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Abstract

Recent research into the evolution of higher cognition has piqued
an interest in the effect of natural selection on the ability of creatures
to respond to their environment (behavioral plasticity). It is believed
that environmental variation is required for plasticity to evolve in cases
where the ability to be plastic is costly. We investigate one form of
environmental variation: frequency dependent selection. Using tools
in game theory, we investigate a few models of plasticity and outline
the cases where selection would be expected to maintain it. Ultimately
we conclude that frequency dependent selection is likely insufficient to
maintain plasticity given reasonable assumptions about its costs. This
result is very similar to one aspect of the well-discussed Baldwin effect,
where plasticity is first selected for and then later selected against. We
show how in these models one would expect plasticity to grow in the
population and then be later reduced. Ultimately we conclude that if
one is to account for the evolution of behavioral plasticity in this way,
one must appeal to a very particular sort of external environmental
variation.

Keywords: Game theory, Evolutionarily stable strategy, Behav-
ioral plasticity

1 Introduction

Humans and many other animals are behaviorally adaptive – they mod-
ify their behavior in response to the environment. This flexibility is often
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placed in contrast to more rigidly specified behaviors which are not capa-
ble of changing across environmental circumstances.1 It is generally believed
that behavioral plasticity will be selectively advantageous when there is en-
vironmental variation. Environmental variation, very broadly conceived, can
come in many forms. It may come from a source external to the population,
such as seasonal or ecological change. Or, it may be due to changes in the
population itself as in frequency-dependent selection. Variation of the first
kind has been discussed in some detail (Ancel, 1999; Godfrey-Smith, 1996,
2002; Sterelny, 2003) and it can be shown that behavioral plasticity can be
advantageous when there is such external variation.

It is difficult to determine what counts as an “external” environment
for the purpose of predicting the benefits of variability. In particular do
cases of game-theoretic interaction, where an individual’s fitness depends
on the type with whom it is interacting, count? One might suppose that
cases of frequency dependent selection like this might be sufficient to select
for behavioral plasticity. Different interactions over time represent different
local environments for an individual and will thus appear similar to changes
in weather or predatory threats (classic examples of “external” variation).
Furthermore for populations out of equilibrium, the proportion of different
types will change over time thus benefiting different behaviors across several
generations. These considerations might lead one to suppose that frequency
dependent selection represents an extreme version of external environmental
variation.

This paper investigates this possibility using evolutionary game theory.2

We find that populations of plastic individuals will not be maintained by
evolution, and often plasticity will be eliminated entirely. This result sug-
gests that a particular sort of environmental variation is necessary to sustain
plasticity – not any sort of variation will do. More specifically, the varia-
tion caused by frequency dependent selection is often insufficient to result in
plasticity in strategic situations that can be modeled as games. Furthermore,
when we examine the evolutionary dynamics in these settings, we find that
plasticity is often initially selected for only to be reduced in later generations.
This is similar to one aspect of the Baldwin effect, where acquired charac-

1Behavioral plasticity can be distinguished from developmental plasticity where the
way an organism develops varies with its environment. For the purposes of this paper, we
will focus on behavioral plasticity.

2The evolution of plasticity in games has been investigated already in different contexts
by Harley (1981); Suzuki and Arita (2004).
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teristics (in this case, social behaviors) are replaced by similar hereditary
characteristics.3

We begin by providing the necessary background in game theory in sec-
tion 2. After these preliminaries, we present three models that include a
plastic phenotype (an adaptive strategy). While all these models include a
plastic strategy, they differ in the method by which costs are associated with
that phenotype. We analyze these models and present our primary results
in sections 3 and 4. Finally section 5 concludes.

2 Game Theory

A game is a mathematical object which specifies a set of players P =
{1, . . . , n}, a set of strategies for each player Si (where i ∈ P ), and a payoff
function for each player, πi : S1 × S2 × · · · × Sn → Rn. In keeping with bio-
logical game theory, we will here treat the payoff as representing a strategy’s
fitness.

Here we will restrict ourselves to considering one class of games, the
finite symmetric two-player game. A game is symmetric just in case each
player has the same set of strategies (Si = Sj for all i, j) and the payoff
function depends only on the strategy chosen not the identity of the player.
We can then represent the payoff function as a single function π(x, y) which
represents the fitness of playing strategy x against strategy y.

