenous and B and R are endogenous. If the graph has no 

directed cycles and no double-headed arrows, then it is a directed acyclic graph (DAG). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: SEM K With Fixed Parameters  

         Causal Graph 

            A 

 

        B               R 

Equations 
A = A 

B = .6  A + B 
R = .8  A + R 

 
Fixed Parameter Values 
2(A) = 1, 2(B) = .64, 

2(R) = .36 
bR,A = .8, bB,A = .6 

E(A) = E(B) = E(R) = 0 

Entailed Covariance Matrix 
 A B R 

A 1 .6 .8 
B .6 1 .48 
R .8 .48 1 

 
Example of Conditional Expected 

Value 
EK((A|B=m) = 0.6  m 

 
Example of Total Effect 
Total Effect of B on A = 0 

 
Example of Manipulated Expected 

Value 
EK((A||B=m) = 0 
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Which variables are “substantive” depends upon the analysis, not upon the way the 

world is. Suppose for example, SEM K of Figure 1were modified so that A was not 

included among the substantive variables. In that case, the “other non-substantive causes” 

of B and R (i.e. both ’B and ’R) would both contain A, which would create a dependency 

between the two error terms. This dependency can be represented in the corresponding 

graph by introducing ’B and ’R into the graph as parents of B and R respectively, and 

introducing a double-headed arrow between them, i.e. B  R. A correlation between 

error terms B and R is typically taken to be due to a common cause of B and R that is not 

included among the substantive variables, but the representation is less specific than B  

A  R because the former does not specify how many common causes there are or there 

relationships to each other, while the latter does (Simon, 1985; Bollen, 1989). 

The free parameters of K are the linear coefficients corresponding to edges in the 

associated graph and the variances of the error terms. K(represents the fixed 

parameter SEM where the free parameter have been assigned fixed values according to 

an assignment , e.g.   = {2(A) = 1, 2(B) = .64, 2(R) = .36, bB,A = .6, bR,A = .8, E(A) 

= E(B) = E(R) = 0}. 

It is assumed that the causal order in the graph is compatible with the time order of 

the variables and the system is in a stationary state when the variables are measured.  

Let X = {A, B, R} be the set of all substantive variables in K.7 The structural 

equations together with the probability density of the error terms in K() entail a 

probability density fK()(X) over the substantive variables X, as shown in  

 

 

Figure 1.  

In matrix form, the structural equations are X = BX + where  is the set of all error 

terms, and B is the structural linear coefficient matrix. If the covariance matrix among the 

is K((I–B)-1(I–B)-1T, where I is the identity matrix, (I–B)-1 is the inverse of 

(I–B), and (I–B)-1T is the transpose of the inverse of (I–B). 

                                                 
7 Individual variables are in italics, and sets of variables are in boldface. Variables are capitalized, and 
values of variables are lower-case. 
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There is a simple rule for calculating cov(Xj, Xi) from the associated DAG. A trek 

between Xj and Xi is either a directed path from Xj to Xi, or a directed path from Xi to Xj, 

or a pair of directed paths from some variable Xk to Xj and Xi that intersect only at Xk. (A 

trek between Xj and Xi is also a trek between Xi and Xj.) The source of a trek is the unique 

vertex on the trek that has no edge directed into it. A trek product is the product of the 

linear structural coefficients associated with each edge on the trek times the variance of 

the source of the trek. For example, the trek product of B  A  R is bB,A  bR,A  2(). 

The covariance covK((B, R) is the sum of all trek products between B and R (Spirtes, 

Glymour, & Scheines, 2001). If there are no treks between two variables, then the 

covariance between the two variables is zero. SEM K has one trek between B and R, so 

covK()(B,R) = bB,A  bR,A  2(). 

The Gaussian density fK()(X) is completely characterized by the covariance matrix 

K() over the substantive variables, and the expected values  of the substantive 

variables. fK()(X) ~ N(K(), ) is a function of the fixed parameter values, e.g. 

covK()(B,R) = bB,A  bR,A, 2(A). If, for a given covariance matrix there exists an 

assignment of parameter values of K so that the entailed covariance matrix is  (i.e. 

K() =  K is said to represent For example, the covariance matrix in Figure 2 is 

represented by K, because the assignment  of values to the free parameters entails that 

covariance matrix among the substantive variables. If for each  that can be represented 

by K, there is a unique assignment of values to the free parameters  such thatK( = , 

then the free parameters of K are identifiable. The free parameters of any linear SEM 

whose graph is a DAG (with no unmeasured substantive variables) are identifiable. The 

maximum likelihood estimates of the linear coefficients relating a variable X to its 

parents in a DAG are simply the coefficients obtained by regressing X on its parents 

(Bollen, 1989). If the free parameters of a SEM are identifiable, then given a covariance 

matrix  that is represented by K, the values of the free parameters are uniquely 

determined by 

For purposes of illustration, it is assumed that the graphs are DAGs unless explicitly 

stated otherwise. The assumptions of Gaussian error terms, linear structural equations, 
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and DAGs simplify the examples while still illustrating the basic problems for causal 

inference and the basic strategies for solving the problems.   

Given the independent error terms in SEM K, for each , SEM K entails both a set 

of conditional independence relations among the substantive variables, and that the joint 

density over the substantive variables factors according to the graph, i.e. the joint density 

can be expressed as the product of the density of each variable conditional on its parents 

in the graph. For example,  fK()(A,B,R) = fK()(A)fK()(B|A)fK()(R|A) for all . This 

factorization in turn is equivalent to a set of conditional independence relations among 

the substantive variables (Lauritzen, Dawid, Larsen, & Leimer, 1990). 

If(X,Y|Z) denotes that X is independent of Y conditional on Z in density f, i.e. 

f(X|Y,Z) = f(X|Z) for all f(X|Z) ≠ 0. (In cases where it does not create any ambiguity, the 

subscript f will be dropped). IM()(X,Y|Z) denotes that X is independent of Y conditional 

on Z in the density over the substantive variables entailed by M(). IM(X,Y|Z) denotes 

that a SEM M (with free parameters) entails IM()(X,Y|Z) for all assignment of values  to 

its free parameters; in other words X is independent of Y conditional on Z in every 

density represented by M. If IM(X,Y|Z) then M is said to entail that X and Y are 

independent conditional on Z. Since IM(X,Y|Z) does not depend upon the parameter 

values of M, it is possible to determine whether IM(X,Y|Z) from the graph of M using the 

graphical criterion, “d-separation”, which is defined in the following paragraph, after a 

series of preliminary definitions. 

A variable B is a collider on a path U if and only if U contains a subpath A  B  C. 

For disjoint sets of vertices X, Y, and Z in a DAG G, X is d-connected to Y given Z if 

and only if there is an acyclic path U between some member X of X, and some member Y 

of Y, such that every collider on U is an ancestor of Z, and every non-collider on U is not 

in Z.8 For disjoint sets of vertices, X, Y, and Z, X is d-separated from Y given Z if and 

only if X is not d-connected to Y given Z. X is d-separated from Y conditional on Z in 

DAG G if and only if IG()(X,Y|Z) in every set of parameter values  in which the error 

terms are independent (Pearl, 1988).  

                                                 
8 For both the d-separation relation and the independence relation, if X contains a single vertex X, X will be 
written instead of {X}, and similarly for Y and Z. D-connection can also be defined for cyclic graphs and 
graphs with double-headed arrows (Spirtes, 1995; Koster, 1999; Cox & Wermuth, 1996b).  
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For example, in SEM K, B and R are d-connected conditional on the empty set by the 

path B  A  R. However, B and R are d-separated conditional on A because the only 

path between B and R (B  A  R) has a non-collider A that is in the conditioning set. 

Hence for every density f represented by K (i.e. for all values of the free parameters), 

If(B,R|A). 

2.2. An Aside on SEMs and Bayesian Networks 

A Bayesian network is a pair of <G, P>, where G is a directed acyclic graph and a P 

is a probability density such that if X and Y are d-separated conditional on Z in G, then X 

and Y are independent conditional on Z in G. If the error terms in a SEM with a DAG G 

are jointly independent, and f(V) is the entailed density over the substantive variables, 

then <G,f(V)> is a Bayesian network.  

A SEM treats each unit in the population as a deterministic system, but different units 

in the population differ in the values of the error terms, a Bayesian network does not 

require that each unit be a deterministic system (although it could be). It simply 

constrains the joint population density. It is always possible to turn a Bayesian network 

into a SEM by simply defining the error terms to be the  

 

1. Bayes - local, global, or factorization? cyclic? 

2. do all Bayesian networks have SeM representation? 

3. do all SEMs have Bayesian network representation? 

 

It is possible that X and Y are d-connected conditional on Z in some SEM G, but that 

IG()(X,Y|Z) for some (but not all) . An example of this is given in section 5.1.2. (There 

are no examples of this in SEM K). 

In the case of Gaussian density f, X and Y are independent conditional on Z if and 

only if each variable X X and Y  Y, covf(X,Y|Z) = 0 (where covf(X,Y|Z) is the 

covariance between X and Y conditional on Z in density f). For Gaussian densities , the 

conditional covariance does not depend upon the particular value of Z conditioned on 

(although the conditional expected value does).  
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2.3. Conditioning 

The density of A conditional on B = m (denoted f(A|B=m)) represents the density of A 

in the subpopulation where B = m, and is defined from the joint density as f(A|B=m) = 

f(A,B=m)/f(B=m). The conditional density depends only upon the joint density (assuming 

the values of the variables conditioned on do not have density 0), and does not depend 

upon the causal relationships. When a variable B is conditioned on, this intuitively 

represents seeing the probability density for the subpopulation in which B has the value 

conditioned on.  

Conditional probabilities are useful for problems (e.g. diagnosis) in which the value 

of the variable of interest is expensive or difficult to measure, but other related variables 

that have information about the variable of interest are more easily observed. For 

example, the barometer reading, even if noisy, can be easily read than finding the exact 

value of the atmospheric pressure. Similarly, it is often easier to diagnose a disease from 

symptoms, than to directly test for the presence of some virus, or other condition. 

So far the SEM has been given a purely statistical interpretation, i.e. it represents a set 

of probability densities. The next section describes how to give SEMs causal 

interpretations, and how to use them to calculate the effects of manipulations. 

2.4. Manipulating 

In contrast to conditioning, a post-manipulation probability density is not a density in 

a subpopulation of an existing population, but is a density in a (possibly) hypothetical 

population formed by manipulating the properties in a causal system.9 

 The causal interpretation is an extension of the standard statistical interpretation that 

assumes that each element of a SEM not only describes the pre-manipulation random 

variables, but also describes the post-manipulation random variables . There are a number 

of different causal interpretations that extend the standard statistical interpretation, which 

disagree on such issues as whether there is genuine indeterminism in the world, and the 

role of counterfactuals in causal reasoning [Dawid, 2007, #52556]. Rather than discuss 

                                                 
9 “Manipulation” is a causal concept. No reduction of causal concepts to non-causal concepts will be 
attempted here, and so no definition of manipulation will be given. Instead, some axioms postulating 
connections between causal models and densities will be given (section 5.1). 
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all of these issues, I will present one simple causal interpretation here, which assumes 

that each causal system is deterministic, but may appear indeterministic because error 

terms are not observed.  

For example, in an experiment in which B is randomized (which might be impossible 

to do in practice), whatever causes of B existed in the existing population are replaced by 

the outcome of a randomization device as the sole cause of B. If the barometer reading is 

randomized, then the dial reading is set by spinning the dial on the basis of the outcome 

of some randomizing device, and the causal connection between the atmospheric pressure 

and the barometer reading is severed. In contrast to conditioning which corresponds to 

seeing, manipulating corresponds to doing; the operation of manipulation is also 

sometimes referred to as a “do-operator” (Pearl, 2000). The assumption is made that the 

only direct effect of the manipulation is on the variable being manipulated - any other 

effects are due to the change in the variable being manipulated. Hence, in SEM K, a 

manipulation of the barometer reading is not carried out by forcing a change on the 

atmospheric pressure - that would be a manipulation of the atmospheric pressure. 

Intuitively manipulating is different than conditioning. Given the normal, 

unmanipulated operation of the barometer, in the subpopulation in which the barometer 

reading is m, there is a narrow density of atmospheric pressures centered around m - the 

density of atmospheric pressures is not the same as the density of atmospheric pressures 

in the subpopulation where the barometer reading is 0. In contrast, when the barometer 

reading is manipulated to m by spinning the dial, the density of atmospheric pressures is 

the same as if the dial is not manipulated. In this case, the density of atmospheric 

pressures after the barometer reading is manipulated does not equal the density of 

atmospheric pressures in the subpopulation where a normally operating barometer has a 

reading of m. 

More formally, corresponding to each random variable B and a manipulation of a 

variable A to the value a, is a subjunctive random variable BA=a, which is the value B 

would have if A were manipulated to have the value a [Rubin, 1974, #17334]. In cases, 

where it does not lead to any confusion, I will simply refer to the subjunctive random 
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variable BA=a as the post-manipulation value of B, and B itself as the pre-manipulation 

value of B.10  

The manipulation of A to a is assumed to always be successful, so AA=a = a. Under the 

causal interpretation, it is assumed not only that the random variables satisfy the 

structural equations, but also that the subjunctive values satisfy the manipulated structural 

equations, for any manipulation. (In practice the equations are only approximately 

satisfied, and only for a limited class of manipulations.) In other words if B = .6  A + B 

and A = A for each unit in the population, and A is manipulated to a, then  B = .6  a + B 

and Aa=a = a, or more colloquially the post-manipulation values of A and B also satisfy 

the set of structural equations, where the equation for A has been replaced by the equation 

A = a. The distribution over the error terms, and the manipulated structural equations 

determine a manipulated joint distribution over the post-manipulation variables. 

In some cases, the density that results from manipulating is the same as the density 

that results from conditioning. Suppose that the atmospheric pressure is manipulated. 

Intuitively, when the atmospheric pressure is manipulated, the barometer reading will 

change in response to the change in atmospheric pressure. As explained below, SEM K 

entails that the density of barometer readings when atmospheric pressure is manipulated 

to a is the same as the density of barometer readings in the subpopulation where 

atmospheric pressure is equal to a. Manipulating the atmospheric pressure still leaves the 

mechanism relating atmospheric pressure to barometer readings intact. 

