I Godel on Computability

(to appear in: Philosophia Mathematica)

Wilfried Sieg
July 21, 2005
Technical Report No. CMU-PHIL-174

Philosophy
Methodology
Logic

Carnegie Mellon

Pittsburgh, Pennsylvania 15213

Godel on computability”
Wilfried Sieg

Carnegie Mellon University

Around 1950, both Godel and Turing wrote papers for broader audiences.!
Godel drew in his 1951 dramatic philosophical conclusions from the general
formulation of his second incompleteness theorem. These conclusions concerned
the nature of mathematics and the human mind. The general formulation of the
second theorem was explicitly based on Turing’s 1936 reduction of finite
procedures to machine computations. Turing gave in his 1954 an understated
analysis of finite procedures in terms of Post production systems. This analysis,
prima facie quite different from that given in 1936, served as the basis for an
exposition of various unsolvable problems. Turing had addressed issues of
mentality and intelligence in contemporaneous essays, the best known of which
is of course Computing machinery and intelligence. Godel's and Turing’s
considerations from this period intersect through their attempt, on the one hand,
to analyze finite, mechanical procedures and, on the other hand, to approach
mental phenomena in a scientific way.

Neuroscience or brain science was an important component of the latter
for both: Godel's remarks in the Gibbs Lecture as well as in his later
conversations with Wang and Turing’s Intelligent Machinery can serve as clear
evidence for that? Both men were convinced that some mental processes are
not mechanical, in the sense that Turing machines cannot mimic them. For
Godel, such processes were to be found in mathematical experience and he was
led to the conclusion that mind is separate from matter. Turing simply noted
that for a machine or a brain it is not enough to be converted into a universal

(Turing) machine in order to become intelligent: “discipline”, the characteristic

* Remarks and suggestions from Martin Davis, John Dawson, Solomon Feferman, Clark Glymour, Robert
Hadley, Hourya Sinaceur, Guglielmo Tamburrini, Richard Tieszen, and Neil Tennant have improved this
essay; my sincere thanks to all.

1Iam in particular referring to Gddel 1951 and Turing 1954, but also to Gédel 1947 and Turing 1950.
2Godel 1951, p. 312, Wang 1974, pp. 324-6, and Turing 1948 pp.120-1.

feature of such a machine, has to be supplemented by “initiative”, and it is a
central scientific task “to discover the nature of this residue as it occurs in man,
and to try and copy it in machines”. (Turing 1948, p. 125)

In this essay I focus exclusively on Goédel’s multifaceted work concerning
the analysis of mechanical procedures, which he seems to have begun sometime
around 1950. His considerations rely emphatically on Turing’s paper On
computable numbers and culminate in the enigmatic formulation of the 1964
Postscriptum to his Princeton Lectures where he writes, “Turing’s work gives an
analysis of the concept ‘mechanical procedure’... This concept is shown to be
equivalent with that of a ‘“Turing machine’.” Gédel’s analytic work must be seen
in contrast with, or as a deepening of, his earlier attempts to explicate effectively
calculable functions as general recursive ones.

Godel introduced general recursive functions in his Princeton Lectures.
Their definition is explicitly connected with the considerations of the Hilbert
School on calculability and in particular with Herbrand’s characterization of
classes of finitistically calculable functions. His presentation is historically and
conceptually intertwined also with Church’s proposals to identify effective
calculability first with A-definability and then with general recursiveness. Only
the recognition of the absoluteness of general recursive functions, however,
convinced Godel in 1936 that a stable and important class of functions had been
found.® He emphasized this feature of general recursive functions in the
strongest possible terms even ten years later, when he made his Remarks before
the Princeton bicentennial conference on problems in mathematics.

It is deeply ironic that Godel, in his Gibbs lecture, views the reduction of
the concept of finite procedure to that of a finite machine as “the most
satisfactory way” to arrive at a precise definition, whereas Turing, in his 1954

essay, does not even mention machines: his analysis is presented purely in terms

% This observation is formulated as a Bemerkung added in proof to Godel 1936, and as a Remark in the
paper’s first translation that was published on p. 83 of The Undecidable, i.e.,, Davis 1965. The significance of
this discovery was described by Godel in a letter to Kreisel of 1 May 1968: “That my [incompleteness]
results were valid for all possible formal systems began to be plausible for me (that is since 1935) only
because of the Remark printed on p. 83 of ‘The Undecidable’ But I was completely convinced only by
Turing’s paper.” This quote is from Odifreddi (p. 65).

of combinatorial operations on finite discrete configurations, and his thesis states
that all such combinatory processes can be reduced to Post canonical systems. I
will explore how these crisscrossing attempts of characterizing mechanical
procedures were motivated and how they unfolded in the two decades from
1934 to 1954. The unfolding in Godel’s case remained incomplete even during
the following two decades. After all, Godel’s 1972 charged Turing with having
committed a philosophical error in the very work that provided, according to
Godel’s judgment in 1964, the basis for “a precise and unquestionably adequate

definition of the general notion of formal system”.