Since we are restricting ourselves to considering only finite games, S has
only finitely many members. We can, however, extend the strategy space to
include mixed strategies (strategies which involve choosing different elements
of S with some probability). Now an agent’s strategy is represented by a
probability distribution over S and we can then consider the expected fitness
from each strategy played against another, represented by u(x, y).

Given any game, we can construct a best response correspondence for
that game. For some (possibly mixed) strategy, x, B(x) represents the set of
strategies which do best against x. Formally,

B(x) = {y|u(y, x) ≥ u(y′, x)∀y′} (1)

3Ancel (1999) refers to this as the “Simpson-Baldwin effect” from the formulation of
the Baldwin effect by Simpson (1953). We will follow Ancel and use the phrase “Simpson-
Baldwin effect” when discussing the relationship between our results and the Baldwin
effect in section 4.
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A set of strategies s∗ is a Nash equilibrium if and only if each strategy in
that set is a best response to the others. Formally, s∗ is a Nash equilibrium
when s∗i ∈ B(s∗−i) for all players i (where s∗i represents player i’s strategy in
s∗ and s∗−i represents the other player’s strategy). We will represent the set
of all Nash equilibria in a game by NE.

From an evolutionary perspective Nash equilibria are insufficient to rep-
resent stable states of populations since there are some Nash equilibria which
one would expect to be invaded by mutation. As a result, a slightly more
limiting solution concept was devised for this purpose, the Evolutionarily
Stable Strategy (Maynard Smith and Price, 1973; Maynard Smith, 1982).

Definition 1. A strategy set s∗ is an evolutionarily stable strategy (ESS) if
and only the following two conditions are met

• u(s∗, s∗) ≥ u(s, s∗) for all alternative strategies s and

• If u(s∗, s∗) = u(s, s∗), then u(s∗, s) > u(s, s).

This more restrictive solution concept captures the idea that a population
is stable to invasion by mutation. Evolutionarily stable strategies can be
either pure or mixed strategies. Traditionally a mixed strategy represents
directly the strategy of an individual who randomizes their behavior, but
this interpretation can be implausible in some contexts. Instead one can
interpret a mixed strategy as a population state, where a certain proportion
of a population is playing each strategy. Here uninvadability represents a sort
of asymptotic stability of the population under mutation (Weibull, 1995).

It is important to note that in any mixed strategy equilibrium s∗, if two
pure strategies, s and s′, are both played with positive probability it must
be the case that u(s, s∗) = u(s′, s∗). (Otherwise one would have an incentive
to play the better of the two.) As a result, a mixed strategy equilibrium is
an ESS only if u(s∗, s) > u(s, s) for all s that are present in the mixture.

There are two features of equilibria which will be of use in the discus-
sion. A Nash equilibrium is symmetric when both players are playing the
same strategy. Only symmetric Nash equilibria can be evolutionarily sta-
ble (although not all are). Second, a Nash equilibrium (or ESS), N , is
pareto superior to another Nash equilibrium, O, if u(N1, N2) > u(O1, O2)
and u(N2, N1) > u(O2, O1) – e.g. both players do better in N than in O.

Although somewhat limited, games with only two strategies (so called
2 × 2 games) are often used to capture many different types of behavior.
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When possible we try to present general results, but for some propositions
we must restrict ourselves to 2× 2 games. While there are four payoffs in a
symmetric 2× 2 game, we can represent all such games with two parameters
without losing best response and dominance relations (Weibull, 1995). This
characterization leaves us with only three classes of games, each of which
is characterized by different equilibria. Coordination games have two pure
strategy Nash equilibria which are symmetric. Hawk-Dove games have two
asymmetric pure strategy Nash equilibria, and Dominance Solvable games
(e.g. the Prisoner’s Dilemma) have only one Nash equilibrium.

3 The reduction of strategic plasticity

With these preliminaries in hand we can return to strategic plasticity. Sup-
pose there is a population of players and who are randomly paired to play a
repeated game against one another. There are phenotypes which correspond
to each of the pure strategies in the underlying game and one phenotype
which corresponds to “learning” (our plastic strategy). The learning pheno-
type is capable of adapting itself to do well against the individual with which
it is paired. But this phenotype can only determine the type of its opponent
through observation of the opponent’s behavior in the game, there are no
external cues on which the learner can rely.

Traditionally it is assumed that plasticity is costly. Perhaps maintaining
or developing the ability to adapt is costly or alternatively there is an intrinsic
cost associated with making errors in the process of learning.4 Our first two
models follow this first suggestion that learning has some exogenous cost,
there is some basic fitness cost to being able to adapt which is not a feature
of the game or the learning process. In the third model we will capture the
suggestion that the cost of learning is the result of errors in the learning
process where learners occasionally fail to play the best response.