A manipulation of a variable Xi in a population can be described by any of the 

following three kinds of equations of increasing generality: 

1. Xi = c       

2. Xi = ’i      

3. Xi  bi, j
'

X j Parents'(Xi )
 X j   'i ,  

where all of the variables are the post-manipulation variables, Parents’(Xi) is a new set of 

causes of X (which are included in the set of non-effects of Xi in the unmanipulated 

                                                 
10 In full detail, there should be time indices associated with both A, and BA=a, which I have omitted here for 
simplicity. I will assume that after the manipulation each unit reaches a stationary state, and that the post-
manipulation value of B is the subjunctive value of B in the stationary state.  
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population). The first kind of replacement sets Xi to the same value for everyone in the 

population (e.g. no one is allowed to smoke at all). The second kind of replacement 

assigns a distribution to Xi that does not depend upon any causes Xi has in the 

unmanipulated population (e.g., people are assigned whether to smoke or not based on 

the flip of a coin, as in a randomized experiment.) The third kind of replacement changes 

the relationship between an effect and its non-descendants in the unmanipulated 

population, e.g. people are assigned whether to smoke or not based upon both the flip of a 

coin and their age (Strotz & Wold, 1960; Spirtes et al., 2001; Pearl, 2000). If no temporal 

indices are placed on the variables, it is assumed that the post-manipulation density 

reaches an equilibrium (at least temporarily until it is subject to another external shock). 

This can be problematic for causal models with cyclic graphs, which introduce an extra 

set of problems over and above those introduced by causal inference with DAGs (Fisher, 

1970). If the error terms are continuously changing, then temporal indices for the 

variables should be introduced into the SEM. 

In a causal model such as SEM K(), the post-manipulation population is represented 

in the following way, as shown in Figure 3. When B is manipulated, a new model K() is 

created out of K(), where  = , except that the free parameters corresponding to the 

manipulation are changed, thus changing the structural equations. For example, if in 

K(), B is manipulated to have an expected value of 5 and does not depend upon the 

value of A (a manipulation of type 2), then in K(), E(’B) = 5, bB,A = 0, and B = ’B. The 

new structural equations and density over the error terms entail a new joint density over 

the substantive variables, where EK()(B) = 5. The causal graph for K() is the same as 

that for K() except that the edge from A to B has been removed, to reflect the new 

structural equations. The result of modifying the set of structural equations in this way 

can lead to a density in the randomized population that is not necessarily the same as the 

density in any subpopulation of the general population. (For more details see Spirtes et 

al., 2001; Pearl, 2000). See Figure 3 for examples of manipulations to SEM K. 
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Figure 3:(i) Unmanipulated; (ii) B Manipulated to 5; (iii) A Manipulated to 5 

In a given population P with density f(V), the density of V after a manipulation of Xi 

to a new density f’(Xi|Parents(Xi,G’)) where G’ is the causal graph after the 

manipulation, will be denoted as fP(V||f’(Xi|Parents(Xi,G’)))11, where the double bar “||” 

notation denotes manipulation of Xi to the density f’(Xi|Parents(Xi,G’).12 When Xi is 

manipulated to a constant c, then the density of V after the manipulation is denoted as 

fP(V||Xi=c). It is also possible to condition on the values variables take on after the 

manipulation: so the density of X in the subpopulation where Y=y after manipulating Xi 

to a new density f’(Xi|Parents(Xi,G’)) is denoted as fP(X|Y=y||f’(Xi|Parents(Xi,G’)). (This 

is not necessarily the same as the post-manipulation density of X in the subpopulation 

which had Y=y prior to the manipulation, because different units in the population might 

have Y=y after the manipulation than had Y=y before the manipulation.) For example, in 

a population P, if B is manipulated to a constant m, and then the resulting density of A is 

conditioned on the subset of units that have R = r after the manipulation, the result is 

denoted as fP(A|R=r||B=m).  

The post-manipulation density entailed by K() is denoted 

fK()(X|Y=y||f’(Xi|Parents(Xi,G’)). Figure 4 shows that SEM L(’) has the same entailed 

density as SEM K(). However, the post-manipulation density fK()(A|R=r||B=m) ≠ 

fL(’)(A|R=r||B=m), even though fK()(A|R=r) = fL()(A|R=r). Saying that K() is the true 

                                                 
11 There could also be a set of manipulations after the “||”, if multiple variables are manipulated. 
12 The population is introduced in addition to the joint density because the results of the manipulation 
depend upon more than just the joint density. There are a number of different notations for post-
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causal model for population P entails that fP(A|R=r||B=m) = fK()(A|R=r||B=m), and 

similarly for all other manipulations.  

In general, there is a parallel terminology for causal relations in the population based 

on the results of manipulations of the population, and for the entailed causal relations in a 

SEM based upon the representation of the manipulation in the SEM. For example, A can 

be said to be a cause of B in the population, and K() can be said to entail that A is a 

cause of B.  

2.4.1 Total Effect 

In populations correctly described by linear SEMs, the change in Xi that results per 

unit change in manipulating Xj is the total effect of Xj on Xi. Intuitively, in the population, 

the total effect of A on B is non-zero, and the total effect of B on A is zero. If the total 

effect of Xj on Xi is non-zero, then Xj is a cause of Xi. In the barometer reading example, 

A is a cause of B, but B is not a cause of A. 

The total effect of one variable on another can be due to several different mechanisms 

(or in a causal model, due to several different directed paths between two variables). For 

example, birth control pills affect embolisms both through preventing pregnancy (a 

negative effect) and through promoting blood clotting (a positive effect). The total effect 

entailed by a SEM can be calculated in the following way. In a SEM K(), the entailed  

total effect of Xj on Xi is equal to the sum over all directed paths from Xj to Xi of the 

product of the structural coefficients associated with each edge along a path (i.e. the path 

sum). In K(), the entailed total effect of A on R is 0.8, because there is one directed path 

from A to R (A  R) and the product of coefficients of edges in that path is 0.8. The 

entailed total effect of R on A is zero, because there is no directed path from R to A; in 

other words, according to K() manipulating the atmospheric pressure affects the 

barometer reading, but manipulating the barometer reading does not affect the 

atmospheric pressure.  

It is also possible to perform multiple manipulations simultaneously, by replacing the 

structural equations for multiple variables. Intuitively, in a population correctly described 

by a linear SEM, the direct effect of Xj on Xi relative to a set of variables S measures the 

                                                                                                                                                 

manipulation densities. The one used here is adapted from (Lauritzen, 2001) 
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strength of the effect of Xj on Xi that is not due to changing the values of any intermediate 

variables on a causal pathway from Xj to Xi; for example, it would measure the strength of 

the effect of the activity level of gene X on the activity level of gene Y if the effect of the 

activity level of X on the activity level of Y due to X affecting the activity levels of 

intermediate genes Z which in turn affected the activity level of Y were removed.  In a 

linear SEM, the strength of an edge corresponds to the following manipulations: 1) 

manipulate all variables in S except Xi to some arbitrary fixed value c, and determine the 

manipulated value of Xi; 2) manipulate all variables in S except Xi and Xj to c, and 

manipulate Xj to (c+1), determining the new manipulated value of Xi; 3) take the 

difference between the two manipulated values of Xi. The direct effect is relative to a set 

of variables, because the set of variables determines which variables are manipulated. 

(For a discussion of total and direct effects see Bollen, 1989). 

 

 

 

 

 

 

 

Figure 4: SEM L With Fixed Parameters ’ 

In a linear SEM L(’) the entailed direct effect of R on A relative to the entire set of 

substantive variables in the SEM is simply the coefficient of the edge from R to A if there 

is one, and zero otherwise. For example in L(’) in Figure 4, the direct effect of R on B is 

zero relative to S’ = {A, B, R}. In step 1, R and A are manipulated to 5, and L(’) entails 

that the manipulated value of B is 0.8  5 + ’R = 4  + ’R. In step 2, A is manipulated to 5, 

and R is manipulated to 6, and L(’) entails that the manipulated value of B is 0.8  5 + 

’R = 4  +’R. In step 3, the direct effect of R on B relative to S’ is 4 + ’R – (4 + ’R) = 0. 

(In a population correctly described by L(’), if both A and R are manipulated, then only 

the manipulation of A matters for the post-manipulation density of B.) 

In contrast, suppose that the population is correctly described by L(’), but S ={B, R}. 

R is shown to have a non-zero direct effect on B in L(’) relative to S with the following 

       Causal Graph                     Fixed Parameter Values 
                  A                     var(’A) = .36, var(’B) = .64, var(’R) = 1 

                          bA,R = .8, bB,A = .6 
                            E(’A) = E(’B) = E(’R) = 0 

        B               R 

         Equations 
            A = ’A 
     B = .6  A + ’B 
     R = .8  A + ’R 



 21

steps. In step 1, R is manipulated to some arbitrary value, say 5, and L(’)  entails that the 

manipulated value of B is to be 0.8  0.6  5 + ’R = 2.4 + ’R (because the product of 

coefficients in the path from R to B is 0.8  0.6). In step 2, R is manipulated to 6, and 

L(’) entails that the manipulated value of B is 0.8  0.6  6 + ’R = 2.88 + ’R. In step 3, 

the direct effect of R on B relative to S is 2.88 – 2.4 = .48.  

In a population correctly described by a linear SEM, if the direct effect of Xj on Xi 

relative to S is non-zero, then Xj is a direct cause of Xi relative to S. If SEM K is true, A is 

a direct cause of B and R relative to {A, B, R}. If SEM L(’) is true, R is a direct cause of 

B relative to {B, R}, but R is not a direct cause of B relative to {A, B, R}.  

A set S of variables is causally sufficient if every variable H that is a direct cause 

(relative to S  {H}) of any pair of variables in S is also in S. Intuitively, a set of 

variables S is causally sufficient if no common direct causes (relative to S) have been left 

out of S. If SEM K is true then {A, B, R} is causally sufficient, but {B, R} is not because 

A is a common direct cause of B and R relative to {A, B, R} but is not in {B, R}. If SEM 

C of Figure 5 is true, then X = {X1, X2, X3, X4, H} is causally sufficient. On the other 

hand, X\{H} is not causally sufficient because H is a direct cause of {X1, X2, X3, X4} 

relative to X, but H is not in X\{H}. If the observed set of variables is not causally 

sufficient, then the causal model is said to contain unobserved common causes, hidden 

common causes, or latent variables.  

There are alternative representations of manipulations in models other than SEMs, 

including causal Bayesian Networks, often used for discrete variables (Spirtes et al., 

2001), and potential response variables (Robins, 1986; Rubin, 1974), widely used in 

epidemiology. 

 

 

 

 

 

Figure 5: SEMs C and D 
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2.5. Causal Models versus Statistical Models 

The causal interpretation of a SEM is an extension of the statistical interpretation of a 

SEM, which basically extends each element of the SEM from a description of the pre-

manipulation random variables to a description of both the pre-manipulation and post-

manipulation variables.  

Under the statistical interpretation a SEM (with free parameters) represents a set of 

population densities of pre-manipulation variables; if the causal interpretation is added, 

the SEM also represents a set of population densities of post-manipulation variables. 

Considered purely as statistical models, K() of Figure 2  (with free parameters) and 

L(’) of Figure 4 are simply different parameterizations of the same statistical model, 

since they represent the same set of population densities of pre-manipulation variables 

(see section 5.2.2). On the other hand, K() and L(’) are different causal models, 

because they disagree on the populations densities of the post-manipulation variables. 

Under the statistical interpretation, the graph of a SEM represents a set of entailed 

conditional independence relations (given by d-separation); if the causal interpretation is 

added, the edges of the graph also represent direct causal relations, and the manipulated 

graph also represents a set of entailed conditional  independencies among the post-

manipulation variables. Under the statistical interpretation of a SEM, for each unit in the 

population, the equations are satisfied by the values of the variables; if the causal 

interpretation is added, the equations are structural, i.e. the (manipulated) equations are 

also satisfied by the post-manipulation variables, and the equations describe the process 

that generated the data. Under the statistical interpretation, the linear coefficients in the 

equation for Y are the partial regression coefficients when Y is regressed on its parents in 

the graph; if the causal interpretation is added, then the linear coefficients describe the 

direct effect of each parent on Y.  

Under the statistical interpretation, the error term of Y is a residual, i.e. it represents 

the difference between the predicted value of Y and the actual value of Y. If the causal 

interpretation is added, the error terms of Y also represents all causes of Y that are not 

substantive. For example, in K(), R = 0.6  A + R, where 2(R) = 0.64. In K(), 0.6 is 

the regression coefficient when R is regressed on A, and R is the residual, i.e. the 

difference between the actual value of R, and the value of R predicted by the regression 
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on A. Under the causal interpretation, given that K() is the true causal model, R also 

represents all of the non-substantive causes of R. L(’) can be interpreted as the same 

statistical model as K( (but a different causal model.) In order to represent the same 

covariance matrix as K(), in L(’), R = ’R, and 2(’R) = 1. In L(’), ’R can still be 

interpreted as a residual, i.e. the difference between the actual value of R, and the value of 

R predicted by the regression on its parents (i.e. the empty set, which amounts to using 

the expected value of R to predict R). However, if K() is the true causal model, ’R 

cannot be interpreted as representing all of the non-substantive causes of A, because it has 

a different variance than R, which represents all of the non-substantive causes of R. 

3. Predicting Values from a Population Density 

In order to explain the difference between causal inference and the usual machine 

learning problems, a number of different machine learning and causal problems will be 

described.  

3.1. Inference Given the Population Density 

Suppose the goal is to find a “good” predictor of the value of some target variable Y 

from the values of the observed covariates O for that unit. Ultimately, the prediction of 

the value of Y is performed by some prediction function Ŷ (O) . One traditional measure 

of how good the predictor Ŷ (O)  is in predicting Y is the mean squared prediction error 

(MSPE), which is equal to E((Y – Ŷ (O) )2) , where the expected value is taken with 

respect to the density f(O,Y) (Bickel & Doksum, 2000).13  

In machine learning, there are many different kinds of prediction functions. For 

example, a parameterized neural network can serve as a prediction function. Typically, 

the prediction function is constructed from independent and identically distributed (i.i.d.) 

sample data from f(O,Y) (so in machine learning terminology this is a supervised learning 

problem). For example, both the structure (the number of hidden nodes) and the 

                                                 
13 Other measures of prediction error, such as the absolute value of prediction error or optimizing certain 
decision problems could be used, but would not substantially change the general approach taken here.  
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parameters (the edge strengths) of a neural network may be constructed from i.i.d. sample 

data. 