L. Effective calculability*

The following is a brief reminder of the reasons why a rigorous mathematical
formulation of this informally understood concept was crucial. For Godel, it was
essential to give a general definition of formal system and, thus, to have the
means of formulating his incompleteness theorems in full generality for all
formal systems (and not just for Principia Mathematica and related systems).
Turing was fascinated by Hilbert’s decision problem, the Entscheidungsproblem in
the title of his 1936 paper, and suspected that it had a negative solution; but to
give such a solution Turing had to characterize first the mechanical procedures
involved in the very formulation of the problem. Church, finally, wanted to
address the logical decision problem, but also more standard mathematical
problems, for example in his 1936, “the problem of topology, to find a complete
set of calculable invariants of closed three-dimensional simplicial manifolds under
homeomorphisms”. Thus, we see in the work of these three pioneers the
absolute need for a mathematically precise concept corresponding to the informal
notion of effective calculation or mechanical procedure.

This correspondence has since been articulated as Church’s or Turing’s
Thesis. In early 1934 Church had proposed in a conversation with Godel to
identify effective calculability of number-theoretic functions with their A-

* This part of the history of computability has been widely discussed, for example, in Gandy 1988 and Soare 1999;
contributions to that discussion, with a distinctive perspective on Godel’s and Turing’s impact, are found in my papers
1994, 1997, and 2005.

definability. More than a year later he reported in a letter to Kleene on Godel’s
reaction to his proposal:® Godel viewed it as “thoroughly unsatisfactory” and
made a counterproposal, namely, “to state a set of axioms which would embody
the generally accepted properties of this notion [i.e., effective calculability], and
to do something on that basis”. However, instead of formulating axioms for that
notion in his ongoing Princeton Lectures, Godel modified Herbrand’s
characterization of classes of finitistically calculable functions and introduced the
class of general recursive ones. The step from Herbrand’s formulation to
Godel’s is described in detail in my 2005.

Godel defined general recursive functions as those functions whose values
can be computed in an equational calculus, using some recursion equations as
starting points and extremely elementary substitution and replacement
operations as inference rules. Church 1936 and Hilbert & Bernays 1939 considered
more general calculi in which such computations can be carried out. They
explicated the informal concept of effective calculability for number-theoretic
functions by one core notion, namely, the formal computability of their values in
a logic (as Church put it) or in a deductive formalism (as Hilbert & Bernays
suggested). Godel did not think of general recursiveness as a rigorous
explication of effective calculability. What reads prima facie as a statement of
Church’s Thesis, namely footnote 3 of Godel 1934, is not to be interpreted in that
way at all. Godel wrote to Martin Davis, “... it is not true that footnote 3 is a
statement of Church’s Thesis. The conjecture stated there only refers to the
equivalencé of ‘finite (computaﬁon) procedure’ and ‘recursive procedure’.
However, 1 was, at the time of these lectures, not at all convinced that my
concept of recursion comprises all possible recursions; ...” What Godel tried to
do is to characterize the computations of values of recursively specified number-
theoretic functions by uniform and arithmetically meaningful steps.

Indeed, for Godel, the crucial point was the specification of systematic
rules for carrying out computaﬁohs or, to put it differently, for deriving

equations. That point of view was also expressed by Kleene, who wrote with

5 Church’s letter to Kleene of 29 November 1935 was partially published in Davis 1982.

respect to the definition of general recursive functions that “it consists in
specifying the form of equations and the nature of the steps admissible in the
computations of the values, and in requiring that for each given set of arguments
the computation yield a unique number as value”. (Kleene 1936, p. 727) In a letter
to van Heijenoort, dated 14 August 1964, Godel asserted, “it was exactly by
specifying the rules of computation that a mathematically workable and fruitful
concept was obtained”. The formulation of the equational calculus with purely
formal, mechanical rules brought out clearly what Herbrand, according to Godel,
had failed to see, namely, “that the computation (for all computable functions)
proceeds by exactly the same rules”.

Church defended the identification of effective calculability with general
recursiveness in his 1935 and tried to prove that every effectively calculable
function is general recursive in Church 1936. By then, Church had significant
additional information with which to support his proposal, namely, i) the quasi-
empirical work of Kleene and Rosser showing that all known effectively
calculable functions are indeed A-definable, and ii) the mathematical equivalence
of A-definability with genefal recursiveness (but later also with p-recursiveness
that had been introduced in Kleene 1936). Church’s attempt to prove that every
effectively calculable function is general recursive was, however, semi-circular in
the sense that he assumed without good reason that the necessarily elementary
calculation steps have to be recursive.® (Adapting the ideas underlying the proof
of Kleene’s normal form theorem, Church’s argument using this recursiveness
assumption is perfectly direct; Gandy called it appropriately the “step-by-step
argument”.)

Hilbert & Bernays introduced in Supplement II of their 1939 the concept of
a reckonable function. They explicitly imposed recursiveness conditions on
deductive formalisms and proved that, if formalisms satisfy these conditions,
then they allow the calculation of the values for exactly the general recursive

functions. Their procedure can be viewed as embedding Gédel’s equational

6 This semi-circularity and the proof based on Church’s “central thesis” are described in my 1997.

calculus into formalisms satisfying the recursiveness conditions. The crucial
condition requires the formalisms’ proof predicates to be primitive recursive.
Their mathematically rigorous presentation supports the claim, relative to
formalisms satisfying the recursiveness conditions, that the general recursive
functions are absolute in the sense in which Godel formulated matters at the

Princeton meeting of 1946; that sense is discussed in the next section.