Ultimately we find that populations of learners can only rarely be main-
tained by evolution, and that in many cases, learning will be totally elimi-
nated by the evolutionary process.

4Ancel (1999) describes the following examples “In bacteria, for example, plasticity re-
quires genetic machinery whose costs are in terms of increased replication time. Learning-
based plasticity may entail energetic costs of searching RNA molecules with multiple con-
figurations may trade accuracy for the potential for variable binding” (199).
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3.1 Exogenous cost

Our model will take a base game whose strategies represent phenotypes in a
population and extend it by including a new phenotype L, which represents
the plastic individual. We will assume that the plastic individual, or learner,
is capable of learning the best response against others and learns to play a
Nash equilibrium against itself.5 We will pick members of a population to
play the game repeatedly against each other, and assume that the game is
repeated sufficiently often that the errors generated by the process of learning
are removed (an assumption that will be relaxed in section 3.2). However,
we will assume that there is some fixed fitness cost which represents the costs
imposed by developing, maintaining, or implementing an adaptive strategy.
These costs are taken to be fixed regardless of the underlying game being
played.

Formally, we will represent these assumptions by constructing a new
game, GL by defining the utility function uL based on an underlying game
G. We will restrict ourselves to considering cases where every strategy in G
has a unique best response.6 The payoff function uL(·) is defined as follows:

1. uL(x, y) = πG(x, y) if x, y ∈ S

2. uL(L, y) = πG(B(y), y)− c

3. uL(x,L) = πG(x,B(x)) if x ∈ S

4. uL(L,L) =
∑

s∈NE α(s)
(

1
2
uG(s1, s2) + 1

2
uG(s2, s1)− c

)
c > 0 represents the cost of learning. So that the cost of learning does not

effect the results too substantially, we will restrict c to be smaller than the
difference between any two payoffs in the game. In condition 4, we assume
that there is a probability distribution, α over the possible Nash equilibria of
the game which represents the probability that learning will converge to that
equilibrium. The remainder of that function represents the idea that, given
one converges to a Nash equilibrium, it is arbitrary which role one plays.

5This has already excluded a set of possible learning rules which do not necessarily
converge to Nash equilibria. Extending this model to those cases, while interesting, is
beyond the scope of this paper.

6While this may seem a substantive assumption, we are only excluding an very small set
of games. Any game that features a strategy which does not have a unique best response
is not robust to epsilon perturbations of the payoffs.
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uL has not been fully specified at this point. We have not defined uL(s,L)
for a mixed strategy s. If there is a unique best response to the mixture we
will let uL(s,L) = uG(s, B(s)); the plastic individual finds the best response.
But if s is a part of a mixed strategy Nash equilibrium then any mixture over
the pure strategies in s is a best response to s. This is a more complicated
situation that is discussed in more detail below. For the time being we will
leave this case underspecified.7

With this in hand we can now investigate the stability properties of our
learning type L. Our first proposition shows that in many games, learning
cannot be an ESS.

Proposition 1. For all games G without a pareto dominant mixed strategy
Nash equilibrium, L is not an ESS of the game GL.

Proof. We will show that L is not an ESS by finding a strategy s such that
uL(s,L) > uL(L,L). Let s = maxs′ u

G(s′, B(s′)), i.e. the strategy which
does best against its best response among all strategies in G. Consider the
Nash equilibrium N of G which has the highest payoff to one of the players.
uG(s, B(s)) ≥ uG(Ni, N−i), by definition of s. By hypothesis, s is not a
mixed strategy. By condition 4, uG(Ni, N−i) > uL(L,L). So, as a result
uL(s,L) > uL(L,L).

No symmetric 2×2 game can have a pareto dominant mixed strategy Nash
equilibrium and so L cannot be an ESS for any 2 × 2 base game. However,
there are larger games that fall outside the scope of this proposition. As
an example consider Rock-Paper-Scissors, pictured in figure 1. In this game
the unique Nash equilibrium is a mixed equilibrium where each strategy is
played with equal probability. In this equilibrium the payoff to both players
is 0. Consider the extension of this game to include L. The payoff to a
population of learners is −c. But any invading pure strategy receives −1,
since this is the payoff of that strategy against its best response. So, no pure
strategy can invade. However, the mixed strategy which plays Rock, Paper,
and Scissors with equal probability does better against the population (0)
than the population does against itself, (−c).