However, in order to contrast standard supervised machine learning problems 

(described in this section) with causal learning problems (described in the next 3 

sections) it is useful to start with the unrealistic, but simpler Problem 1 (learning from a 

given population density), before considering the more realistic Problem 2 (learning from 

a sample).  

In all the problems that follow, O = {O1, O2, … Om} is a set of random variables used 

to predict the value of Y. O will be called the  “predictor variables”, and Y the “target 

variable”. f(O,Y) is the joint density of the predictor variables and the target variable. 

 

 

 

 

 

Under weak regularity conditions, for f(O,Y) the predicted value of Y that minimizes 

MSPE given O is Ef(Y|O). 

In the case of Gaussian variables, the population density f is characterized by the 

covariance matrix and the expected values. For a partitioned matrix of random variables 

Xa, Xb, cov(Xa,Xb)  = Ef((Xa - Ef(Xa)) (Xb - Ef(Xb))), var(Xa) = cov(Xa,Xa) and  

 

 var(Xa ,Xb ) 
var(Xa ) cov(Xa ,Xb )

cov(Xb ,Xa ) var(Xb )







 

 

The linear predictor that minimizes the MSPE for Y from O is  

Equation 3-1        
Ŷ (O  o)  E(Y | O  o)  E(Y )  cov(Y ,O)var(O)1  (o  E(O)) 

E(Y )  rY .O  (o  E(O))
 

where Ŷ (O  o) is the value of Ŷ (O) for O = o, rY,Oj.O is called the partial regression 

coefficient of Oj (i.e. the linear coefficient of Oj in the equation for Y), rY.O is a vector of 

partial regression coefficients rY,Oj.O, and o is a vector of the values of members of O. 

Equation 3-1 is the equation for Y regressed on O. In the special case that Y is regressed 

Problem 1: Population predictive modeling 

Input: f(O,Y) and a target variable Y to be predicted for the unit. 

Output: Ŷ (O), an estimate of Y that minimizes the mean square prediction error 

(MSPE) of Y from the observed values O.  
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on a single variable O whose variance is 1, the partial regression coefficient of O is 

cov(Y,O). 

For a Gaussian density, the regression equation is a predictor that minimizes the 

MSPE of Y from O, regardless of what the true causal model is. In the case where one 

variable is being conditioned on, and the variances of the variables are 1,  

Ŷ (X  x)  E f (Y | X  x)  cov(Y , X)  x  rY , X .O  x  

For example, suppose the task is to predict rainfall from given values of the 

barometer reading (e.g. 4), and the atmospheric pressure (e.g. 5). This can be done by 

using the population covariance matrix to regress rainfall on the barometer reading and 

the atmospheric pressure. Using the value of the free parameters and entailed covariance 

matrix of K() in Figure 2, the result is an equation for the regression of Y on {A, B}: 

 

R̂(A  5, B  4)  E(R | A  5, B  4)  cov(R,{A, B})var({A, B})1 
5

4








 

.8 .48  1 .6

.6 1







1
5

4








  .8 0  5

4








  .8 5  0  4  4

 

 

where rR,A{A,B} = .8 and where rR,B{A,B} = 0.  

Given the population covariance matrix, there is no subset of variables O’  O such 

that regressing Y on O’ produces a lower MSPE than regressing on O. Intuitively, this is 

plausible because in the population density If(R,B|A), that is the reading of the barometer 

contains no information about the rainfall once the true atmospheric pressure is known. 

There is no point in introducing hidden variables or doing any kind of model search in 

order to improve the prediction, because the regression equation (using the population 

covariance matrix) cannot be improved on in terms of minimizing the MSPE of Y from 

O.  

In a SEM with graph G, the Markov blanket of Xi in G (MB(Xi,G)) is the set of 

vertices that consists of the parents of Xi in G, the children of Xi in G, and the parents of 

the children of Xi in G. For example in SEM K, the Markov Blanket of R is A, and the 

Markov Blanket of A is {B, R}. If G contains a set of vertices X and represents the 

population density, then Xi is independent of all of the vertices not in its Markov Blanket 
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conditional on its Markov blanket, i.e. I(Xi,X\MB(Xi,G)|MB(Xi,G)). This implies that if Xi 

is regressed on a set of variables O that properly includes MB(Xi,G), then the regression 

coefficients of the variables outside of the Markov Blanket will be exactly zero. Since the 

results of regressing Xi on the entire set of variables O cannot be improved on with 

respect to MSPE, and regressing Xi on the Markov Blanket produces the same result as 

regressing Xi on the entire set of variables O, regressing Xi on the Markov Blanket cannot 

be improved on (if G represents the population joint density).  

For example, in K the Markov Blanket of R is A, and IK(R,B|A). Because the 

population covariance matrix is used in calculating the partial regression coefficients, the 

coefficient for the value of B when Y is regressed on A and B is exactly zero. Hence, 

given the population covariance matrix there is no difference between regressing Y on A 

(the Markov Blanket of R) and regressing Y on A and B (the set of all other variables). 

If SEM G does not represent the population density, then regressing on a set of 

variables that properly contains the Markov Blanket of G may produce a better predictor 

of Y than regressing just on the Markov Blanket. Also, the fact that regressing on the 

Markov Blanket when given the population density produces a predictor with the smallest 

MSPE does not imply that regressing on the Markov Blanket when given a sample from 

the population distribution produces a predictor with the smallest MSPE. 

3.2. Predicting Values From Samples 

Suppose that instead of being given a population covariance matrix, a sample of size 

n from the population density f(O,Y). In this case f(O,Y) is not known, and so a predictor 

Ŷ (O) cannot constructed from the population density. The goal is to find a function that 

maps samples of size n to a predictor Ŷn (O) that has a low MSPE.  

 

 

 

 

 

Problem 2: Sample predictive modeling 

Input: A sample S of size n containing i.i.d. {o, y} samples drawn from f(O, Y) (i.e. 

training data), and a target variable Y to be predicted. 

Output: Ŷn (O) , a predictor of Y that has a small MSPE. 
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3.2.1 Example 

The following illustrates one approach (among several which have various 

advantages and disadvantages) for producing R̂n ({A, B}) , and will be described in more 

detail in subsequent sections. The basic idea is to predict R by finding a good estimate of 

Ef(R|{A,B}), which can be solved by finding good estimates of the population partial 

regression coefficients. If the estimated values of the partial regression coefficients are 

not far from the population partial regression coefficients, then the MSPE will be 

guaranteed to be close to that of Ef(R|{A,B}), which is optimal. 

Step 1: Search for a statistical model with a good score. This involves two problems: 

searching the space of models, which might be very large, and scoring models. The 

problem of searching the space of statistical models will not be discussed here. What 

constitutes a good score for Problem 2, and the reason for searching for models with good 

scores is described in section 3.2.2. In this example, suppose that no SEM receives a 

better score than L. 

Step 2: Estimate the values of the free parameters of L.  

Step 3: Use the estimates of the free parameters of L to calculate, r̂R,A.{A,B} and 

r̂R,B.{A,B} , estimates of rR,A.{A,B} and rB,A.{A,B}, respectively, by using the estimates of the 

free parameters to calculate the estimated covariance matrix, and using the estimated 

covariance matrix to calculate an estimate for the partial regression coefficients using 

Equation 3-1, as shown in  

 

 

Figure 6. Hence 

R̂n ({A  a, B  b})  Ê(R | {A  a, B  b}) 

E
L (̂ ')

(R)  cov
L (̂ ')

(R,{A, B})var
L (̂ ')

({A, B})1
a  E

L(̂ ')
(A)

b  E
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(B)














E
L (̂ ')

(R)  r̂R,A.{A,B} r̂R,B.{A,B} 
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L (̂ ')
(A)

b  E
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(B)





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




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where ̂ ' is the estimate of the values of the free parameters of ’, var
L(̂ ')

is the entailed 

covariance matrix of , and E
L(̂ ')

is the entailed expected value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Estimated Parameters and Covariance Matrix for K and L (Sample 50) 

One question that naturally arises is why the procedure described above first searches 

for a statistical model with a low score, and then estimates the values of the free 

parameters of the model. Why not simply use a model that contains all of the probability 

densities? For example, one estimator of Y simply uses Equation 3-1 but replaces the 

population expected values with the sample expected values, and the population 

covariance matrix with the sample covariance matrix (where the sample covariance 

matrix of a vector X is covS(X) = X  Xt/n-1, n is the sample size, and if there are m 

variables in X, X is an n  m matrix of sample points).  

Equation 3-2       Ŷ (O  o)  Ê(Y | O  o)  ES (Y )  covS (Y ,O)varS (O)1  (o  ES (O))  

Estimating the sample covariance matrix is equivalent to estimating the 

covariance matrix for a statistical model that contains the entire family of Gaussian 

densities over O; the sample covariance matrix is the maximum likelihood estimator of 

the covariance matrix subject to no constraints. Equation 3-2 simply replaces the 

 Estimated L  

      A 

 

  B               R 

Equations 
R = ’R 

B = b̂B,A   A + ’B 

A = b̂A,R   R + ’A 

 
Parameter Values 
̂ 2 (A) = .1932   
̂ 2 (B) = .4302 
̂ 2 (R) =1.021  

b̂B,A = .3398   b̂A,R  = .7849   

 Estimated K 

      A 

 

  B               R 

Equations 
A = A 

B = b̂B,A   A + B 

R = b̂R,A   A + R 

 
Parameter Values 
̂ 2 (A) = .8221 

  ̂ 2 (B) = .4302 
̂ 2 (R) = .2400 

 b̂B,A = .3398 b̂R,A = .9746 

Estimated     

Covariances 

 (K and L) 

 A B R 

A .822   

B .279 .525  

R .802 .272 1.02

 

r̂R,A.{A,B}  0.975

r̂R,B.{A,B}  0.0
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population regression coefficients with the sample regression coefficients, which are a 

function of the sample covariance coefficients. This minimizes the sum of squared 

residuals on the sample S, but it does not necessarily minimize the MSPE (that is the 

mean squared out of sample error), for reasons related to overfitting, as explained below.  

Using the sample covariance matrix and regressing R on all the other variables is 

equivalent to using a SEM with a complete graph (i.e. a graph in which every pair of 

vertices is adjacent) to predict R. (For example, SEM M of  

 

 

Figure 7 has a complete graph.) This is because the sample covariance matrix is the 

entailed covariance matrix for M (̂ ), where ̂ is the maximum likelihood estimate of 

the free parameters of M. 

In contrast, SEMs K and L both have fewer free parameters than M, and impose the 

(true population) constraint that cov(R,B|A) = 0 on the estimated covariance matrix. On 

the same sample of size 50, the estimated covariance matrix for both SEMs K and L in  

 

 

 

 

Figure 6 is the same as the sample covariance matrix, except that covS(B,R) = .2093. 

Using Equation 3-2, the estimated partial regression coefficients from the sample 

covariance matrix are r̂R,A.{A,B}  1.0243and r̂R,B.{A,B}  .1461. The MSPE (estimated 

from a sample of 5000) is slightly higher for the partial regression coefficients estimated 

from the sample covariance matrix than for the partial regression coefficients estimated 

from K or L (.399 versus .395).  

The explanation for the superiority, at some small sample sizes, of using K or L to 

predict R over using M to predict R is the following. If the mean square error (MSE) of 

the difference between the estimate r̂Y .O and the population rY.O (taken with respect to the 

sampling density of P(O,Y)) is small, then the MSPE for Y also has to be small. The mean 

square error of an estimator is the sum of the bias of the estimator and the variance of the 

estimator. Consider predicting R from M. The Markov Blanket of R in M is A and B. The 
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population regression coefficient for the value of B is zero (because it is not in the 

Markov blanket of R in the true SEM K), but the sample regression coefficient for the 

value of B is typically non-zero. In contrast, in K or L the Markov Blanket of R in K or L 

is A. Using K or L to predict R is tantamount to leaving B out of the regression (which is 

equivalent to setting the coefficient of B to zero).14 Leaving B out of the regression also 

affects the estimate of the partial regression coefficient of A. Regressing R only on A will 

not increase the bias of the estimate of the partial regression coefficient, but it will 

decrease the variance of the estimator, leading to a smaller mean square error. In the case 

of Gaussian variables, the difference is usually small except at very small sample sizes or 

very large numbers of variables. For example, if there are more variables than sample 

points, there is no unique maximum likelihood estimate of the covariance matrix. For 

other parametric families the differences can be quite large even for large sample sizes. 

Even for cases where leaving variables out does bias the estimator (e.g. in cases where 

the population regression coefficient is close but not equal to zero) the corresponding 

decrease in the variance of the estimator may lead to a decrease in mean squared error at 

a given sample size.  

In looking for an estimator that minimizes the MSE of the partial regression 

coefficients, one strategy that can produce estimators with a small MSE is to break 

Problem 2 into the several subproblems of steps 1 through 3 - finding a “good” statistical 

model, estimating the parameters of the model, and using the estimated model to 

construct an estimator of Y. Each of these subproblems will be discussed in the 

subsequent subsections. 

3.2.2 Searching and Scoring Models 

A statistical model is a set of probability densities. What constitutes a “good” 

statistical model depends upon what purpose the model is to be used for. Ideally, then a 

“good” model for Problem 2 is one, which when its free parameters are estimated, 

                                                 
14 In this simple example, using the estimated covariance matrix from SEMs K or L is equivalent to using 
the sample covariance matrix, but regressing R only on A. However, in general, using the estimated 
covariance matrix from a SEM does not correspond to using the sample covariance matrix and regressing 
on some subset of the variables, because a SEM can impose constraints on the covariance matrix that affect 
more than which variables appear in the Markov Blanket. 
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produces a predictor Ŷn (O)with a small MSPE. There are a variety of scores that are used 

to guess which models have this property. This section briefly discusses the Aikake 

Information Criterion (AIC) and cross-validation scores, in order to contrast them later 

with different scores that are more appropriate for causal models. 