IL. Absoluteness
The Princeton meeting is of interest not only because of Gédel’s contribution, but
also because of Tarski’s talk that was focused on the decision problem.” Tarski’s
choice of the decision problem as the main concern for the conference was
motivated, as he put it, historically, materially, and heuristically: historically, as
he connected it directly to Hilbert's concerns in 1900; materially, as he thought
“that the task of logic is to mechanize thinking”; heuristically, as “many diverse
problems can be couched in terms of it”. The decision problem raised for Tarski
the intuitive question, is there “a mechanical means of deciding whether any
given statement of a formal system is a theorem”. It appeared to him that “the
precise instrument for treating the decision problem is the Godel-Herbrand
notion of a general recursive function”, and he argued that the problem'’s precise
formulation coincides with the mathematical question, whether the set of
theorems of a formal theory is recursive. In his argument Tarski used as an
intermediate step the unsupported claim that the theorems of any formal system
are recursively enumerable, as Church had done in 1936. He admitted that some
logicians had doubts as to the adequacy of general recursiveness “to handle the
intuitive content of the decision problem”, yet he refrained from further
remarks, since another speaker was to address the issue. It is likely that he had

in mind Kleene or Godel. As we will see, Godel did refer to Tarski’s talk and

7 The following remarks are all based on the texts presented in Sinaceur 2000. Of interest in this context is
also Tarski’s letter to Godel of 10 December 1946, responding to a letter from Gédel in which the topic of
Godel's Princeton talk had been described. (These letters were exchanged before the meeting.)

asserted that the absoluteness of general recursiveness makes that notion so
significant.

In 1936 Godel had already made an absoluteness claim for higher-type
extensions of number theory in the remark added to his brief note On the length
of proofs; the system S; is classical arithmetic, whereas for i>1 the S; are the

systems of arithmetic of order i. Here is the claim:

It can, moreover, be shown that a function computable in one of the systems S;, or even in a
system of transfinite order, is computable already in S;. Thus the notion ‘computable’ is in a
certain sense ‘absolute’, while almost all metamathematical notions otherwise known (for
example, provable, definable, and so on) quite essentially depend upon the system adopted.
(Collected Works I, p. 399)

Ten years later Godel reemphasized absoluteness, now understood in a more
general way. In his contribution to the Princeton meeting, he considers not just
higher-type extensions of arithmetic, but any formal theory that contains
arithmeticc. In a footnote added in 1965, Godel makes that broadened

absoluteness claim explicit:

To be more precise: a function is computable in any formal system containing arithmetic if and
only if it is computable in arithmetic, where a function f is called computable in S if there is in S
a computable term representing f. (Collected Works II, p. 150)

In both formulations we have a clear meta-mathematical claim. As the
earlier one pertains to particular, concretely presented formal theories, the step-
by-step argument succeeds directly. The critical question is how the later claim
can be proved, ie., the assertion that functions computable in any formal system
(containing arithmetic) are general recursive. Obviously, one has to exploit in
some way the formal character of the system, for example, by making the
assumption of Church or by imposing the recursiveness conditions of Hilbert &
Bernays. Either way of proceeding reveals the relativity of Godel’s absoluteness.
This is particularly damaging to Godel’s primary motivation for obtaining a
rigorous notion of effective calculability: after all, a characterization of formal
theories was needed for the general formulation of his incompleteness theorems,
but here he presupposes a mafhematically sharpened concept. of such theories.

It is important to note that Church and Godel at this point had very
similar methodological views. Church’s perspective on absoluteness comes out,

for example, in a fascinating letter he sent to the Polish logician Pepis on 8 June

1937. (The fuﬂ text of the letter is found in my 1997, pp. 175-6.) Pepis had
informed Church that he was engaged in finding an effectively calculable
function that is not recursive. Church articulated in his reply an openly skeptical
attitude roughly as follows: If there were such a function f, then for any given a
there must exist a b together with a mathematical proof of f{z)=b.8 This proof in
turn must be formalizable in an extension, by new principles, of Principia
Mathematica or other systems of symbolic logic. Any such new principle would
have to be of a very complicated, not general recursive, sort and should raise
concerns about its effective applicability. In sum, the assumption that f is
effectively calculable, but not recursive, would force its computability in a theory
that is no longer recursively presentable. This is a fittingly coherent perspective
and parallels Godel’s.

The efforts of explicating effective calculability via computability in
appropriate calculi and establishing absoluteness claims do not overcome the
stumbling block for a general analysis, ie., they do not provide a systematic
reason for insisting that the elementary steps in computations have to be
recursive. As we will see, Turing’s work addresses this stumbling block directly.
At the Princeton meeting Godel mentioned Turing’s notion of machine
computability; however, it is only mentioned alongside general recursiveness
without any emphasis that it might have a special role. Godel starts his lecture
with, “Tarski has stressed in his lecture (and I think justly) the great importance
of the concept of general recursiveness (or Turing’s computability).” He

continues,

It seems to me that this importance is largely due to the fact that with this concept one has for
the first time succeeded in giving an absolute definition of an interesting epistemological notion,
i.e., one not depending on the formalism chosen. (Collected Works II, p.150)

The philosophical significance of the notion is thus formulated in terms of its

absolute definition, which makes it independent from particular formalisms. It is

& This remark obviously reflects Church’s strong belief that every effectively calculable function must be
. computable in a logic; he adds to it parenthetically, “at least if we are not agreed on this then our ideas of
effective calculability are so different as to leave no common ground for discussion”.

not pointed out, however, that the correctness of the absoluteness claim depends
on the fact that one is dealing with appropriately restricted formalisms.