7The extended game GL has a an odd feature: for some mixed strategies m of GL,
uL(m,L) will not be a weighted average of uL(s,L) for each s inm. This occurs because L’s
response to a mixture is different than its response to a pure type. It becomes important,
then, that we be careful to distinguish a monomorphic population of mixing types and a
polymorphic population of non-mixing types. When necessary mention will be made of
the intended interpretation.
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Rock Paper Scissors
Rock 0, 0 −1, 1 1,−1
Paper 1,−1 0, 0 −1, 1

Scissors −1, 1 1,−1 0, 0

Figure 1: Rock-Paper-Scissors

Whether proposition 1 holds in these cases depends critically on what
learning does when it encounters a mixture that constitutes a mixed strat-
egy Nash equilibrium. It is a feature of such mixtures that they make the
opponent indifferent between several pure strategies, and by extension indif-
ferent between all mixtures over those pure strategies. Different plausible
learning rules will behave in different ways, and thus may effect the stability
of L.

Rock Paper Scissors
Rock 0, 0 −1, 2 1,−1
Paper 2,−1 0, 0 −1, 1

Scissors −1, 1 1,−1 0, 0

Figure 2: Modified Rock-Paper-Scissors

For example consider the modified Rock-Paper-Scissor game in figure 2.
Suppose one player uses the strategy to play Rock with probability 1

4
, Paper

with probability 1
3
, and Scissors with probability 5

12
. This renders any strat-

egy by the opponent a best response. We have not specified what a learner
will do in this circumstance. Suppose the learner plays Scissors with prob-
ability one. This yields an expected payoff of − 1

12
for the mixed player.

The learners are able to coordinate on the mixed strategy equilibrium with
themselves, and so as a result achieve a higher payoff than the mixed players
achieve against the learners. This renders L an ESS.

Of course, this would be a rather bizarre learning rule: when indifferent
between several strategies it chooses the one which harms its opponent the
most. Suppose instead that learners randomly chose a strategy from those
available.8 Now, in the modified Rock-Paper-Scissors game, the mixture can
invade a population of learners.

8For instance this would be the case for Herrnstein reinforcement learning (cf. Roth
and Erev, 1995).
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Ultimately this shows that in games of this sort, where there are pareto
dominant mixed strategy Nash equilibria, the choices we make for the learn-
ing rule will have important effects on the stability of learning. It is possible
to make learning stable, but it does require some specific choices about the
response of the learning rule when all strategies are of equal value.

This caveat to the side, proposition 1 does not spell total doom for strate-
gic plasticity. In some games, plasticity can be maintained in some propor-
tion in a population. Consider the game Hawk-Dove pictured in figure 3.
This game, common in evolutionary biology, models animal conflicts where
individuals can choose to either escalate the conflict (Hawk) or back down
(Dove).

Hawk Dove
Hawk 0, 0 3, 1
Dove 1, 3 2, 2

Figure 3: Hawk-Dove

The only evolutionarily stable strategy of this base game is a mixed strat-
egy with some proportion of both Hawks and Doves. Suppose a polymorphic
population of both types which corresponds to this mixture; this mixture is
not stable in the extended game (with L) since L does better against the
mixed population than the population does against itself. L outperforms the
pure strategy types because it learns to play the best response to each pure
strategy; it plays Dove against Hawk and Hawk against Dove. While learn-
ing invades this mixture, we know from proposition 1 that it cannot be an
ESS itself. When we restrict consideration to the three pure types (Hawk,
Dove, and L), there is a stable mixture where L and Hawk are both repre-
sented. In this population, some proportion of individuals are plastic while
some proportion are not. Natural selection will sustain this polymorphism,
and so as a result we do not have complete elimination of plasticity.

Hawk-Dove represents one of three classes of symmetric 2x2 games. The
others are games which are dominance solvable (like the Prisoner’s Dilemma)
and coordination games (like the Stag Hunt). In these other two cases learn-
ing cannot be sustained in any proportion. In the first class (dominance
solvable games) one pure strategy is the best response to all others, since
learning will learn to play that strategy but incurs some cost, it fares strictly
worse in all scenarios than does the pure strategy itself.
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In coordination games the situation is rather more complex, but we can
again show that learning cannot be sustained. These games feature two pure
strategies, both of which are best responses to themselves. We can show that
there cannot be a mixed strategy ESS which contains both learning and any
strategy which is a best response to itself.