 

 

 

AIC is a penalized likelihood score that rewards a SEM for assigning a high 

likelihood to the sample for the maximum likelihood estimate of the parameters, and 

penalizes a SEM that represents a set of probability densities that has high dimension 

(which is likely to lead to overfitting). In the case of a multi-variate Gaussian SEM M, for 

a given sample of size n 

AIC(M , sample) = -2  L(var
M (̂ )

,sample) + 2  dfM, 

where  

 ̂ is the maximum likelihood estimate15 of the parameters for model M from the 
sample; and 

 L(
M (̂ )

,sample) is the likelihood of var
M (̂ )

; and 

 dfM is the degrees of freedom (dimensionality) of the SEM M. 
 

Choosing a model with a minimum AIC score has several desirable properties, 

including the property that it minimizes the Kullback-Leibler16 distance between a 

predicted density and the true density. It is commonly used when the goal is find a model 

that is good for predictive purposes, and does not assume that the true density is in any of 

the competing statistical models. Even if the true density is in one of the competing 

statistical models, it is not always the case that the statistical model with the lowest AIC 

score is a statistical model that contains the true density even at large sample sizes.  

As discussed in section 5.2.2, SEMs K and L always have the same AIC score 

regardless of the data, because they represent the same set of (Gaussian) densities and 

                                                 
15 Maximizing the likelihood is equivalent to minimizing certain risk functions, the more usual approach in 
machine learning problems. 
16 If the true density is f, and the predicted density is g, then the KL distance is flog(f/g) 

Problem 2a: Model Search 

Input: A sample of n {o, y} samples drawn randomly and independently according to 

P(O, Y). 

Output: A statistical model that minimizes a score that is a function of the data and the 

model. 
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have the same number of parameters. Hence, AIC does not help distinguish between 

them. This is not a problem as long as the goal is prediction, because using SEM K 

instead of SEM L to predict R leads to the same predictor.  

In the case of L, cov
L (̂ ')

(B, R | A)  0 , and hence var
L (̂ ')

is not in general equal to the 

sample covariance matrix. As noted in section 3.1, in any density represented by a SEM, 

regressing R on any superset of the variables in the Markov Blanket of R in the graph of 

the SEM guarantees that the variables outside of the Markov Blanket have estimated 

partial regression coefficients equal to 0. In the case of L, the Markov Blanket for R is A, 

and hence, and r̂R,B.{A,B}  0 . Hence whether B is a child of A or not makes no difference 

to the prediction of R. 

In some cases, the SEM that is the best predictor of Y at small sample sizes is a SEM 

with unobserved variables. According to SEM C, there are no conditional independence 

relations among just the variables in O ={X1, X2, X3, X4}, so the only SEMs without 

hidden variables that represent the marginal density over O all are complete graphs. For 

example, D, where O = {X1, X2, X3, X4}, is a complete DAG. 

However, there are constraints on the covariance matrix among the variables in O 

entailed by C (“vanishing tetrad constraints” (Harman, 1976)), which are not entailed by 

any SEM D or any SEM with a complete graph. In C, applying the trek rule, covC(X1,X2)  

covC(X3,X4) = covC(X1,X3)  covC(X2,X4) = covC(X1,X4)  covC(X2,X3). So the set of 

marginal densities over {X1, X2, X3, X4} represented by C has lower dimension than the 

set of probability densities over the same variables represented by any SEM without an 

unmeasured variable, such as D.17 Because it is simpler but still represents the population 

density, at small sample sizes C tends to have a lower AIC score and a lower MSPE than 

any of the alternative SEMs with complete graphs over O. However, alternative SEMs 

that represent the population density will still provide unbiased estimates of conditional 

expected values, even if they have a higher variance and a higher MSE. 

                                                                                                                                                 

 
17 Using AIC to select a SEM that can be used to construct an estimator of Y with a low MSPE is not 
guaranteed to produce the best results for a number of reasons, including the fact that AIC measures the 
simplicity of the entire model, whereas the simplicity of Y conditional on the predictors is more directly 
relevant.  
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A SEM can also be selected by its cross-validation score. In a k-fold cross-validation, 

the data is divided into a k subsets. For each subset S, the other k-1 subsets are used as a 

training set to generate a SEM with fixed parameters. Then the SEM with fixed 

parameters is used to predict the value of the target variable in S, and the sample MSPE 

on S is calculated. The SEM with the lowest sample MSPE is selected.  

However, both AIC and k-fold cross-validation have theoretical problems when 

employed as a score for causal models, although in some circumstances they may 

perform well. See section 7.1.1. 

3.2.3 Model Estimation 

Because the estimate of R is a continuous function of the partial regression 

coefficients, as long as the partial regression coefficient estimates have small mean 

square error, so will the estimate of R. 

Since L contains no unobserved common causes, a maximum likelihood estimate of 

its linear coefficients bij is equal to the partial regression coefficient of Xj for Xi when Xi is 

regressed on its parents in L, using the sample covariance matrix as input. This can be 

computed analytically. Otherwise, an iterative algorithm that takes the sample covariance 

matrix as input is used to find maximum likelihood estimates of the linear coefficients. 

The result is L(̂ ') where ̂ ' is the maximum likelihood estimate of the free parameters of 

L. In some SEMs with hidden common causes, there are no consistent estimators of the 

free parameters of the model. The question of whether the free parameters of a SEM with 

hidden common causes are identifiable is quite difficult to solve; recently, algebraic 

methods have solved the problem for some families of densities, including Gaussian 

(Geiger & Meek, 1999). However, these algorithms are computationally quite intensive, 

and are only practical for a few variables. In those cases where the free parameters of a 

SEM with hidden common causes are not identifiable, it is always possible to use SEMs 

without hidden common causes to construct R̂n ({A, B}) . 

 

 

 

 

 

Problem 2b: Model Estimation 

Input: A sample of n {o, y} examples drawn randomly and independently according to 

the sampling distribution of f(O, Y), and a statistical model. 

Output: A consistent estimate of the values of the free parameters of the model. 
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4. Predicting Manipulated Values of Y 

There are causal estimation problems that are analogous to the various statistical 

estimation problems described in the previous section. 

4.1. Causal Inference Given the Population Density 

 

 

 

 

 

 

 

In both Problems 1 and 3, the unmanipulated density is given, and Y is to be 

predicted. The major difference is that in Problem 3 the units for which Y is to be 

predicted are drawn from the manipulated density (as opposed to the given 

unmanipulated density). It is assumed that some (possibly empty) set of post-manipulated 

values for a subset of O’ of O is known. The post-manipulation values of O’ could be 

known either by performing a post-manipulation measurement of the values, or through 

background knowledge, or through inference from the given unmanipulated probability 

density P(O,Y). For example, in some cases even if the pre-manipulation values of the 

barometer reading and atmospheric pressure are measured, the post-manipulation values 

of barometer reading and atmospheric pressure are not. In other cases, the atmospheric 

pressure and barometer reading could be measured after the manipulation. Alternatively, 

if it is known that the barometer reading does not affect the atmospheric pressure, then 

the atmospheric pressure after manipulating the barometer reading is known because it is 

the same as the atmospheric pressure prior to manipulating the barometer reading 

(assuming the system is in a steady state).18 

                                                 
18 Here the sense in which the barometer reading does not affect the atmospheric pressure should be 
understood as implying that no individual barometer reading affects any individual atmospheric pressure, 
not simply that the density of barometer readings does not affect the density of atmospheric pressures. 

Problem 3: Probabilistic causal predictive modeling 

Input: f(O,Y), a manipulation f’(Xi=xi) of Xi, the post-manipulation values o’ of a subset 

O’ of the variables O, and a target variable Y whose post-manipulation value is to  be 

predicted. 

Output: Ŷ (O’=o’, f’(Xi=xi)), a predictor of the post-manipulation value of Y that has a 

small MSPE. 
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The difference between the way these problems are solved will be illustrated mainly 

by considering predicting R under various combinations of manipulating and observing A 

and B. The basic strategies have one major difference from strategies for predicting an 

unmanipulated value of R. Given the population density f, when predicting R from 

observed A and B,  Ef(R|A,B) is used to make the prediction. In predicting R when f(A) is 

manipulated to f’(A) and f(B) is manipulated to f’(B) (but the post-manipulation values of 

A and B are not observed), the expected value of R in the manipulated population, 

Ef(R||f’(A),f’(B)), is used to make the prediction. (Note that if A and B had been 

manipulated to some new density, and their post-manipulation values observed, 

E(R|A,B||f’(A),f’(B)) would be used to make the prediction. 

4.1.1 An Example 

Given the population density, the following steps can be used to calculate 

Ef(R||f’(A),f’(B)). The steps will be elaborated on and justified in more detail in the 

following sections. 

Step 1: Find the causal models “compatible” with background knowledge and the 

population density. (There are several different senses of  “compatible”, discussed in 

more detail below.) Suppose that the true but unknown SEM is K. Background 

knowledge that A occurs before R, and that the set of variables is causally sufficient is 

given. Then there are two causal models “compatible” with the population density and 

background knowledge are K and M. 

Step 2: Find an expression for E(R|||f’(A),f’(B)) as a function of population 

conditional  probabilities and the manipulation that is the same for both candidate SEMs 

K and M. As shown in section 6, 

 EK (R || f '(A), f '(B))  EM (R || f '(A), f '(B))  R  f (R | A) f '(A)dR
A


R
 dA  

Since the two expressions are the same, proceed to step 3. If no such expression for 

E(R|||f’(A),f’(B)) which is the same for all candidate models can be found, return “Don’t 

know”.  

Step 3: Arbitrarily choose one of the candidate models, e.g. SEM M, calculate 

fM(R|A) and substitute it into the equation in step 2. Return the predicted value. 
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5. Finding Compatible Causal Models 

There are two major differences between model search in the case of predicting the 

unmanipulated value of Y, and model search in the case of predicting the post-

manipulation value of Y. The first difference is that model search in the case of predicting 

the unmanipulated value of Y is only useful when the input was a sample from a 

population density, not the population density itself. In contrast, in the causal case, even 

if the population density is given, model search is still necessary. The second difference 

is that in the case of predicting the unmanipulated value of Y, the model search is over a 

space of statistical models, i.e. sets of probability densities for unmanipulated 

populations. In the case of predicting manipulated values of Y, the model search is over a 

space of causal models, i.e. sets of probability densities for both unmanipulated and post-

manipulation populations.  

 

 

 

 

The conditional expected value is a function of the population joint probability 

density.  

 E f (R | A, B)  R
f (R, A, B)

f (A, B)  

 

The post-manipulation expected value is not a function of the population joint probability 

density alone: two populations can have the same joint density, and different post-

manipulation expected values. Two SEMs (with free parameters) are Markov equivalent 

if they entail the same set of conditional independence relations (or equivalently, for 

SEMs with acyclic graphs, the acyclic graphs have the same set of d-separation 

relations.) Two SEMs (with free parameters) are distribution equivalent if and only they 

represent the same set of distributions. (Distribution equivalence implicitly refers to a 

parametric family, e.g. linear models, or in this example, Gaussian models.) 

For example, graph K has the same d-separation relations as graphs L and M, and 

hence entails the same conditional independence relations as graphs L and M. In addition, 

Problem 3a: Causal Model Search 

Input: The density f(O,Y). 

Output: The set of causal models with free parameters that are compatible with 

f(O,Y). 
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SEM K (with free parameters) represents the same set of Gaussian densities as SEMs L 

and M (with free parameters) and hence K, L, and M are distribution equivalent. (If the 

equations are linear, but non-Gaussian error terms are allowed, the corresponding SEMs 

are Markov equivalent, but they are not distribution equivalent.)  

Given the right choice of parameter values, as in Figure 2 and Figure 4, SEMs K and 

L can represent the same covariance matrix. Suppose that K() and L(’) entail the same 

covariance matrix, and that E(f’(A)) = a ≠ 0. By the linearity of expectation, 

EK()(R||f’(A),f’(B)) = bR,A  a = cov(R,A)  a = EK()(R|A=a) ≠ EK()(R) = 0. (Recall that bR,A 

is the partial regression coefficient for A when R is regressed on A, and that when A is 

regressed on a single variable with variance 1 that the partial regression coefficient is 

equal to cov(R,A).) In K, every trek between A and R (which determines the covariance) 

is also a directed path from A to R (which determines the total effect), so the effect of 

manipulating is the same as that of conditioning.  

 

 

 

 

 

Figure 7: Alternative SEMs 

In contrast, EL(’)(R||f’(A),f’(B)) = EL(’)(R) = 0 ≠ EL(’)(R|A=a) = bA,R  a =  cov(R,A)  

a. In L there is a trek between A and R (A  R) that is not a directed path from A to R, 

and hence the conditional expected value (determined by the trek sum) is not equal to the 

manipulated expected value (determined by the path sum).  

This shows that in general, the manipulated expected value is not a function of the 

population density alone - it also depends upon features of the causal relationships 

between the variables, as represented in the causal graph.  

One feature of the causal graph that affects the manipulated expected value is the 

causal order, i.e. whether A is a cause of R, or an effect of R, or neither. A second feature 

of the causal graph that affects the manipulated expected value is confounding, or 

common causes. For example, EK()(R||B=m) = 0 ≠ covK()(R,B) = bR,A  bB,A, because there 

is a trek between R and B (B  A  R) but no directed path from B to A.   

 A                A        A  A  A                      H 
    
  
B             R    B             R     B             R    B            R   B               R       B     A     R 
    SEM L         SEM M           SEM N           SEM O         SEM P             SEM Q 
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5.1. Assumptions Relating Causal Models to Population Densities 

As indicated by SEMs K, L, and M, there can be more than one SEM that is 

compatible with a given population density. However, if it is possible to use the 

population density to eliminate any causal models as false, there must be assumptions 

that relate the causal models to (unmanipulated) population densities. The following two 

sections describe two assumptions that are commonly, but often implicitly, made that 

relate causal models to population densities.  

5.1.1 The Causal Markov Assumption 

The following assumption is used to relate causal relations to probability densities.  