Only in the Gibbs Lecture does Turing’s computability become publicly a
focal point for Godel’s attempt to characterize effective calculability. There he
explores the implications of the incompleteness theorems, not in their original
formulation, but rather in a “much more satisfactory form” that is “due to the
work of various mathematicians”. He stresses, “The greatest improvement was
made possible through the precise definition of the concept of finite procedure,
which plays such a decisive role in these results.” In a footnote he explains what
he understands by a “finite procedure” and points to the equivalent concept of a
“computable function of integers”, i.e., a function f “whose definition makes it
possible actually to compute f{n) for each integer n”. There are, Gédel points
out, different ways of arriving at a precise definition of finite procedure, which all
lead to exactly the same concept. However, and here is the brief substantive
remark on Turing, “The most satisfactory way ... [of arriving at such a
definition] is that of reducing the concept of finite procedure to that of a machine
with a finite number of parts, as has been done by the British mathematician

Turing.” (Collected Works II1, pp. 304-5)

III. Finite machines
Godel does not expand, in the Gibbs Lecture, on the brief remark just quoted. In
particular, he gives no hint of how reduction is to be understood. There is no
explanation of why such a reduction is the most satisfactory way of getting to a
precise definition or, for that matter, of why the concept of a machine with a
finite number of parts is equivalent to that of a Turing machine.® At this point, it
seems, the ultimate justification lies in the pure and perhaps rather crude fact that
finite procedures can be reduced to computations of finite machines. It is most

interesting to note that Godel elucidated already in his 1933, as others had done

% It was only Robin Gandy who analyzed the concept of machine computation in his 1980, i.e., he attempted
to characterize computations of “discrete mechanical devices”, excluding explicitly analog machines. Cf.
my 2002,

before him, the mechanical feature of effective calculations by pointing to the
possibility that machines carry them out. When insisting that the inference rules
of precisely described proof methods have to be “purely formal”, he explains:

[The inference rules] refer only to the outward structure of the formulas, not to their meaning, so
that they could be applied by someone who knew nothing about mathematics, or by a machine.
This has the consequence that there can never be any doubt as to what cases the rules of
inference apply to, and thus the highest possible degree of exactness is obtained. (Collected
Works III, p. 45)

In the logic lectures Godel gave at Notre Dame during the spring term of 1939,
he discussed Hilbert’s logical decision problem in an informal way, after having
put it into the historical context of Leibniz’s “Calculemus”.’® However, before
arguing that results of modern logic prevent the realization of Leibniz’s project,
Godel asserts that the rules of logic can be applied in a “purely mechanical” way
and that it is therefore possible “to construct a machine which would do the
following thing”:

The supposed machine is to have a crank and whenever you turn the crank once around the
machine would write down a tautology of the calculus of predicates and it would write down
every existing tautology ... if you turn the crank sufficiently often. So this machine would
really replace thinking completely as far as deriving of formulas of the calculus of predicates is
concerned. It would be a thinking machine in the literal sense of the word. For the calculus of
propositions you can do even more. You could construct a machine in form of a typewriter such
that if you type down a formula of the calculus of propositions then the machine would ring a
bell [if the formula is a tautology] and if it is not it would not. You could do the same thing for
the calculus of monadic predicates.

Having formulated these positive results, Godel asserts, “it is impossible to
construct a machine which would do the same thing for the whole calculus of
predicates”, and continues:

So here already one can prove that Leibnitzens [sic!] program of the “calculemus” cannot be
carried through, i.e. one knows that the human mind will never be able to be replaced by a
machine already for this comparatively simple question to decide whether a formula is a
tautology or not.

I mention these matters only to indicate the fascination Godel had with the
concrete mechanical realization of logical procedures (and his penchant for
overly dramatic formulations).

The manuscript 1937 was a draft of a lecture Gédel never delivered, and

its content may have been alluded to by Tarski in his Princeton talk. Godel

" This is Godel 1939. As to the character of these lectures, see also Dawson, p. 135.

10

examines there general recursiveness and Turing computability in great detail,
with a methodological perspective that seems to be different from that of the
Gibbs Lecture. He gives first, on pp. 167-8, a perspicuous presentation of the
equational calculus and claims outright that it provides “the correct definition of
a computable function”. Then he asserts, “That this really is the correct definition
of mechanical computability was established beyond any doubt by Turing.”
How did Turing establish that fact? Here is Godel’s answer:

He [Turing] has shown that the computable functions defined in this way [via the equational
calculus] are exactly those for which you can construct a machine with a finite number of parts
which will do the following thing. If you write down any number ny, ... n, on a slip of paper
and put the slip of paper into the machine and turn the crank, then after a finite number of
turns the machine will stop and the value of the function for the argument ny, ... n, will be
printed on the paper. (Collected Works III, p. 168)

The implicit claim is obviously that all mechanical procedures must be executable
by machines with a finite number of parts. As above, we can raise the question,
why should such machines be Turing machines? ,

Godel does not answer this question; but that is not the crucial issue for
my purposes at this point. Rather, I intend to look at the structure of the
argument for the claim, “That this really is the correct definition of mechanical
computability was established beyond any doubt by Turing.” A literal reading
amounts to this: the characterization of the computations of number-theoretic
functions via the equational calculus is taken by Goédel to provide “the correct
definition of computable function”. That the class of computable functions is co-
extensional with that of mechanically computable ones is then guaranteed by
(what Godel calls) Turing’s proof of the equivalence of general recursiveness and
Turing computability.!! As there is no reason given for the first step in this
argument, it really is to be viewed as a direct appeal to Church’s Thesis. The
second important step is justified by “Turing’s proof”.