Proposition 2. Suppose a symmetric two player game G, a strategy s of G
such that s is a best response to itself, and mixed strategy Nash equilibrium
s∗ of GL which includes s and L. s∗ is not an ESS.

Proof. Suppose s is a best response to itself, s is played with non-zero prob-
ability in s∗, and that s∗ is an ESS. Since s∗ is a mixed strategy Nash equi-
librium in which s is represented u(s, s∗) = u(s∗, s∗). By hypothesis s∗ is an
ESS, so it must be the case that u(s∗, s) > u(s, s). Expanded this says,∑

i∈S−{L,s}

piπ(i, s) + psπ(s, s) + pL[π(s, s)− c] > π(s, s) (2)

Where pi represents the probability i is played in s∗. Reducing this equation
gives us, ∑

i∈S−{L,s}

piπ(i, s)− pLc > (1− ps − pL)π(s, s) (3)

Which is equivalent to,∑
i∈S−{L,s}

pi
1− ps − pL

(π(i, s)− π(s, s))− pLc

1− ps − pL
> 0 (4)

Since s is a best response to itself, π(i, s) − π(s, s) ≤ 0, and as a result
equation 4 cannot be satisfied.

This shows that Hawk-Dove like games represent a sort of special case
for sustaining learning. In any game where a strategy is a best response to
itself, learning can only be sustained in populations where that strategy is
absent.

So far we have assumed that the only costs imposed by learners was
on themselves. This coincides with understanding costs as being caused by
maintenance or development of the ability to learn. However, we might open
the door for L as an ESS by dropping this assumption. We will generalize
the notion of cost by allowing the costs to be imposed on all interactions.
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We will introduce cost function c : S × S → R which will represent the cost
for one strategy against another.

We are now generating a different game with the following payoff function:

1. uL(x, y) = πG(x, y)− c(x, y) if x, y ∈ S

2. uL(L, y) = πG(B(y), y)− c(L, y)

3. uL(x,L) = πG(x,B(x))− c(x,L) if x ∈ S

4. uL(L,L) =
∑

s∈NE α(s)
(

1
2
uG(s1, s2) + 1

2
uG(s2, s1)− c(L,L)

)
Given this generic representations of costs, we may ask: what is required

to make L an ESS? We will first consider cases where the cost imposed is
relatively constant across all strategies.

The following two propositions demonstrate that learners must learn to
play the socially optimal and equitable Nash equilibrium (if one exists), in
order for L to be an ESS.9

Proposition 3. Suppose there is no pareto dominant mixed strategy Nash
equilibrium in G. If c is such that |c(x, y)− c(w, z)| is sufficiently small for
all w, x, y, z and L is an ESS, then α(N) ≈ 1 for the socially optimal Nash
equilibrium N .

Proof. Let N ∈ NE be the Nash equilibrium that is best for one of its
players, that is for Ni, u(Ni, N−i) ≥ u(N ′j, N

′
−j) for all N ′ ∈ NE. By the

definition of ESS, uL(L,L) ≥ uL(Ni,L). Since N is a Nash equilibrium N−i
is a best response to Ni, so uL(Ni,L) = uG(Ni, N−i) − c(Ni,L) ≤ uL(L,L).
Substituting this yields,∑
s∈NE

α(s)

(
1

2
uG(s1, s2) +

1

2
uG(s2, s1)− c(L,L)

)
≥ uG(Ni, N−i)− c(Ni,L)

(5)
Since we are assuming that costs are relatively constant, we will assume they
are equal. As a result the average on the left side of 5 must be greater than
or equal to the payoff to the best possible payoff in a Nash equilibrium. This
can only be obtained when the socially optimal Nash equilibrium is the best
possible payoff for any strategy in equilibrium and α assigns the socially
optimal Nash equilibrium sufficiently high probability.

9A Nash equilibrium is socially optimal if the sum of payoff to both players is larger
(or as large) in that Nash equilibrium than in any other.
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When costs are relatively uniform, this proposition entails that the func-
tion α assigns near probability 1 to one Nash equilibrium. In particular, it
must assign probability 1 to the socially optimal Nash equilibrium – i.e., the
equilibrium which is best for both players considered together. This restricts
the class of possible learning rules which are ESS to a very small set. In
addition to this restriction on learning rules there is also a restriction on the
underlying game.

Proposition 4. Suppose there is no pareto dominant mixed strategy Nash
equilibrium in G. If c is such that |c(x, y)−c(w, z)| is sufficiently small for all
w, x, y, z and L is an ESS, then the Nash equilibrium N played by L against
itself is such that uG(N1, N2) ≈ uG(N2, N1).