Weak Causal Markov Assumption: For a causally sufficient set of variables V in a 

population N, if no variable in X causes any variable in Y, and no variable in Y causes 

any variable in X, then X and Y are independent (i.e. in the Gaussian case, members of X 

and members of Y are pairwise uncorrelated.) (Spirtes et al., 2001) 

The Weak Causal Markov Assumption does not hold for non-causally sufficient sets 

of variables. For example, if K is true, then {B, R} is not causally sufficient. Despite the 

fact that B does not cause R and R does not cause B, R and B are dependent (because of 

the common cause A that is not in the set of variables considered.) 

 The Weak Causal Markov Assumption has the consequence that the error terms for 

causally sufficient sets of variables are independent. Simon’s famous analysis of 

“spurious correlation” (Simon, 1985) is precisely an application of the Weak Causal 

Markov Assumption to explain correlated errors as the result of unobserved common 

causes. The examples that Bollen gives of why an error term for a variable X might be 

correlated with one of the causes of X other than sampling problems are all due to causal 

relations between the error term and other causes of X, and hence an application of the 

Weak Causal Markov Assumption (Bollen, 1989). (For a discussion of the Causal 

Markov Assumption, and conditions under which it should not be assumed, see Spirtes et 

al., 2001).  

For deterministic causal models such as SEMs, the Weak Causal Markov Assumption 

also entails another version of the Causal Markov Assumption, i.e. that for causally 

sufficient sets of variables, all variables are independent of the their non-effects (non-
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descendants in the causal graph) conditional on their direct causes (parents in the causal 

graph) (Spirtes et al., 2001).19 

Although the Weak Causal Markov Assumption only applies to causally sufficient 

sets of variables, some of the causal discovery algorithms described later that use the 

Causal Markov Assumption merely assume that causally sufficient sets of variables exist, 

not that the causally sufficient sets of variables are all observed, i.e. there can be 

unobserved common causes. 

The Weak Causal Markov Assumption is an oversimplification because it basically 

assumes that all associations between variables are due to causal relations. There are 

several other ways that associations can be produced.  

First, conditioning on a common descendant can produce a conditional dependency. 

For example, if sex and intelligence are unassociated in the population, but only the most 

intelligent women attend graduate school, while men with a wider range of intelligence 

attend graduate school, then sex and intelligence will be associated in a sample consisting 

of graduate students (i.e. sex and intelligence cause graduate school attendance, which 

has been conditioned on in the sample.) See (Spirtes, Meek, & Richardson, 1995) for a 

discussion of selection bias. Second, logical relationships between variables can also 

produce non-causal correlations (e.g. if GDP_yearly is defined to be the sum of 

GDP_January, GDP_Februrary, etc., GDP_yearly will be associated with these 

variables, but not caused by them.) For a discussion of logical relations between 

variables, see (Spirtes & Scheines, 2004). Third, it does not have any way of dealing with 

instantaneous symmetric interactions (like classical theories of gravity).  

The Causal Markov Assumption entails that some causal models are incompatible 

with some population densities, and hence can be used to eliminate some causal models 

as false. For example, in K, every linear parameterization entails that A and R are 

dependent. So if K is the true SEM, any SEM (such as SEM N in Figure 7) with no trek 

between A and R entails that A and R are independent and so can be eliminated as false.  

Unfortunately, given a population density, the Causal Markov Assumption does not 

eliminate enough alternative causal models to be able to draw any reliable conclusions 

                                                 
19 For non-deterministic causal models, the alternative Causal Markov Assumption is usually made directly. 
(For different alternative versions of Markov relations, see Lauritzen et al., 1990). 



 40

about the effects of manipulations. In particular, regardless of what the population density 

is, every possible causal ordering of the variables is compatible with the some DAG G for 

which each vertex is independent of its non-descendants in G conditional on its parents in 

G. (For example, a complete graph with any ordering of the variables entails no 

conditional independence relations and so trivially satisfies the Causal Markov 

Assumption.) Some further assumptions relating causal models to population probability 

densities will now be considered. 

5.1.2 The Causal Faithfulness Assumption 

Consider SEM O in  

 

 

Figure 7. IK(B, R|A), whereas it is not the case that IO(B,R|A). However, just because 

O does not entail IO()(B,R|A) for all sets of parameter values , that does not imply that 

there are no for which IO()(B,R|A). For example, if the variances of R, A, and B are all 

1, for any for which covO()(A,B)  covO()(A,R) =          cov O()(B,R), it follows that 

covO()(B,R|A) = 0. By the trek rule, this occurs when (bB,R  bA,R + bA,B)  (bB,R  bA,B + 

bA,R) = bR,B. So if If(B,R|A) is true in the population, there are at least two kinds of 

explanation: any set of parameter values for SEMs K, L, or M on the one hand, or any 

parameterization of SEM O for which (bB,R  bA,R + bA,B)  (bB,R  bA,B + bA,R) = bR,B. There 

are several arguments why, although O with the special parameter values is a possible 

explanation, in the absence of evidence to the contrary, K, L, or M should be the preferred 

explanations. 

K, L, and M explain the independence of B and R conditional on A structurally, as a 

consequence of no direct causal connection between the variables. In contrast O explains 

the independence as a consequence of a large direct effect of B on R cancelled exactly by 

the product of large direct and indirect effects of B and R on A. The latter explanation is 

contrary to the practice of many sciences, which typically assumes that, unless there is 

evidence to the contrary, an improbable and unstable cancellation of parameters (as in O) 

does not hide real causal influences (such as the causal influence of B on R in O). When a 

theory cannot explain an empirical regularity save by invoking a special 
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parameterization, most scientists are uneasy with the theory and look for an alternative 

(Glymour, 1980). 

Second, this cancellation is improbable (in the Bayesian sense that if a zero 

conditional covariance is not entailed, the measure of the set of free parameter values for 

any DAG that lead to such cancellations is zero for any “smooth” prior probability 

density20 e.g. Normal, exponential, etc., over the free parameters).  

Finally, K, L, and M are simpler than O. K, L, and M have fewer free parameters than 

O. Because O imposes a proper subset of the conditional independence constraints 

imposed by K, L, and M, O represents a proper superset of the densities that can be 

represented by K, L, and M. There is a well defined sense in which the set of densities 

represented by O is of higher dimension than the set of densities represented by K, L, and 

M (Geiger, Heckerman, King, & Meek, 2002). So O is more complex than K, L, and M in 

a precisely defined way. This is in accord with all of the usual scores for statistical 

models (Bayes Information Criterion, 2, Aikake Information Criterion, etc.), which, 

given a density represented by K, prefer SEMs K, L, and M to SEM O because of their 

greater simplicity. 

The assumption that a causal influence is not hidden by coincidental cancellations can 

be expressed for SEMs in the following way. A density f is faithful to the graph G of a 

SEM if and only if every conditional independence relation true in f is entailed by G. 

Causal Faithfulness Assumption: For a causally sufficient set of variables, the 

population density is faithful to the causal graph. (Spirtes et al., 2001) 

The Causal Faithfulness Assumption requires preferring K, L, and M to O, because 

parameter values  for which IO()(B,R|A) would violate the Causal Faithfulness 

Assumption. The Causal Faithfulness Assumption limits the SEMs considered to those 

SEMs in which population conditional independence constraints are entailed by causal 

structure, rather than by particular values of the parameters. There can be sometimes be 

good reasons to believe that the more complicated model is true, and the reason that a 

conditional independence relation holds is not due to the structure of the graph, e.g. when 

there are deterministic relationships among the substantive variables, or equality 

                                                 
20 A smooth measure is absolutely continuous with Lebesgue measure. 
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constraints upon free parameters. In those cases, the Causal Faithfulness Assumption 

should not be made (Spirtes et al., 2001). 

There are several other versions of the assumption that are considerably weaker than 

the one stated here (and more intuitively justifiable) but still permit reliable causal 

inference, at the cost of requiring more complicated algorithms with more complex and 

somewhat less informative output (Zhang & Spirtes, 2008; Ramsey, Spirtes, & Zhang, 

2006)Ramsey et al., 2006, #177].  

5.2. The Output of A Search for Causal Models 

The following sections describe several different possible alternatives that can be 

output by a reliable search algorithm. 

5.2.1 Markov Equivalence Classes 

SEMs K, L, and M are Markov equivalent. If K is true, any SEM with no trek between 

A and R can be eliminated from consideration by the Causal Markov Assumption (e.g. 

N). P also violates the Causal Markov Assumption. O is incompatible with the population 

conditional independencies by the Causal Faithfulness Assumption. However, neither of 

these assumptions implies L or M is incompatible with the population conditional 

independencies.  

Since K, L, and M entail the same set of conditional independence relations, it is not 

possible to eliminate L or M as incompatible with the population conditional 

independence relations without either adding more assumptions or background 

knowledge, or using features of the probability density that are not conditional 

independence relations. In the case of Gaussian error terms (and for multinomial 

Bayesian networks) there are no other features of the density that distinguish K from L or 

M. 

A collider X  Y  Z is unshielded if X and Y are not adjacent. Two DAGs are 

Markov equivalent if and only if they have the same adjacencies, and the same 

unshielded colliders (Verma & Pearl, 1990). Any subset S of a Markov equivalence class 

of DAGs can be represented by a pattern (also known as a pdag or essential graph). A 

pattern has the same adjacencies as each member of the Markov equivalence class, and a 

directed edge X  Y if and only if each member of S has a directed edge X  Y, and an 
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undirected edge X – Y if and only some member of S has a directed edge X  Y, and 

some other member of S has a directed edge X  Y. For example, the Markov 

equivalence class of K is represented by B – A – R. The Markov equivalence class of P is 

represented by B  R  A (i.e. it has only one DAG in the equivalence class.) Other 

DAGs can have mixtures of directed and undirected edges (e.g. X – B  A  R is also a 

pattern that represents two DAGs, X  B  A  R and X  B  A  R).  

5.2.2 Distribution equivalence 

K and L are distribution equivalent if and only if for any assignment of parameter 

values  to K there exists an assignment of parameter values ’ to L that represents the 

same density, and vice versa. If all of the error terms are Gaussian, then K and L are 

distribution equivalent as well as Markov equivalent. In such cases, the best that a 

reliable search algorithm can do is to return the entire Markov equivalence class, 

regardless of what features of the marginal density that it uses.  

In contrast, if at most one error term is non-Gaussian, SEMs K and L are Markov 

equivalent, but they are not distribution equivalent.  

When Markov equivalence fails to entail distribution equivalence, then using 

conditional independence relations alone for causal inference is still correct, but it is not 

as informative as theoretically possible. For example, assuming causal sufficiency and 

non-Gaussian errors (Shimizu, Hoyer, Hyvarinen, & Kerminen, 2006), conditional 

independence tests can at best reliably determine the correct Markov equivalence class, 

while using other features of the sample density can be used to reliably determine a 

unique graph (Shimizu et al., 2006).  

5.3. Constraint-Based Search 

The number of DAGs grows super-exponentially with the number of vertices, so even 

for modest numbers of variables it is not possible to examine each DAG to determine 

whether it is compatible with the population density given the Causal Markov and 

Faithfulness Assumptions. The PC algorithm, given as input an oracle that returns 

answers about conditional independence in the population and optional background 

knowledge about orientations of edges, returns a pattern that represents a Markov 

equivalence class (or if there is background knowledge a subset of a Markov equivalence 
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class) on the basis of oracle queries. If the oracle always gives correct answers, and the 

Causal Markov and Causal Faithfulness Assumptions hold, then the output pattern 

contains the true SEM, even thought the algorithm does not check each DAG. In the 

worse case, it is exponential in the number of variables, but for sparse graphs it can run 

on hundreds of variables (Spirtes & Glymour, 1991; Spirtes et al., 1993; Meek, 1995).  

In contrast to the case where a statistical model is selected in order to predict the 

value of a variable, it is not possible to use cross-validation in the same way to test 

whether a causal model selected by a search is a good predictor of the manipulated value 

of a variable. If the data is repeatedly divided into a training set used to construct a 

model, and the constructed models greatly differ in their predictions of the manipulated 

value of a variable, then that is evidence that the search is not working well. However, if 

the constructed models differ only slightly in their predictions of the manipulated value 

of a variable, it is still possible that they are all far off in their predictions, because the 

manipulated value of the variable is typically not known without experimentation. 

However, it is often difficult to experimentally test the output of causal search 

algorithms precisely because in many domains experimental confirmation is expensive 

and difficult to obtain. A number of causal inference methods have been extensively 

tested on simulations, but their experimental validation on empirical data is much more 

scattered (Sachs et al., 2005; Scheines, Leinhardt, Smith, & Cho, 2005; Spirtes et al., 

1993). A causality repository, containing both simulated and real data sets that can be 

used for evaluating causal inference methods, together with links to some causal 

discovery methods is being developed at http://www.causality.inf.ethz.ch/repository.php.  

6. Using Search Output to Calculate The Value of a 

Manipulated Variable 

If the causal relations are assumed to be linear and at most one error term is Gaussian, 

the output of a LiNGAM search is a unique DAG with estimated linear coefficients 

(Shimizu et al., 2006). The value of any manipulation can then always be calculated by 

replacing the original structural equation with the new structural equation, and calculating 

the new density, as described in section 2.4. However, this method of calculating the new 

density has two major limitations in other cases. First, it does not always work if there are 
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unobserved common causes because only the marginal density over the observed 

variables is given. Second, it may be computationally infeasible if the output contains 

many DAGs compatible with the population density and background knowledge. For that 

reason, a different method that can be more easily extended to cases where there are 

unmeasured common causes, or the output is a pattern will be described here. This 

method is equivalent to Pearl’s do-calculus (Pearl, 2000) and was described in Causation, 

Prediction, and Search (Spirtes et al., 1993). 

6.1. Causal Inference from a Single SEM 

For example, suppose that the only SEM compatible with the population density and 

background knowledge is K, and in order to predict R, the goal is to calculate 

EM(R||f’(A),f’(B)) as a function of the unmanipulated population density, and the 

manipulation. 