If we go beyond the literal reading and think of the argument in terms of
Turing’s actual analysis (described in greater detail in the next section), then we

could arrive at two parallel interpretations.

11 In Turing’s 1936 general recursive functions are not mentioned. Turing established in an Appendix to his
paper the equivalence of his notion with A-definability. As Church and Kleene had already proved the
equivalence of A-definability and general recursiveness, “Turing’s Theorem” is established.

11

I) Turing starts out in his 1936 with calculations carried out by a (human)
computer and argues that they can be taken to involve only very elementary
processes; these processes can be carried out by a Turing machine that operates
on strings of symbols. Godel, this interpretation would maintain, takes the
computations in the equational calculus somehow as “canonical representations”
of the computer’s calculations.

II) Turing states that the machines that operate on strings are easily seen to be
equivalent to machines that operate on individual symbols; Godel appeals to
“Turing’s proof” that recursiveness and Turing computability are equivalent.

The central analytic claims are hidden in I) and are unargued for in Gédel’s case,
whereas II) consists of mathematical proofs in both cases. 1 cannot see at all,
how Turing’s reductive steps can be adapted to argue for Gddel’s analytic claim.
After all, Turing shifts from arithmetically meaningful steps to symbolic
processes, which underlie them and satisfy restrictive boundedness and locality
conditions. These conditions cannot be imposed on arithmetic steps and are not
satisfied by computations in the equational calculus. I will come back to these
issues below.

Notice that in Godel’s way of thinking about matters at this juncture, the
mathematical theorem stating the equivalence of Turing computability and
general recursiveness plays a pivotal role. Church in his 1937 review of Turing’s
paper sees the situation in a quite different light. He asserts that Turing
computability has the advantage over general recursiveness and A-definability of
“making the identification with effectiveness in the ordinary (not explicitly
defined) sense evident immediately - i.e. without the necessity of proving

preliminary theorems”. Church’s more detailed argument starts out as follows:

The author [Turing] proposes as a criterion that an infinite sequence of digits 0 and 1 be
“computable” that it shall be possible to devise a computing machine, occupying a finite space
and with working parts of finite size, which will write down the sequence to any desired
number of terms if allowed to run for a sufficiently long time. As a matter of convenience,
certain further restrictions are imposed on the character of the machine, but these are of such a
nature as obviously to cause no loss of generality - in particular, a human calculator, provided
with pencil and paper and explicit instructions, can be regarded as a kind of Turing machine.

12

Church then draws the conclusion, “It is thus immediately clear that
computability, so defined, can be identified with ... the notion of effectiveness as

14

it appears in certain mathematical problems These are fascinating
considerations, but put the cart before the horse or, rather, reverse the direction
of Turing’s analysis. Informal calculations are simply identified with
computations of finite machines that have a finite number of working parts.
Those machines, Church claims, are up to convenient restrictions really Turing
machines. As a human calculator can be regarded as a Turing machine, Turing
computability can consequently be identified with effectiveness.

In a deep sense neither Church nor Goédel recognized the genuinely
distinctive character of Turing’s analysis, ie., the move from arithmetically
motivated calculations to general symbolic processes that underlie them. Most
importantly in the given intellectual context, these processes have to be carried
out programmatically by human beings: the Entscheidungsproblem had to be
solved by us in a mechanical way; it was the normative demand of radical
intersubjectivity between humans that motivated the step from axiomatic to
formal systems.’> It is for this very reason that Turing most appropriately
brings in human computers in a crucial way and exploits the limitations of their

processing capacities, when proceeding mechanically.

IV. Mechanical computors
Turing’s work on computability is considered further in other writings of Godel,
or perhaps it would be better to say that the work appears as a topic of
aphoristic remarks. Indeed, there are only three remarks that were published
during Godel's lifetime: i) the Postscriptum to the 1931 incompleteness paper, ii)
the Postscriptum to the 1934 Princeton Lecture Notes, and iii) the note A
philosophical error in Turing’s work. In addition, we now have access to an

informative letter to Ernest Nagel, which Godel wrote on 25 February 1957, but

.'* That aspect was particularly clearly expressed by Frege in the Preface to volume I of Grundgesetze der
Arithmetik when he compares his presentation with that of Euclid; the relevant passage is found on pp. 117-
8 of Translations from the Philosophical Writings of Gottlob Frege, Peter Geach and Max Black (eds.), Third
Edition, Blackwell, 1980.

13

never mailed. Finally, Hao Wang reports in his book From Mathematics to
Philosophy on Godel’s views; of particular and pertinent interest are pp. 81-95
(under the heading Mechanical proceduresy and pp. 324-326 (under the heading
Godel on minds and machines). The latter section of the book is a brief report on
the Gibbs Lecture and the note A philosophical error in Turing’s work, both of
which had not been published yet. The former section contains remarks of
Godel’s on general recursive functions as well as a detailed discussion of Turing
1936, however, from Wang's text it is not at all clear whether that discussion
reflects Godel’s understanding.”