Proof. By proposition 3, uL(L,L) = 1
2
uG(N1, N2) + 1

2
uG(N2, N1) − c(L,L).

Let uG(N1, N2) ≥ uG(N2, N1). Since L is an ESS, it must be the case that:

1

2
uG(N1, N2) +

1

2
uG(N2, N1)− c(L,L) ≥ uG(N1, N2)− c(N1,L) (6)

Again, ignoring c, this can only be satisfied when uG(N1, N2) = uG(N2, N1).

These two propositions together entail significant restrictions both on the
game and on the types of learning that may be stable. The game must feature
a symmetric, socially optimal Nash equilibrium and the learning phenotype
must learn to play that equilibrium almost all of the time.

But what if the costs imposed are not uniform? Could learning be sus-
tained in all games? The following proposition follows immediately from the
definition of ESS.

Proposition 5. Suppose there is no pareto dominant mixed strategy Nash
equilibrium in G and let s be a strategy of G which does the best against its best
response. If L is an ESS, then either c(L,L) < c(s,L) or c(L,L) = c(s,L)
and c(L, s) < c(s, s).

For L to be an ESS it must be more costly to be a non-learner than a
learner in a world of learners. The key to the evolutionary stability of learning
is the cost of not being a learner when interacting with learners. (This is
not to say, however, that it is intrinsically more costly to be a non-learner
than a learner – although such a case would satisfy the definition.) There
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are reasons one may think this may be the case (i.e. that c(L,L) ≤ c(s,L)).
For instance, the cost to learners may come from the time spent playing non-
best-responses while exploring the game. But, this exploration does not only
affect the learner, but also the learner’s opponent. Thus, depending on the
specifics of the game this exploration may be more costly to those interacting
with learners than the learners themselves.10 In section 3.2, we will consider
an idealized version of these “endogenous” costs.

3.2 Endogenous Costs of Learning

If we imagine that the cost function, c(x, y), is generated endogenously by L
playing other possible strategies while learning, we can incorporate it directly
into the utility function of the players. We will express the cost function as
the result of this exploration by L. This means that c(s, s′) = 0 for any
s, s′ ∈ S since neither player will be changing strategies and will simply
receive the payoff uL(s, s′). As a result, we will only consider cases where L
is involved.

For sake of tractability, we will focus on symmetric 2 × 2 games and re-
strict ourselves to pure-strategies and learners that always learn to play pure
strategy Nash equilibria (this is because it is not clear how how “deviations”
from mixed strategies ought to be calculated). We will ask the following
question: can L be an ESS when we express c(x, y) endogenously? Let ε be
the total proportion of stage-game plays where L deviates from their normal
behavior s∗i .

11 Let 0 < ε < 0.5. The endogenous cost can now be expressed
as part of the utility functions:

1. uL(L, s) = (1− ε)πG(s∗i , s) + επG(−s∗i , s)

2. uL(s,L) = (1− ε)πG(s, s∗i ) + επG(s,−s∗i )

3. uL(L,L) = (1−ε)2
2

(πG(s∗i , s
∗
j) + πG(s∗j , s

∗
i )) + (ε − ε2)πG(s∗i ,−s∗j) + (ε −

ε2)πG(−s∗i , s∗j) + ε2

2
(πG(−s∗i ,−s∗j) + πG(−s∗j ,−s∗i ))

10Another reason might be that several different games are being played and it is difficult
to distinguish them. This would be a form of “external” variation similar to a change in
payoff structure.

11For tractability reasons, we assuming that ε is the same regardless of the opponent,
which is not necessarily true of all learning rules. For instance, Herrnstein reinforcement
learning may have a higher ε against itself than against pure strategies. A detailed look
at Herrnstein reinforcement learning in this evolutionary setting is explored in (Zollman
and Smead, 2008).
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When costs to learning are made endogenous in this way, there is an
example of a 2× 2 game where L is an ESS: a subset of coordination games
(figure 4). To see this, let a = 2, x = 2−δ and b = 1 where δ < ε and each are
close to 0. Further, let (L,L) result in “attempting” to play socially optimal
NE (A,A). To see L is an ESS, we need only consider u(L,L) and u(s,L)
for s = A,B. With these values, letting δ → 0: uL(L,L) ≈ (2 − 2ε) + ε2;
uL(A,L) ≈ 2− 2ε; uL(B,L) ≈ 1 + ε. Thus, uL(L,L) > uL(A,L) > uL(B,L)
and hence L is an ESS.