EK (R || f '(A), f '(B))  R  fK (R || f '(A), f '(B))dR
R
  

The problem with using this expression is that fK(R||f’(A),f’(B)) is a manipulated 

density, rather than an unmanipulated density, and fK(R||f’(A),f’(B)) ≠ fK(R). However, 

since for any density f (R)  f (R | A) f (A)
A
 dA , and f(R||f’(A),f’(B)) is a density 

R  f (R || f '(A), f '(B))dR
R
  R  f (R | A || f '(A), f '(B)) f (A || f '(A), f '(B))dA

A


R
 dR  

By definition, after manipulating the density of A to f’(A), f(A||f’(A),f’(B)) is f’(A), so
 

R  f (R | A || f '(A), f '(B)) f (A || f '(A), f '(B))dR
A


R
 dA 

R  f (R | A || f '(A), f '(B)) f '(A)dR
A


R
 dA

 

The latter expression is still not entirely in terms of the unmanipulated density and the 

given manipulation because it contains f(R|A||f’(A),f’(B)). However, the conditional 

density is invariant under manipulation {f(A), f’(B)} if f(R|A||f’(A),f’(B)) = f(R|A), that is 

the unmanipulated conditional density equals the manipulated conditional density. If 

f(R|A||f’(A),f’(B)) is invariant under manipulation, then f(R|A) can be substituted into the 

expression for f(R|A||f’(A),f’(B)), and the expression will contain only the unmanipulated 



 46

(conditional) density and the manipulation. If f(R|A) is invariant under manipulation of A 

and B, then E(R||f’(A),f’(B)) is equal to  

Equation 6-1   

R  f (R | A || f '(A), f '(B)) f (A || f '(A), f '(B))dR
A


R
 dA 

R  f (R | A || f '(A), f '(B)) f '(A)dR
A


R
 dA  R  f (R | A) f '(A)dR

A


R
 dA

 

There is an easy graphical method to check whether f(R|A) is invariant under 

manipulation{f’(A),f’(B)}. A manipulation in a causal model K can be represented by an 

augmented graph K’. If A is manipulated to have density f’(A), this can be represented by 

introducing a new PolicyA variable that has no edges coming into it, and one edge from 

PolicyA to A. (The case where manipulations introduce new causes of a variable will not 

be considered here.) The values that this variable takes on can represent the value of the 

intervention - in this case a vector of values that represents the expected value and 

variance of A, and the value of the linear coefficients of its parents in K, which in this 

case have been reset to zero after the manipulation. The manipulation of B can be 

represented similarly.  Then define a new density f’ over the extended set of variables 

including PolicyA and PolicyB , so that by definition  f’K(A, B, R|PolicyA = f’(A), PolicyB = 

f’(B)) = fK(R||f’(A),f’(B)); i.e. f’K(A, B, R|PolicyA = f’(A), PolicyB = f’(B)) is the density 

that results from replacing the structural equations for A with A = f’(A) and B = f’(B). 

There is no need to define a joint density over the augmented set of variables; the only 

densities that are used are densities conditional on the policy variables. When PolicyA and 

PolicyB are set to the values in the unmanipulated SEM, then f’K(A,B,R|PolicyA, PolicyB) 

= fK(A, B, R). 

 

 

 

 

 

Figure 8: Graphs and Augmented Graphs  

In the augmented graph, PolicyA and PolicyB are d-separated from R conditional on A. 

That implies f’K(A|R,PolicyA) = f’K(A|R); in particular the manipulated and unmanipulated 

densities of f’K(A|R) are the same, so fK(A|R) is invariant under manipulation. In general if 

   A                              A        PolicyA    A        A          PolicyA 

B            R                B             R       B            R           B           R 
                            

                     PolicyB                                                   PolicyB 

  K                    Augmented DAG           Pattern                 Augmented Pattern 
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the policy variables representing the densities are d-separated from X conditional on Y, 

then f(X|Y) is invariant under manipulation.  

To summarize, the algorithm consists of searching for an expression for the desired 

quantity (in this case f(R||f’(A),f’(B))) in terms of arguments that are either functions of 

the manipulations f’(A) and f’(B), or of invariant manipulated conditional densities, (in 

this case f(R|A||f’(A),f’(B))). Invariance of f(R|A||f’(A),f’(B))) under manipulation is tested 

by determining if PolicyA and PolicyB are d-separated from R conditional on A in the 

augmented graph. If invariance does hold, then f(R|A) can be substituted in for 

f(R|A||f’(A),f’(B))), turning the expression into one in which all of the arguments are either 

the given unmanipulated density (f(R|A)), or the manipulation (f’(A)). This algorithm is 

not particularly useful for the case where the output is a DAG with no hidden common 

causes, because it requires searching for the right expression, unlike the algorithm that 

simply replaces the structural equations for A and B. However, it does generalize to other 

cases described below.  

6.2. Causal Inference from a Pattern 

If the output of a search is a pattern (representing a subset of a Markov equivalence 

class) that contains more than one DAG, the value of a manipulated quantity may or may 

not be a function of the output and the population density, depending upon what 

manipulated quantity is being calculated, and what the true DAG is. For example, without 

any background knowledge about the causal graph (other than acyclicity), but assuming a 

linear SEM with Gaussian errors, in the large sample limit the output of the PC search 

will be B – A – R, if K is the true SEM. E(R||f’(A),f’(B)) is not a function of the population 

density and the pattern, because as already indicated in section 2.4, EK(R||f’(A),f’(B)) ≠ 

EL(R||f’(A),f’(B)). 

Suppose that background knowledge is augmented with the information that A is prior 

to R, so that SEM L is false. Then the pattern is B – A  R, and the only two DAGs 

compatible with the population density and background knowledge are K and M. In that 

case EK(R||f’(A),f’(B)) = EM(R||f’(A),f’(B)), and hence the prediction for R is the same for 

all DAGs compatible with the population density and background knowledge.  
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If there are many SEMs represented by a pattern, then it may be computationally 

infeasible to check whether the entailed manipulated expected value is the same in each 

SEM. In that case a simple modification of the algorithm described in section 6.1 suffices 

to check this without checking each SEM. Equation 6-1 is still used for E(R||f’(A),f’(B)); 

the only difference is that instead of checking whether fK(R|A)  is invariant under 

manipulation of A and B, it is also necessary to check whether fM(R|A) is invariant under 

manipulation.  

Instead of checking each DAG G represented by the pattern individually to determine 

if fG(R|A)  is invariant under manipulation of A and B, they can all be checked in one step 

using an augmented pattern (Figure 8). According to the augmented pattern, the only path 

between A and R is the path A  R. Hence A is a non-collider on each path from PolicyA 

and PolicyB to R conditional on A in each DAG represented by the pattern, and the pattern 

entails that PolicyA and PolicyB are d-separated from R conditional on A in each DAG 

represented by the pattern. See the Prediction Algorithm (which also handles DAGs that 

may contain hidden common causes) for more details (Spirtes et al., 2001).  

In some cases, different output graphs may predict different values of the target 

variable. For example, if it is not known that L is false, then EK(R||f’(A),f’(B)) ≠ 

EL(R||f’(A),f’(B)), even in the large sample limit. (In the augmented pattern in which the 

edge between A and R is undirected because L is not known to be false, A is a collider on 

the path from PolicyA to R in some DAGs represented by the pattern, and not others, and 

hence fG(R|A) is not invariant under manipulation for each DAG G represented by the 

pattern.)  

There are several possibilities for dealing with this contingency. One possibility is to 

predict an interval for R, instead of a point value for R; somehow this interval would then 

have to be used to predict the value of R. Theoretically, an interval could be obtained by 

calculating EG(R||f’(A),f’(B)) for each SEM G represented by the pattern, and taking the 

widest limits. Depending upon how many different SEMs there are in the output, this 

could be computationally infeasible. 

A second possibility is to use a Bayesian approach, and perform model averaging 

(Hoeting, Madigan, Raftery, & Volinsky, 1999). That is, a prior probability is placed over 

each G, and a posterior probability for each G is calculated. Then EG(R||f’(A),f’(B)) is 
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calculated for each G in the output of the search, and the results are averaged together, 

where each EG(R||f’(A),f’(B)) is weighted by its posterior probability. This requires 

putting a prior probability over each graph; in addition, if there are many graphs in the 

output, then this may not be computationally feasible.  

6.2.1 Other Examples 

In this section, the case where the post-manipulation values of variables other than the 

target are known is considered. Suppose that SEM R of  

Figure 9 is true, and the input is a sample of size n from the unmanipulated 

population f(T,A,B,C), the post-manipulation values (a, b, c) of A, B, and C respectively, 

the manipulated density f’(B) ~ N(0,1), and that the target variable is T. 
 

 

 

 

 

Figure 9: SEM R 

If the joint density is Gaussian, at a large enough sample size, the output of a search 

will be Pattern R, which represents SEMs R, S, and U. From the Augmented Pattern R, it 

follows that PolicyB is d-separated from T conditional on A, B, and C in every DAG 

represented by Pattern R because B is a non-collider on PolicyB  B  C  T, and A is a 

non collider on PolicyB  B – A – T. Hence f(T|A,B,C||f’(B)) = f(T|A,B,C). This implies 

that f(T|A,B,C) can be estimated from the unmanipulated population and used to predict T 

by using the post-manipulation values of A, B, and C. In the context of linear SEMs,  

T̂ (A  a, B  b,C  c)  ÊR( ) (T | A  a, B  b,C  c) 

ER( ) (T )  covR( ) (T ,{A, B,C})varR( ) ({A, B,C})1  ([a,b,c] ER( ) ({A, B,C}))
 

(Instead of R(), S or U could also be used to estimate the various quantities.)  

This example can be generalized as follows. Suppose that the input is sample data 

from the unmanipulated density f(O,Y), the post-manipulation values of O’  MB(Y,R), 

and neither Y nor a child of Y is manipulated. It follows that f(Y|O’) is invariant under 

manipulation because the policy variables for the manipulation are d-separated from Y 

conditional on O’, as the argument in the following paragraph shows. The implication of 

T  A  B  C 
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T  –  A  –  B  C 

 

Pattern R 
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SEM U 



 50

this is that the same equation can be used to predict the unmanipulated value of Y as is 

used to predict the manipulated value of Y, except that the post-manipulation values of O’ 

are used to make the prediction, rather than the unmanipulated values of O’. In the 

particular case of linear SEMs, it is possible to use the following estimated version of 

Equation 3-1 to predict the value of Y: 

Ŷ (O '  o ')  ÊG ( ) (Y | O '  o ')  EG ( ) (Y )  covG ( ) (Y ,O ')varG( ) (O ')1  (o ' EG ( ) (O '))  

where G() is a SEM constructed and estimated from the sample unmanipulated data, but 

o’ is the set of post-manipulation values of O’. Recall that the middle term on the right 

hand side is the formula for the partial regression coefficients, so this formula in effect 

uses the partial regression coefficients of T when regressed on A, B, and C in the 

unmanipulated population. 

The reason that the policy variables are d-separated from Y conditional on O’ can be 

broken into cases. By assumption, PolicyO is neither a parent of Y nor a parent of a child 

of Y. If U is into Y (i.e. Y is the tail of an edge on U) then some parent of Y is a non-

collider on U and in the conditioning set, so U does not d-connect Y and PolicyO 

conditional on O’. If U is out of Y, then there are two cases. First, if some child of Y is a 

non-collider on U, then that child is in MB(Y,G) and U does not d-connect Y and PolicyO 

conditional on O’. If some child of Y is a collider on U, then some parent of that child is a 

non-collider on U and in MB(Y,G), so U does not d-connect Y and PolicyO conditional on 

O’. Hence no path U d-connects PolicyO and Y conditional on O’. 

If the output of the search is a pattern, then it is always possible to determine from the 

pattern which variables are in the Markov Blanket of a target. Parents and children of the 

target will be adjacent to the target in the pattern. Any parent of a child of the target that 

is itself neither a parent nor a child of the target will be the parent of a child in the pattern 

(because it forms an unshielded collider in the DAG). For example, from Pattern R, the 

Markov Blanket of T is A, B, and C. 

However, sometimes it is not possible to determine from a pattern whether a variable 

in the Markov Blanket is a parent or a child. For example, it is not possible to determine 

from Pattern R whether A is a parent or a child of T. If A is manipulated, then some pair 

of R, S, and U do not agree on the manipulated density of T regardless of what set of 

variables (including the empty set) is conditioned on. 
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When a variable that is known to be a child of the target is manipulated, the following 

line of reasoning is superficially plausible, but fallacious. Suppose that it is known that R 

is the true SEM, and A is manipulated. After the manipulation, which breaks the edge into 

A, the Markov Blanket of T is {B, C}, and A is independent of T. It is tempting to suppose 

that the partial regression coefficient for A could be set to zero, and the partial regression 

coefficients rT,B.{B,C} and rT,B.{B,C} from the unmanipulated population could still be used 

to predict T. 

T̂ (B  b,C  c)  Ê(T | B  b,C  c) 

ER( ) (Y )  covR( ) (T ,{B,C})varR( ) ({B,C})1  ([b,c] ER( ) ({B,C}))
 

However, this is incorrect, because f(Y|B,C) is not invariant under manipulation of A if R 

is the true SEM, and so neither are the partial regression coefficients. The correct method, 

as described in section 2.4 is to form the new model R(’), where ’ sets the coefficient 

of the edge from T to A to zero, and gives the new density to the error term of A. Then 

T̂ (B  b,C  c)  Ê(T | B  b,C  c) 

ER( ') (Y )  covR( ') (T ,{B,C})varR( ') ({B,C})1  ([b,c] ER( ') ({B,C}))
 

 

7. Causal Inference From Samples 

The procedure for inferring the effects of manipulations from randomly drawn 

independent samples is quite similar to the process of inferring the effects of 

manipulations from a given population density. 

 

 

 

 

 

 

The procedure described in sections 5 and 6 can be modified in the following ways.  

 

 

Problem 4: Statistical causal predictive modeling 

Input: A sample of n {o, y} examples drawn randomly and independently according to 

f(O, Y), a manipulation f’(Xi=xi) of Xi, the post-manipulation values o’ of a subset O’ of 

the variables O, and a target variable Y whose post-manipulation value is to  be 

predicted. 

Output: Ŷ (O’=o’, f’(Xi=xi)), a predictor of the post-manipulation value of Y that has a 

small MSPE. 
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Step 1:  A search procedure, such as PC, that is based on conditional independence 

constraints can use statistical tests, instead of an oracle about conditional independence in 

the population density, to decide whether a conditional independence constraint holds. As 

long as the probabilities of type I and type II error go to zero as the sample size 

approaches infinity (pointwise consistency), the probability of inferring the wrong pattern 

or DAG also goes to zero, as does the MSPE.  