In the letter to Nagel, Godel points out that Turing and Post clarified the
general concept of formalism and that this clarification made the general
formulation of the first incompleteness theorem possible. The brief Postscriptum
added to 1931 on 28 August 1963 emphasizes this point for both incompleteness

theorems; here is the full text:

In consequence of later advances, in particular of the fact that due to A.M. Turing’s work a
precise and unquestionably adequate definition of the general notion of formal system can now
be given, a completely general version of Theorems VI and XI is now possible. That is, it can
be proved rigorously that in every consistent formal system that contains a certain amount of
finitary number theory there exist undecidable arithmetic propositions and that, moreover, the
consistency of any such system cannot be proved in the system. (Collected Works I, p. 195)

In the more extended Postscriptum written for the 1934 Princeton Lectures and
dated 3 June 1964, Godel repeats the above remark almost literally, but then
seems to state a good reason why Turing’s work provides the basis for a
“precise and unquestionably adequate definition of the general concept of formal
system”:

Turing’s work gives an analysis of the concept of “mechanical procedure” (alias “algorithm” or
“computation procedure” or “finite combinatorial procedure”). This concept is shown to be
equivalent with that of a “Turing machine”.

In a footnote attached to the last sentence Godel refers to Turing 1936 and points

to the section in which Turing discusses the adequacy of his machine concept; this

13 There is one new consideration reported in Wang’s book (pp. 84-85): the perception of concepts together
with the claim that Turing “brought us to the right perspective” and helped us to perceive “the sharp
concept of mechanical procedures”. - Wang’s A Logical Journey, MIT Press, 1996, discusses in Chapter 6 the
issues surrounding minds and machines; that discussion throws some additional light on the presentation
in Wang 1974.

14

is section 9, entitled The extent of the computable numbers."* Godel emphasizes in
the footnote that “previous equivalent definitions of computability”, including
general recursiveness and M-definability, “are much less suitable for our
purposes”. But there is no further elucidation by Godel of the special character
of Turing computability in this analytic context. That is unfortunate, as one
would like to know how the analysis proceeds and how the (analyzed) concept is
shown to be equivalent to Turing computability. We could go back to the
parallel interpretations of 1937 and see whether they provide a key to addressing
the problems. The difficulties we encountered there are, however, compounded
here by Godel’s concrete reference to Turing’s paper. So one should examine
what Turing actually argues for in that part of his paper. I have done this in
other publications, so I'll give only a very condensed version here.

Call a human computing agent who proceeds mechanically a computor;
such a computor operates on finite configurations of symbols and, for Turing,
deterministically so. The computer in Turing’s paper is such a computor;
computers in the modern sense are called machines. So the issue here is, how do
we step from calculations of computors to computations of Turing machines?
Turing explores “the extent of the computable numbers” (or, equivalently, of the
effectively calculable functions) by considering two-dimensional calculations “in a
child’s arithmetic book”. Such calculations are reduced to symbolic steps on
linear configurations of such a simple character that they can be carried out by a
Turing machine that operates on strings (instead of just letters). Indeed, Turing’s
argument concludes on pp. 137-8 as follows: “We may now construct a machine
to do the work of the computer. ... The machines just described [string
machines] do not differ very essentially from computing machines as defined in
§ 2 [letter machines], and corresponding to any machine of this type a computing

machine can be constructed to compute the same sequence, that is to say the

14 In A philosophical error in Turing’s work, Godel points to the next page of Turing 1936 paper and claims
that Turing gives on this second page of section 9 “an argument which is supposed to show that mental
procedures cannot go beyond mechanical procedures. However, this argument is inconclusive.” (Collected

Works 11, p. 306.) Turing argues there that only finitely many different states of mind affect the mechanical
calculation of a human computer; he does not make any claim concerning general mental processes as Godel
assumes. (See Webb's Introductory Note to 1972.)

15

sequence computed by the computer.” In the course of his reductive argument,
Turing formulates and uses well-motivated constraints.

To articulate these constraints, it is best to use the description of Turing
machines as Post production systems. This is appropriate for a number of
reasons. Post introduced this description in 1947 to establish that the word-
problem of certain Thue-systems is unsolvable. Turing adopted it in 1950 when
extending Post's results, but also in 1954 when writing his wonderfully
informative and informal essay on solvable and unsolvable problems.!5 This
description reflects directly the move in Turing 1936 to eliminate states of mind
for computors® in favor of “more physical counterparts” and makes it perfectly
clear that Turing is dealing throughout with general symbolic processes. The
restricted machine model that results from his analysis obscures that fact.

It is important to recall Turing’s central goal, namely, to isolate the most
basic steps of computations, that is, steps that need not be further subdivided.
This leads to the demand that the configurations, which are directly operated on,
be immediately recognizable by the computor. This demand and the evident
limitation of the computor’s sensory apparatus motivate convincingly the central
restrictive conditions: '

(B) (Boundedeness) There is a fixed finite bound on the number of configurations
a computor can immediately recognize.

(L) (Locdlity) A computor can change only immediately recognizable (sub-)
configurations.”

Turing’s considerations lead from operations of a computor (in a child’s
arithmetic book) to operations of a letter machine (on a linear tape). The Turing

machine is in the end nothing but, as Gandy put it, a codification of the human

* Turing expresses the “thesis” as, Every puzzle is equivalent to a substitution puzzle, and remarks on the
status of this assertion, “In so far as we know a priori what is a puzzle and what is not, the statement is a
theorem. In so far as we do not know what puzzles are, the statement is a definition which tells us
something about what they are. One can of course define a puzzle by some phrasing beginning, for instance,
‘A set of definite rules ...", but this just throws us back on the definition of ‘definite rules’. Equally one can
reduce it to the definition of ‘computable function’ or ‘systematic procedure’. A definition of any one of
these would define the rest.” (Turing 1954, p. 15)

16 Turing attributes states of mind to the human computer; machines have “m-configurations”.

17 The conditions are obviously violated in Gédel’s equational calculus: the replacement operations quite
naturally involve terms of arbitrary complexity.