A B
A a 0
B x b

Figure 4: A coordination game (a > x, a > b > 0).

We can vary a, b, x, and ε to create a class of examples. L will be an ESS
in this class whenever the following condition is satisfied:

a− x < bε

1− ε
(7)

There is an usual thing about this set of examples where L is an ESS,
however. L is not really playing a best response to itself. The mixed strategy
Nash Equilibrium is where each player plays A with probability b

a−x+b . So,
if p(A) is less than this, the best response to that mixed strategy is the
pure strategy B. Note that for L to be an ESS, we need (1 − ε) < b

a−x+b
which means that the exploration rate of L must be high enough that the
best response to the actual behavior of L is B not A as the learners are
“attempting” to play. Thus, there is a sense in which for L to be an ESS in
this case, learners need to best respond to what other learners are “trying”
to do and not their actual behavior.

This class of examples represents the only cases where L is an ESS. This
is expressed the fallowing proposition proved in the appendix.

Proposition 6. If G is a 2×2 symmetric game of a form other than the coor-
dination game above and we consider only pure strategies (and pure strategy
equilibria) then L is not an ESS of GL.

Proof in appendix A.
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3.3 Summary

We have shown that plasticity can be sustained in only very rare circum-
stances. When there is an exogenous cost to learning that is higher than
other strategies, a limited type of learning can only be an ESS in a very
restricted set of games. When the exogenous costs are approximately equal
to learners and those interacting with them, only specific learners in specific
games can be ESS. The only case where learning can generally be an ESS is
if the costs are greater to non-learners than to learners. While this is not im-
possible, it would require some argument to demonstrate this is a widespread
phenomenon.

With respect to endogenous costs modeled as errors in the game we found
that learning cannot be sustained except in a very narrow class of 2×2 games
and only then for learners of a peculiar sort. Overall there are not many cases
where learning can be sustained, and we should not expect to find stable pop-
ulations of all plastic types. However, thus far we have only been considering
the equilibria of these games, not the evolutionary dynamics. One might
wonder if plasticity is ever favored by natural selection – should we expect
the frequency of plasticity to increase in a population out of equilibrium?
We will now turn to this second consideration.

4 The Simpson-Baldwin effect

This history of the growth and later reduction of plasticity is one aspect
of what is known as the Baldwin effect (Baldwin, 1896).12 This aspect has
come to be called the Simpson-Baldwin effect, following its later explication
by Simpson (1953).

So far we have only discussed how evolution would eliminate or reduce
the number of adaptive individuals – the second component of the Simpson-
Baldwin effect. The first component, that natural selection would first select
for plasticity, is not uniformly common to our models.

Since learning plays the best response to every other strategy, it will often
be the case that it initially does better than some arbitrary mixture. This

12Discussions of the Baldwin effect often involve looking at how evolution affects an
organism’s norm of reaction and admit of a wide range of plasticity. Because we are
focusing on behavioral plasticity in simple games, our discussion here will differ from the
tradition and we will continue to assume individuals are either plastic (using the adaptive
strategy L from above) or not.
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Figure 5: The dynamics of a coordination game

Figure 6: The dynamics of a Hawk-Dove game
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Figure 7: The dynamics of a prisoner’s dilemma game

is not assured because for some mixtures that are sufficiently close to an
equilibrium the impact of the cost to learning, c, will be sufficient to make
learning worse than the population. However, in many cases of interest it
will be the case that learning is initially rewarded and then later harmed.

Figures 5-7 show the three simplices which result from considering the
three classes of symmetric 2x2 games.13 In each of these cases we find that
learning is initially better than average at most starting points – this is
represented by moving toward the top of the figure. In all three cases we see
that once learning represents a significant portion of the population, another
strategy can invade.

Figure 5 (a coordination game) and figure 7 (a prisoner’s dilemma) both
represent striking examples of the Simpson-Baldwin effect. Many trajectories
follow a path that initially provides substantial gains for learning, but once
there the population is then invaded by a superior pure strategy. As learning
becomes more frequent its presence changes the fitness of the other strategies
such that one of them is superior. In these cases we have a circumstance

13Lines in these simplices represent the trajectory of the discrete time replicator dynam-
ics for one of three canonical games: a pure coordination game with a pareto dominant
equilibrium, a prisoner’s dilemma, and a Hawk-Dove game. In these three cases the payoffs
range from 0 to 3 and the cost of learning is 0.1.
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which conforms exactly to the process described by Baldwin.14

5 Conclusion

We have shown that frequency dependent selection, conceived of as game
theoretic interaction, often cannot sustain populations totally composed of
behaviorally plastic individuals. Furthermore, mixed populations containing
plastic types can be sustained only under specific conditions.15 This demon-
strates an important limitation to the sort of environmental complexity that
can provide the selective pressure for the evolution of complex traits such
as cognition: for the evolution of such traits, we will need more than simple
social interaction.