For example, if K is the true SEM and L is known to be false, then at a large enough 

sample size, the output pattern is B – A  R. Other searches that have advantages for 

large number of variables or small samples sizes include Hiton (Aliferis, Tsamardinos, & 

Statnikov, 2003), HUGIN (Madsen, Lang, Kjaerulff, & Jensen, 2003), PCX (Bai, 

Glymour, Padman, Ramsey, & Spirtes, 2004). Links to a number of algorithms are 

collected at http://www.cs.ubc.ca/~murphyk/Bayes/bnsoft.html. 

Step 2: After finding a pattern or DAG as the output of a search, step 2 proceeds in 

exactly the same way, and  

EM (R || f '(A), f '(B))  R  f (R | A) f '(A)dR
A


R
  

Step 3: The quantities that are substituted into the formula for the manipulated 

quantity as a function of the population density can be estimated from the sample. There 

are several methods of doing this. In one method, the free parameters of the SEM are first 

estimated, and then those estimates are plugged into a formula for the conditional 

probability.  

For example, choose M (B  A  R). In M, the conditional density fM(R|A=a) has 

2
M(R|A) = 2(A), and EM(R|A=a) = bR,A  a. 2(A) and bR,A are both free parameters of M 

that can be consistently estimated by standard methods as ̂ 2 (A ) and b̂R,A respectively. 

Hence f̂M (R | A  a)  N(b̂R,A a,̂ 2 (A )) . Then f̂M (R | A)  can be calculated from the 

estimated of the free parameters, and substituted into the formula, producing a consistent 

estimate of EM(R||f’(A),f’(B)). 

EM (R || f '(A), f '(B))  R  f̂M (R | A) f '(A)dR
A


R
 dA  

It is not always the case that every free parameter of the SEM has to be estimated in 

order to estimate the quantities in the equation for the manipulated expected value. For 
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example, f̂M (R | A)  depends only upon bR,A and 2(A), and not upon bB,A. In other cases, 

it is possible to directly estimate a function of the free parameters without first estimating 

the free parameters themselves.  (This is important for the case where some variables are 

unobserved, and not all of the free parameters can be consistently estimated.)  

7.1.1 Score Based Searches 

Given samples rather than a population density, step 1 can also use a score based 

search. However, instead of using AIC to score models, a number of searches employ the 

Bayesian Information Criterion (BIC).   

BIC(M , sample) = -2  L(
M (̂ )

,sample)+ ln(n)  dfM, 

BIC differs from AIC in that the penalty for complexity in BIC increases with sample 

size, while the penalty for complexity in AIC does not.  

In the large sample limit, each SEM that can represent the density and is simplest (in 

terms of dimensionality) receives a higher BIC score than any SEM that cannot represent 

the density, or is more complicated; this is not true of the model with the highest AIC 

score. For example, if some population density represented by K and no SEM with a 

subgraph of K, then no other SEM will receive a higher score than K (although L and M 

will receive equal scores). As the sample size approaches infinity, the difference between 

a SEM containing the population density and any other SEM that either does not contain 

the population density or is not the simplest, approaches infinity. For example, although 

O also contains the population density, at a large enough sample size, K (and L and M) 

will receive a lower BIC score.  

Selecting a true SEM according to the lowest BIC score is only correct if assumptions 

relating probability densities and causal models are made. If K can represent a population 

probability density, without further assumptions, O may be the true SEM even though it 

is more complex than K, and in the large sample limit K receives a lower BIC score.  

Using simplicity to select a causal model has a different motivation than using 

simplicity to select a statistical model. In the latter case, the motivation is that simpler 

models may have smaller MSPE (even if they do not contain the population density); this 

can be the case even without making any empirical assumptions about causal structures 

in the world being simple. In contrast, using simplicity to select causal models in effect is 
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making an empirical assumption that simpler causal models are more likely to be true, 

other things being equal. 

The Causal Faithfulness Assumption (section 5.1.2) is a kind of simplicity 

assumption. Given the Causal Markov and Faithfulness Assumptions, in the large sample 

limit, no SEM receives a higher BIC score than the true SEM (Chickering, 2003).21 

For SEMs that have no unobserved common causes, the Greedy Equivalence Search 

(Chickering, 2003) returns a Markov equivalence of SEMs highest scoring pattern in the 

large sample limit with probability 1 (under the Causal Markov and Faithfulness 

Assumptions). Although in the worst case the algorithm is exponential in the number of 

variables, in practice it can be used on graphs with relatively few edges but hundreds of 

variables. The LiNGAM algorithm (Shimizu et al., 2006) is a score-based search that 

returns a single DAG for linear SEMs with at most one Gaussian error term. The Sparse 

Candidate Algorithm (Friedman, Nachman, & Pe'er, 1999) is also designed to work on 

datasets with large numbers of variables.  

It is also possible to use a Bayesian approach to modeling to score SEMs, using the 

posterior probability of a SEM conditional on the data (Chickering, 2003; Heckerman, 

1998; Geiger & Heckerman, 1994). This is closely related to using BIC as a score, 

because under a wide variety of priors, in the large sample limit the posterior probability 

of a SEM and the BIC score of a SEM favor the same SEMs. However, the Bayesian 

approach allows the added flexibility of incorporating prior degrees of belief in different 

graphs and different parameters, which can be important for small sample sizes. In 

addition to selecting a single SEMs to estimate the value of  a variable, the Bayesian 

approach also value of a variable to be estimated by averaging together the estimates of 

different SEMs weighted by their posterior probabilities (Hoeting et al., 1999). 

8. Unobserved Variables 

In contrast to the case of estimating conditional expected values, introducing 

unobserved variables may be required (in the absence of correlated errors and double-

headed arrows in the graph) in order to correctly represent both the population density 

                                                 
21 In addition, the true distribution is in one of the models, each model has equal prior probability, for a 
wide variety or priors the difference in BIC scores to between two models M1 and M2 is an approximation 
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and the post-manipulation densities. If SEM K is the correct causal model, and A is not 

measured, then B and R are correlated, but manipulating B produces no change in R, and 

manipulating R produces no change in B. The only linear SEM with a DAG that can 

represent both the population and the manipulated densities is one in which there is an 

unmeasured common cause of B and R. In the case of predicting unmanipulated values of 

variables, at a given sample size a SEM with unobserved variables may provide 

predictions with a smaller MSPE than any SEM without any unobserved variables, but in 

the large sample limit the MSPE approaches a minimum for some SEMs without 

unobserved variables. In contrast, in the case of predicting manipulated values of 

variables, in the large sample limit, a SEM with unobserved variables may be the only 

kind of SEM that has a MSPE that approaches to the minimum.  

An alternative to introducing unobserved variables into a model is introducing 

correlated errors between observed variables. Introducing correlated errors instead of 

unobserved variables can avoid a number of the statistical problems caused by 

introducing unobserved variables, and makes the search space finite (Richardson & 

Spirtes, 2002a; Spirtes et al., 1995). Hence, unless background knowledge rules out the 

possibility of unobserved common causes, accurate prediction of manipulated variables 

requires allowing the possibility of unobserved common causes. The possibility of 

unobserved common causes requires making several modification to the algorithm 

described in sections 5 and 6. 

8.1. Scoring and Searching 

8.1.1 Constraint Based Search 

For SEMs, that may contain unobserved common causes, there is a constraint based 

search algorithm (Fast Causal Inference, (Spirtes et al., 1995)) that is a close analog to 

constraint-based searches over SEMs that do not contain unobserved common causes.  

Suppose that the variable H in SEM D of  

 

 

                                                                                                                                                 

to the posterior probabilities log P(M1|sample)/P(M2|sample). 
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Figure 7 is an unmeasured variable. D does not entail the same set of conditional 

independence relations as SEM C does because it has a different variable set than C. For 

example, IC(X1,X2|H), but it is not the case that ID(X1,X2|H) because D does not contain 

variable H. However, if the observed variables O = {X1, X2, X3, X4} then all of the 

conditional independencies among variables in O that are entailed by C (the empty set in 

this case) are also entailed by D, and vice-versa. SEMs C and D are Markov equivalent 

over the set of observed variables O if they entail the same set of conditional 

independence relations among the variables in O. The Markov equivalence class over O 

contains an infinite number of SEMs, because adding more and more unobserved 

common causes of X1 and X2 does not change the conditional independence relations 

entailed over O.  

A partial ancestral graph (PAG) is the analog of a pattern for SEMs that may contain 

unobserved common causes. Like a pattern, it is a graph that contains information about 

the ancestor relations common to all SEMs in a given Markov equivalence class over O 

(Spirtes et al., 1995). However, a PAG may contain double-headed edges, indicating that 

a set of conditional independence relations can only be entailed by a SEM with 

unobserved common causes (and other kinds of edges as well). 

The Fast Causal Inference (FCI) algorithm (Spirtes et al., 2001; Spirtes et al., 1995; 

Zhang, 2007) performs a series of conditional independence tests and constructs a PAG 

on the basis of those tests. In the large sample limit, it returns a PAG that contains the 

true SEM with probability 1 under the Causal Markov and Causal Faithfulness 

Assumptions. The FCI algorithm is slower than the PC algorithm, and less informative 

because it typically returns a larger class of candidate SEMs.22 

In contrast to a score based search, a constraint based search does not require the 

estimation of parameters, or the calculation of the dimensionality of the marginal density 

- it requires only being able to perform the appropriate tests of the constraints (e.g. 

conditional independence constraints) used in the search. Furthermore, although the 

number of DAGs with unobserved common causes is infinite, the number of Markov 

equivalence classes over O is finite.  

                                                 
22 In some cases, there are no SEMs without unobserved common causes compatible with the pattern of 
conditional independence constraints that hold in the population. 
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Conditional independence constraints in acyclic SEMs are examples of non-

parametric constraints - they hold for all families of densities. Using non conditional 

independence constraints for model selection allows a finer discrimination than a Markov 

equivalence class over O for those density families in which the Markov equivalence 

class over O is not the same as a density equivalence class over O. Using non conditional 

independence constraints is particularly important for causal models with hidden 

common causes, where in many cases there are no conditional independence relations 

among the variables in O.  

For example, SEMs C and D are Markov equivalent over O, but they are not 

distribution equivalent over O.  C, unlike D, entails “vanishing tetrad constraints”, i.e. 

covC(X1,X2)  covC(X3,X4) = covC(X1,X3)  covC(X2,X4) = covC(X1,X4)  covC(X2,X3) (Silva, 

Scheines, Glymour, & Spirtes, 2006; Harman, 1976). This is a constraint on the marginal 

density over O that is not a conditional independence constraint. So when unobserved 

common causes are allowed, SEMs that are Markov equivalent (over O) are not 

necessarily distribution equivalent over O even when all of the error terms are Gaussian. 

If the vanishing tetrad constraint were false, then it would be known that C is not the true 

SEM, even though it does not entail any false conditional independence constraints 

among the observed variables. While there are recently developed algorithms for 

determining when two SEMs are distribution equivalent over O, they are so 

computationally intensive they are only practical for SEMs with a few variables (Geiger 

& Meek, 1999). 

When Markov equivalence fails to entail density equivalence, then using conditional 

independence relations alone for causal inference is still correct, but it is not as 

informative as theoretically possible. For example, assuming causal sufficiency and non-

Gaussian errors (Shimizu et al., 2006), conditional independence tests can at best reliably 

determine the correct Markov equivalence class, while using other features of the sample 

density can be used to reliably determine a unique graph (Shimizu et al., 2006). The 

situation is similar for Gaussian errors where there are unobserved common causes, 

which may entail vanishing tetrad constraints, or other kinds of constraints. The difficulty 

is that in many cases it is not known how to use the extra information contained in the 
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density to reliably narrow down the set of DAGs output. However, in some cases it is 

known how to use the extra information (Silva et al., 2006). 

8.1.2 Score-Bases Search and BIC 

Using a score such as BIC to directly search over the space of SEMs that may contain 

unmeasured common causes raises a number of extra difficulties. The space of SEMs that 

may contain unobserved common causes is infinite, and it is not clear how to order the 

SEMs to be searched. 

Furthermore, while the use of penalized likelihood scores, such as BIC, for SEMs 

with no unobserved common causes is not problematic, there are major statistical 

problems in scoring models using penalized likelihood scores for SEMs with unobserved 

common causes. In order to calculate a BIC score it is necessary to calculate a maximum 

likelihood estimate of the SEM parameters, and the dimensionality of the set of marginal 

densities over the observed variables represented by the SEM.  

However, with the exception of a few densities such as Gaussian, or multinomial, 

even when the joint density falls into a family of densities that is well understood, the 

marginal densities will not. In cases where the marginal density is a member of a well 

understood family of densities, the parameters of the SEM may not be identifiable at all, 

and hence it is not possible to find a maximum likelihood estimate of the parameters from 

the data over the observed marginal. Furthermore, even in those cases where the 

maximum likelihood estimates can be calculated (such as C where H is unobserved) the 

actual calculations typically involve an iterative hill-climbing algorithm that is much 

more computationally expensive than regression and can get stuck in local maxima.  

In addition, there are both theoretical and practical difficulties in calculating the  

dimensionality of the marginal probability density that are represented by a SEM with 

unobserved common causes. The dimensionality is not well defined for some values of 

the parameters, and is difficult to calculate even when it is well defined (Geiger et al., 

2002). 

This problem is caused by the fact that while the unobserved conditional 

independence relations (those that involve the unobserved common cause) cannot be 

tested directly, they can nevertheless entail constraints on the marginal density that are 

not conditional independence relations. These non-conditional independence constraints 
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present both a problem and an opportunity. On the one hand, if it is known how to use 

them to eliminate some graphs from consideration (as in certain special cases) then they 

strengthen the causal inferences that can be made. On the other hand, the non-conditional 

independence constraints are the reason that the maximum likelihood estimate can get 

stuck in local maxima and that the dimensionality of the marginal densities represented 

by a SEM with unobserved common causes is sometimes undefined or difficult to 

calculate.  