16

computer. The analysis secures the generality of mathematical results and, as I
emphasized a number of times, their conclusiveness by respecting the broader
intellectual context that appealed to effective calculations carried out by humans

without invoking higher mental capacities.

V. Concluding remarks.

Turing found his argument mathematically unsatisfactory, as it involved an
appeal to intuition, i.e., as he put it in 1939, the ability of “making spontaneous
judgments, which are not the result of conscious trains of reasoning”. (pp. 208-9)
Turing admitted in 1939 that the use of intuition is unavoidable in mathematics.18
So I assume that we should be wary of “problematic” spontaneous judgment. In
Turing’s argument, two related problematic steps seem to be involved, namely,
i) starting the analysis with calculations in a child’s arithmetic book (this is
problematic if one wants to consider more general symbolic configurations and
procedures) and ii) dismissing, without argument, the two-dimensional character
of paper as “no essential of computation”. Consequently, the rigorously
established result of Turing’s analysis can be formulated as follows: Turing
machines can carry out the calculations of computors on a linear tape. If the
constraints that enter Turing’s argument are formulated explicitly as hypotheses,
then one can establish: if computors satisfy the boundedness and locality
conditions and operate on linear configurations, then string machines codify
their computational behavior and Turing’s letter machines can carry out their
calculations.

If, as Turing allows in 1954, computors are operating on all kinds of finite
discrete configurations, then I locate a deeply problematic appeal to intuition at
the precise point where one has to claim that the operations of computors
satisfying boundedness and locality conditions can be carried out by “string

machines” .’ [consider this claim to be Turing’s central thesis, as it connects an

'® Feferman 1988 examines the use of intuition and ingenuity in the context of Turing’s work on ordinal
logics; see, pp. 129-132.

19 The term is put in quotation marks, as machines operating on strings can be replaced here by machines
operating on more general configurations; cf. my paper with Byrnes, where we consider K-graph machines.

17

informal concept with a precise mathematical one. The relevant difficulties are
rooted in the looseness of the restrictive conditions and the corresponding
vagueness of the central thesis. After all, for this general case I have not
answered the questions: What are symbolic configurations? What changes can
mechanical operations effect?

Without giving a rigorous answer here, some well-motivated ideas can be
formulated for computors: (i) they operate on finite configurations; (i) they
recognize immediately a bounded number of different patterns (in these
configurations); (iii) they operate locally on these patterns; (iv) they assemble,
from the original configuration and the result of the local operation, the next
configuration. By exploiting these general ideas, one can attack the problem
with a familiar tool, the axiomatic method. It is possible to characterize
axiomatically a Turing Computor as a special discrete dynamical system and to
show that any system satisfying the axioms is computationally equivalent to a
Turing machine. (Cf. Sieg 2002.) No appeal to a thesis or central thesis is needed;
rather, that appeal has been replaced by the standard and non-trivial task of
recognizing the correctness of axioms for an intended notion. Here is, I would
argue, the proper and unavoidable locus of an appeal to intuition, as it is the case
with any mathematical theory that is to capture aspects of our intellectual or
physical experience.

Godel claims in the Gibbs lecture (p. 311) that the state of philosophy “in
our days” is to be faulted for not being able to draw in a mathematically
rigorous way the philosophical implications of the “mathematical aspect of the
situation”. I'have argued implicitly that not even the “mathematical aspect of the
situation” had been clarified in a convincing way. Godel admits in the 1946
Princeton lecture (p. 152) that certain aspects of the concept of definability
“would involve some extramathematical element concerning the psychology of
the being who deals with mathematics”. That is exactly what Turing recognized
and exploited for effective calculability in order to arrive at his analysis of finite

procedures carried out by computors.

18

References

Church, Alonzo _

1935 Anunsolvable problem of elementary number theory. Preliminary
report (abstract); Bull. Amer. Math. Soc. 41, 332-333.

1936 Anunsolvable problem of elementary number theory; Amer. J. Math. 58,
345-363; in Davis 1965, 89-107

1937 Review of Turing 1936; J. Symbolic Logic 2, 42-43.

Dawson, John W.
1997 Logical Dilemmas ~ The life and work of Kurt Godel; A K Peters, Wellesley.

Davis, Martin

1965 The Undecidable; New York

1982 Why Godel did not have Church’s Thesis; Inf. and Control 54, 3-24.
1995 Introductory Note to Gddel 1937?; in Collected Works III, 156-163.

Feferman, Solomon
1988 Turing in the land of O(z); in Herken 1988, 113-147.

Gandy, Robin

1980 Church's Thesis and principles for mechanisms; in: Barwise, Keisler, and
Kunen (eds.), The Kleene Symposium, Amsterdam; 123-148.

1988 The confluence of ideas in 1936; in Herken 1988, 55-111.

Godel, Kurt

1931 Uber formal unentscheidbare Sétze der Principia Mathematica und
verwandter Systeme; Monatshefte fiir Mathematik und Physik 38, 173-
198, and in Collected Works I, 144-195.