Instead, we assert that the explanation for the evolution of these traits is
likely to be found outside of strategic interaction and is instead found in ex-
ternal environmental variation. This variation can effect strategic situations
– a game whose payoff function changes over time, for instance – but the
source of the variation must be external to features of the population itself.
This has significantly limited the types of environmental variation that can
be appealed to in order to explain plasticity. In addition, our results demon-
strate that the Simpson-Baldwin effect may be more widespread in strategic
situations than previously supposed.
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14Further discussion of the relationship between these results and the different aspects
of the Baldwin effect occurs in (Zollman and Smead, 2008).

15Like all such modeling, we are limited by our assumptions. We are aware of a circum-
stance where learning subject only to endogenous cost is stable in a Prisoner’s dilemma
game. But this case violates the assumptions of section 3.2. The basin of attraction in
this case is small, and it will be eliminated by the introduction of very small exogenous
costs. While we cannot demonstrate the case is unique, we suspect such counter-examples
will be similarly fragile.
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A Proof of proposition 6

Proof. Since G is a 2 × 2 game we know that there is only one possible
deviation from any NE. Thus, we only need to consider pure strategies NE
in 3 cases (see figure 8).

A B
A a y
B x b

Figure 8: Generic 2× 2 Game.

1. Strictly Dominance Solvable: If G is strictly dominance solvable, then
let s be the strictly dominant strategy. Without loss of generality, let
x = 0 and A be the strictly dominant strategy (a > 0 and y > b). We
need to show that u(A,L) > u(L,L) or:

(1− ε)a+ εy > (1− ε)2a+ (ε− ε2)x+ ε2b (8)

And, since y > b and ε < 0.5 this is necessarily satisfied.

2. Hawk Dove: Without loss of generality, let a = 0, b ≥ 0, x > a and
y > b. We need to show that either A or B can invade L.

(i) If x ≥ y, then let s = B:

u(L,L) =
1

2
[(1− ε)2x+ ε2y + (1− ε)2y + ε2x] + (ε− ε2)b (9)

and
u(B,L) = (1− ε)x+ εb (10)

Hence, u(L,L) < u(B,L) and L is not an ESS.

(ii) If y > x then L will resist invasion of B only if u(L,L) ≥ u(B,L),
expanded these are:

u(B,L) = (1− ε)2x+ (ε− ε2)x+ (ε− ε2)b+ ε2b (11)
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and

u(L,L) = (1− ε)2 (y + x)

2
+ (ε− ε2)b+ (ε− ε2)0 + ε2

(y + x)

2
(12)

which gives us that L will be an ESS only if:

b ≤ y − x
2ε2

− y

ε
+ x+ y (13)

Considering strategy A, we can state that will resist invasion of A only
if u(L,L) ≥ u(A,L), expanded u(A,L) is:

u(A,L) = (1− ε)2y + (ε− ε2)y + (ε− ε2)0 + ε20 (14)

When this is taken in conjunction with u(L,L) gives us that L will be
an ESS only if:

b ≥
y−x
2ε

+ x− ε(y + x)

1− ε
(15)

These two inequalities cannot be satisfied when y > x > 0 and ε < 0.5.

3. Coordination: Without loss of generality, let y = 0, a > x > 0, and
b ≥ a, (coordination games other than those discussed above). We just
need to show that u(B,L) > u(L,L). Expanding these gives us:

u(B,L) = (1− ε)2b+ (ε− ε2)b+ (ε− ε2)x+ ε2x (16)

and if (L,L) “attempts” to play the superior pure-strategy Nash equi-
librium (B,B) (their highest possible payoff) then we have:

u(L,L) = (1− ε)2b+ (ε− ε2)x+ (ε− ε2)0 + ε2a (17)

Thus, we need (ε − ε2)b + ε2x > ε2a which is satisfied due to ε < 0.5
and b ≥ a and hence, L is not an ESS.
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