There has been some progress towards generalizing a GES style search to cover 

SEMs with unobserved common causes. In the Gaussian case , it is possible to 

parameterize PAGs in such a ways that they impose only the conditional independence 

constraints entailed by the SEMs they represent. There are a finite number of these kinds 

of graphical models for a given set of observed variables, and it is known how to 

calculate the maximum likelihoods and dimensions needed to calculate BIC scores for 

these models (Richardson & Spirtes, 2002a). In addition, score-based searches for limited 

numbers of hidden common causes have been proposed by Friedman (Friedman, 1998), 

and Heckerman (Heckerman, 1998).  

8.2. Calculating Manipulated Densities from Causal Graphs 

If some of the variables are unmeasured, and only the marginal density over the 

observed set of variables O is given, in some cases the effect of a manipulation is not a 

function of the marginal density. In other cases the effect of a manipulation is a function 

of the marginal density, but may not be equal to any partial regression coefficient, no 

matter what set of (unmanipulated) observed variables is regressed on  

Given a single DAG with hidden common causes, Pearl’s do-calculus extended the 

necessary and sufficient conditions for determining which conditional probabilities were 

invariant to sequences of manipulations, and showed how a much broader range of 

manipulated quantities could be expressed in terms of invariant quantities (Pearl, 1995). 

More recently, complete algorithms have been developed for finding formulas that 

express various kinds of manipulated quantity in terms of observed invariant marginal 

densities (Shpitser & Pearl, 2006a; Shpitser & Pearl, 2006b; Huang & Valtorta, 2006). 
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In many cases, without strong background knowledge, the output of a search for 

causal models is a Markov equivalence class over O or a density equivalence class over 

O. In those cases, the problem of finding the effects of a manipulation can only be done 

for those cases in which each member of the equivalence class agrees on the effects of the 

manipulation. Sufficient conditions for determining when a given conditional probability 

is invariant under a manipulation have been developed, and these can be used to express 

some manipulated quantities as functions of conditional probabilities that are invariant 

under manipulation, regardless of which of the SEMs in the Markov equivalence class 

over O are true (Spirtes et al., 1993). The Prediction Algorithm generalizes the algorithm 

for calculating manipulated conditional densities described in 6.2 to SEMs with hidden 

common causes. It uses d-separation from a policy variable to determine when 

conditional probabilities are invariant under manipulation in PAGs instead of patterns 

(Spirtes et al., 1993; Spirtes et al., 2001).  

One important limitation on reasoning about SEMs with hidden common causes, is 

that it is not the case that under the Causal Markov and Faithfulness assumptions 

although it is possible to consistently estimate conditional expected values in the large 

simple limit (in the sense that the mean squared error of the estimate approaches zero), it 

is not possible to put non-trivial probabilistic bounds on the mean square prediction error 

at any finite sample size, which would require uniform consistency ((Robins, Scheines, 

Spirtes, & Wasserman, 2003). 

9. Summary 

The following is a brief summary of some important differences between the problem 

of predicting the value of an variable in an unmanipulated population from a sample,  and 

the problem of predicting the post-manipulation value of a variable from a sample from 

an unmanipulated population. In an unmanipulated population P, the predictor that 

minimizes the MSPE is the conditional expected value.  

1. E(Y|O) is a function of f(O,Y), regardless of what the true causal model is.23 

Given f(O,Y), in order to calculate E(Y|O) there is no need to do feature 

selection, or search for a statistical model. In contrast, EP(Y|O’||f’(O)) is a 
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function of f(O,Y) and at least some features of the causal relations between 

variables. In some cases, if G and H are in the set of causal models compatible 

with the f(O,Y) and background knowledge, EG(Y|O’||f’(O)) ≠ EH(Y|O’||f’(O)), 

in which case the conditional expected values in the manipulated population is 

not a function of the background knowledge and f(O,Y). In other cases 

EG(Y|O’||f’(O)) = EH(Y|O’||f’(O)) for all causal models G and H compatible 

with f(O,Y) and background knowledge, in which case EP(Y|O’||f’(O)) is a 

function of the background knowledge and the f(O,Y). 

2. In order to determine whether EP(Y|O’||f’(O)) is a function of f(O,Y) and 

background knowledge, it is necessary to find all of the causal models 

compatible with f(O,Y) and background knowledge, not simply one causal 

model compatible with f(O,Y) and background knowledge.  

3. Determining which causal models are compatible with background knowledge 

and a f(O,Y) requires making additional assumptions connecting population 

densities to causal models (e.g. Causal Markov and Faithfulness). 

4. Without introducing some simplicity assumptions about causal models, for 

some common families of densities (e.g. Gaussian, multinomial), no 

EP(Y|O’||f’(O)) are functions of the population density without very strong 

background knowledge. 

5. The justification for using simple statistical models is fundamentally different 

than the justification for using simple causal models. At a given sample size, 

the use of simple statistical model can be justified even if causal relations are 

not simple. However, the assumption that the simplest causal model compatible 

with f(O,Y) and background knowledge is a substantive assumption about the 

simplicity of mechanisms that exist in the world.  

6. For many families of densities (e.g. Gaussian, multinomial), there is always a 

statistical model without hidden variables that contains the population density. 

For those same families of densities, a causal model that contains both the 

population probability density and the post-manipulation probability densities 

may require the introduction of unobserved variables.  

                                                                                                                                                 
23 This ignores the problem of conditioning on sets of measure zero. 
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7. Given a population density, and the set of causal models consistent with the 

population density and background knowledge, calculating the effects of a 

manipulation can be difficult because: 

a. There may be unobserved variables (even if only a single causal model is 

consistent with f(O,Y) and background knowledge). 

b. There may be multiple causal models compatible with f(O,Y) and 

background knowledge. 

8. For non-experimental data, a post-manipulation density is different than the 

population density from which the sample is drawn. The post-manipulation 

values of the target variable Y are not directly measured in the sample. Hence, it 

is not possible to estimate the error in EP(Y|O’||f’(O))  by comparing it to the 

values in a sample from the f(O,Y).  

10. Open Problems24 

Each of the elements used to solve the simple examples in this tutorial raise a number 

of questions. The questions listed below are areas of active research that have produced 

some answers, but many open questions remain. The proceedings of the Uncertainty and 

Artificial Intelligence conferences and the Statistics and Artificial Intelligence 

conferences contain many articles related to these areas of research. In addition this 

Special Issue on Causation of the Journal of Machine Learning Research contains articles 

relevant to these questions, as explained in the tutorial. The citations given are just a 

sample from larger bodies of research. 

10.1. Models 

There are a wide variety of causal models that have been employed in different 

disciplines. These include Bayesian Networks, Chain Graphs, Partial Ancestral Graphs, 

Markov Decision Processes, Structural Equation Models, Propensity Scoring, 

Information Theory, and Granger Causality. The relative advantages and disadvantages 

of these models and the relationships between these models are partially, but not 

                                                 
24 The content and organization of this section are largely due to suggestions from Constantin Aliferis, 
whom I thank for his suggestions. 
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completely understood. What new models are appropriate for different domains, e.g. 

feedback or reversible systems (Spirtes et al., 1993; Spirtes et al., 2001)?  What new 

models are appropriate for different combinations of kinds of data, e.g. experimental and 

observational (Eberhardt & Clark Glymour, 2006; Eberhardt et al., 2005; Yoo & Cooper, 

2004; Yoo, Cooper, & Schmidt, 2006; Danks, 2002; Cooper & Yoo, 1999)? What new 

models are appropriate for different kinds of background knowledge, and different 

families of densities? 

10.2. Model Scores 

What kind of scores can be used to best evaluate causal models from various kinds of 

data? While some scores, such as BIC, have good large sample properties, they are 

difficult to compute or cannot be applied to some causal models, and may not have good 

small sample properties. In a related vein, what are good families of prior distributions 

that capture various kinds of background knowledge? 

10.3. Search Algorithms 

How can search algorithms be improved to incorporate different kinds of background 

knowledge, search over different classes of causal models, run faster, handle more 

variables and larger sample sizes, be more reliable at small sample sizes, and produce 

output that is as informative as possible? 

10.4. Properties of Search Algorithms 

For existing and novel causal search algorithms, what are their semantic and syntactic 

properties (e.g. soundness, consistency, maximum informativeness)? What are their 

statistical properties (pointwise consistency, uniform consistency, sample efficiency)? 

What are their computational properties (computational complexity)? 

10.5. Assumptions  

What plausible alternatives are there to the Causal Markov and Faithfulness 

Assumptions? Are there other assumptions might be weaker and hold in more domains 

and applications without much loss about what can be reliably inferred? Are there 

stronger assumptions that are plausible for some domains that might allow for stronger 
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causal inferences? How often are these assumption violated, and how much do violations 

of these assumptions lead to incorrect inferences? 

There are special assumptions, such as linearity, which can improve the strength of 

causal conclusions that can be reliably inferred, and the speed and sample efficiency of 

algorithms that draw the conclusions. What other distribution families or stronger 

assumptions about a domain are there that are plausible for some domains and how can 

they be used to improve causal inference? 

Can various statistical assumptions be relaxed? For example, what if the sample 

selection process is not i.i.d., but may be causally affected by variables of interest 

(Richardson & Spirtes, 2002a; Spirtes et al., 1995; Cooper, 1995; Cox & Wermuth, 

1996a; Cooper, 2000)? 

10.6. Deriving Consequences of Causal Models 

Shpitser and Pearl have given complete algorithms for deriving the consequences of 

various causal models with hidden common causes in terms of the unmanipulated density 

and the given manipulation (Shpitser & Pearl, forthcoming). Partial extensions of these 

results to deriving consequences from sets of causal models have been given (Zhang, 

forthcoming); are there further extensions to derivations from sets of causal models?  

It is often useful to quickly derive constraints (e.g. vanishing tetrad constraints) on 

marginal densities from causal models with hidden common causes, in order to guide 

search. Are there other constraints on densities that can be derived from causal models, 

and how can they be incorporated into search algorithms? 

10.7. Applications 

Application of causal inference algorithms to many domains would be highly useful 

both in terms of testing and improving causal inference algorithms, suggesting new 

problems, and in producing domain knowledge.  
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10.8. Evaluation 

What are the most appropriate performance measures for causal inference algorithms? 

What benchmarks can be established? What is the best research design for testing causal 

inference algorithms? 

10.9. Interconnections 

Many different domains have studied causal discovery including Artificial 

Intelligence, Econometrics, Markov Decision Processes, Operations Research, Control 

Theory, Experimental Design, and Statistics. What are the formal connections between 

the different models, assumptions, and algorithms used in each of these domains? What 

can each of these domains learn from the others? 

11. Appendix 

11.1. Estimators 

An estimator n of a model parameter  (such as the expected value of a variable) is a 

function from samples On of size n to a real number - that is, for each sample, the 

estimator outputs an estimate of the quantity . The quality of an estimator n of  can be 

measured by its mean square error: that is, the expected value (over all randomly 

selected samples of size n) of (n(O
n) – )2, the square of the difference between the real 

number output by the estimator and . Let n  be the average output of n(O
n) (with 

respect to the sampling density of On). The expected value squared error is the sum of 

two terms: the bias and the variance of the estimator. The bias of the estimator (n  – ), 

i.e. the difference between the expected value output of the estimator and the true value 

. The variance of the estimator  is the expected value of (n(O
n) – n ))2, i.e. the 

expected value of the squared difference between the output of the estimator and the 

expected value of the estimator). A pointwise consistent estimator is one in which the 

mean squared error approaches zero as the sample size approaches infinity. The quality of 

an estimator at a finite sample size depends upon the two factors of the bias of an 

estimator and the variance of the estimator. (There are other desirable properties that 
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estimators can have, such as being uniformly consistent - roughly that it is possible to put 

probabilistic bounds on the size of the error at a given sample size - that will not be 

discussed here. (See Robins et al., 2003).) 

One kind of estimator that is commonly employed is a maximum likelihood 

estimator, which under mild regularity conditions has a number of desirable properties 

such as pointwise consistency. Suppose that SEM C is given and the goal is to estimate 

the values of the free parameters of C. For assignment  of values to the free parameters 

of C, there is an implied covariance matrix. Given the implied covariance matrix, it is 

possible to determine the probability (density) of drawing sample data that has the 

observed sample covariance matrix; this is the likelihood of the data for. A maximum 

likelihood estimator selects the assignment  of values to the free parameters that makes 

the sample data have highest value for the probability density. In the case of a SEM over 

a causally sufficient set of variables, the maximum likelihood estimate of the linear 

coefficient bR,A (denoted by b̂R,A ) is the regression coefficient of A when R is regressed 

on its non-descendants in the causal graph (e.g. in the case of SEM K, the regression 

coefficient of R when A is regressed on {A, B}). In K, the formula for the total effect of A 

on R is m bR,A . Substituting the maximum likelihood estimates of b̂R,A  into the formula 

yields m  b̂R,A , which is a maximum likelihood estimate of the total effect of A on R. 

11.2. Graph Terminology 

For a directed edge A  B, A is the tail of the edge and B is the head of the edge, A is 

a parent of B, and B is a child of A. Parents(A,G) is the set of parents of A in G. A path 

U between Xa and Xb is a sequence of edges <E1,...,Em> such that one endpoint of E1 is 

Xa, one endpoint of Em is Xb, and for each pair of consecutive edges Ei, Ei+1 in the 

sequence, Ei  Ei+1, and one endpoint of Ei equals one endpoint of Ei+1. A directed path P 

between Xa and Xb is a sequence of directed edges <E1,...,Em> such that the tail of Ea is 

X1, the head of Em is Xb, and for each pair of edges Ei, Ei+1 adjacent in the sequence, Ei  

Ei+1, and the head of Ei is the tail of Ei+1. A vertex occurs on a path if it is an endpoint of 

one of the edges in the path. A path is acyclic if no vertex occurs more than once on the 

path. A vertex A is an ancestor of B (and B is a descendant of A) if and only if either 
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there is a directed path from A to B or A = B. ND(A,G) is the set of non-descendants of A 

in G. A vertex X is a collider on undirected path U if and only if U contains a subpath Y 

 X  Z; otherwise if X is on U it is a non-collider on U. X is an ancestor of a set of 

vertices Z if X is an ancestor of some member of Z.  
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