Postscriptum (1963); in Collected Works I, 195.

1933 The present situation in the foundations of mathematics; lecture delivered
at the meeting of the Mathematical Association of America in Cambridge,
Massachusetts, December 29-30, 1933, in Collected Works II1, 45-53.

1934 On undecidable propositions of formal mathematical systems (lecture
notes taken by Stephen C. Kleene and J. Barkley Rosser); in Davis 1965, 39-
71, and Collected Works I, 346-369.

Postscriptum (1964), in Collected Works I, 369-371.

1936 Uber die Linge von Beweisen; Ergebnisse eines mathematischen
Kolloquiums 7, 23-24; in Davis 1965, 82-3, and Collected Works I, 396-8.

193? Undecidable Diophantine propositions; in Collected Works 111, 164-175.

1939 Notre Dame Lectures on Logic, Spring 1939; cf. Finding Aid in Collected

_ Works V, 527-8.

1946 Remarks before the Princeton bicentennial conference on problems in
mathematics; in Davis 1965, 84-88, and Collected Works 11, 150-153.

1951 Some basic theorems on the foundations of mathematics and their
implications; Gibbs Lecture, Collected Works I1I, 304-323.

19

1957 Letter to Ernest Nagel of 25 February 1957; in Collected Works V, 145-146.
1972 Some remarks on the undecidability results; in Collected Works II, 305-306.
1986- Collected Works, Volumes I - V; Oxford University Press.

2003

Herbrand, Jacques
1931 On the consistency of arithmetic; in Logical Writings; Warren Goldfarb
(ed.), Cambridge (Mass.). 1971, 282-298.

Herken, Rolf (ed.)

1988 The Universal Turing Machine - a half-century survey; Oxford University
Press.

Hilbert, David

1900 Mathematische Probleme; Archiv der Mathematik und Physik 1(1901), 44-
63, 213-237.

Hilbert, David & Paul Bernays
1939 Grundlagen der Mathematik; vol. II, Springer Verlag, Berlin.

Kleene, Stephen C.
1936 General recursive functions of natural numbers, Mathematische Annalen
112 (5), 727-742; in Davis 1965, 237-253.

Odifreddi, Piergiorgio
1990 About logics and logicians - A palimpsest of essays by Georg Kreisel, vol.
IT: Mathematics. Manuscript

Post, Emil
1947 Recursive unsolvability of a problem of Thue; J. Symbolic Logic 12, 1-11.

Sieg, Wilfried

1994 Mechanical procedures and mathematical experience; in Mathematics and
Mind, edited by A. George, Oxford University Press, 71-117.

1997 Step by recursive step: Church’s analysis of effective calculability, B.
Symbolic Logic 3, 154-80.

2002 Calculations by man and machine: conceptual analysis; in Reflections on the
foundations of mathematics, W. Sieg, R. Sommer, and C. Talcott (eds.);
Lecture Notes in Logic 15, Association for Symbolic Logic, 390-409.

2005 Only two letters: the correspondence between Herbrand & Godel; B.
Symbolic Logic 11 (2).

Sieg, Wilfried and John Byrnes

1996 K-graph machines: generalizing Turing’s machines and arguments; in
Gddel '96 (P. Hajek, ed.); Lecture Notes in Logic 6, Springer Verlag, 98-119.

20

Soare, Robert
1999 The history and concept of computability; in Handbook of Computability
Theory, E.R. Griffor (ed.); Elsevier, 3-36.

Sinaceur, Hourya
2000 Address at the Princeton University bicentennial conference on problems
in mathematics, by Alfred Tarski; B. Symbolic Logic 6, 1-44.

Turing, Alan

1936 On computable numbers, with an application to the
Entscheidungsproblem; Proc. London Math. Soc 42, 230-265; in Davis
1965, 116-151.

1939 Systems of logic based on ordinals; Proc. London Math. Soc. 45, 161-228; in
Davis 1965, 155-222.

1948 Intelligent Machinery; written in September 1947, submitted to the
National Physical Laboratory in 1948; Machine Intelligence 5, 3-23.

1950 Computing machinery and intelligence; Mind 59, 433-460.

1950A The word problem in semi-groups with cancellation; Ann. of Math. 52,
491-505.

1954 Solvable and unsolvable problems; Science News 31, 7-23.

1992 Collected Works of A.M. Turing: Mechanical Intelligence; D.C. Ince (ed.);
North-Holland.

Wang, Hao
1974 From Mathematics to Philosophy; London.

Webb, Judson
1990 Introductory Note to Remark 3 of Gédel 1972; in Collected Works 11, 292-
304.

Abstract. The identification of an informal concept of “effective calculability”
with a rigorous mathematical notion like “recursiveness” or “Turing
computability” is still viewed as problematic, and I think rightly so. I analyze
three different and conflicting perspectives Godel articulated in the three decades
from 1934 to 1964. The significant shifts in Godel's position underline the
difficulties of the methodological issues surrounding the Church-Turing Thesis.

In his 1964 formulation Godel sees, quite emphatically, Turing's work as
providing a correct analysis of mechanical procedures and thus also of effective
calculability. Eight years later he detected, however, “a philosophical error in
Turing's work” and attributed a claim to Turing the latter did not maintain when
reducing mechanical procedures to machine computations. An analysis of
Turing's reduction can serve as the springboard for a different methodological
approach, namely, an axiomatic characterization of computability.

21

