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This paper was originally published in Synthese 84, 1990, pp. 259-297, an essay that in
turn was a much-expanded version of Relative Konsistenz - written in German and published in
(Borger, 1987). That collection of papers was dedicated to the memory of Dieter Rédding, my
first logic teacher. _

The text of the Synthese paper is essentially unchanged, except for the incorporation of
some of the (still numerous) footnotes. In the meantime much illuminating historical research
has been carried out and many significant mathematical results have been obtained. Some of
these developments are reflected in four papers | have since published and that are most
closely related to central issues in this essay; the references are found at the end of the
bibliography.

Translations in this paper are my own, unless texts are taken explicitly from Englis
editions. In the notes, some quotations that are not central to my arguments are given only
the original German.




... weil Nichts in der Mathematik
gefahrlicher ist, als ohne geniigenden
Beweis Existenzen anzunehmen ... !

INTRODUCTION. The goal of Hilbert's program - to give consistency
proofs for analysis and set theory within finitist mathematics - is
unattainable; the program is dead. The mathematical instrument,
however, that Hilbert invented for attaining his programmatic aim is
remarkably well: proof theory has obtained important results and
pursues fascinating logical questions; its concepts and techniques are
fundamental for the mechanical search and transformation of proofs;
and | believe that it will contribute to the solution of classical
mathematical problems.2 Nevertheless, we may ask ourselves, whether
the results of proof theory are significant for the foundational
concerns that motivated Hilbert's program and, more generally, for a
reflective examination of the nature of mathematics.

The results | alluded to establish the consistency of classical
theories relative to constructive ones and give in particular a
constructive foundation to mathematical analysis. They have been
obtained in the pursuit of a reductive program that provides a
coherent scheme for metamathematical work and is best interpreted
as a far-reaching generalization of Hilbert's program. For philosophers
these definite mathematical results (should) present a profound
challenge. To take it on means to explicate the reductionist point of
constructive relative consistency proofs; the latter are to secure,
after all, classical theories on the basis of more elementary, more
evident ones. | take steps towards analyzing the precise character of
such implicitly epistemological reductions and thus towards answering
the narrow part of the above question. But these steps get their
direction from a particular view on the question's wider part.

As background for that view, | point to striking developments within
mathematics, namely to the emergence of set theoretic foundations,
particularly for analysis, and to the rise of modern axiomatics with a
distinctive structuralist perspective. These two developments overlap,
and so do the problems related to them. Indeed, they came already to
the fore in Dedekind's work and in the controversy surrounding it.3

T From Dedekind's letter to Lipschitz of July 27, 1876, published in (Dedekind, 1932), p. 477.
2 Finally, there are real beginnings; see (Luckhardt, 1989).

3 Dedekind played a significant role in the development of 19™ century mathematics. As far 7
our century is concerned | mention his influence on Hilbert and Emmy Noether, thus
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They were furthered by Hilbert's contributions to algebraic number
theory and the foundations of geometry; the difficult issues connected
with them prompted his foundational concerns during the late 1890's.
Hilbert's program, though formulated only in the twenties, can be
traced to this earlier "problematic". | argue that it was meant to
mediate between broad foundational conceptions and to address
related, but quite specific methodological problems. An example of the
latter is the use of "abstract" (analytic) means in proofs of "concrete"
(number theoretic) results: the program - in its instrumentalist
formulation - attempts to exploit the formalizability of mathematical
theories for a systematic and philosophically decisive solution.

This instrumentalist aspect, as a matter of fact equivalent to the
program's consistency formulation, has been overemphasized in the
literature and leaves unaccounted-for critical features of Hilbert's
thought. The historical part of my paper brings into focus such
neglected features and sets the stage for an analysis of proof
theoretic reductions as structural ones. The philosophical significance
of relative consistency results is viewed in terms of the objective
underpinnings of theories to which reductions are (to be) achieved.
The elements of accessible domains that provide such underpinnings
have a unique build-up through basic operations from distinguished
objects; the theories formulate principles that are evident - given an
understanding of the build-up and a minimalist delimitation of the
domain. But note that (i) the objects in accessible domains need not be
constructive in any traditional sense: certain segments of the
cumulative hierarchy will be seen to be accessible, and (ii) the
restriction of logical principles used is not central: the theories of
interest turn out to be such that the consistency of their classical
versions is established easily relative to their intuitionistic versions (by
finitist arguments).

Even in mathematical practice relative consistency proofs are
prompted by epistemological concerns. One wants to guarantee the

Bourbaki's conceptions. An illuminating analysis of Dedekind's work is given in (Stein, 1988);
the major influences on Bourbaki are documented in (Dieudonné, 1970). In (Zassenhaus, 1975)
one finds on p. 448 the remark: "... we can see in Dedekind more than in any other single man or
woman the founder of the conceptual method of mathematical theorization in our century. The
new generation of mathematicians ... after the First World War realized in full detail Dedekind's
self-confessed desire for conceptual clarity not only in the foundations of number theory, ring
theory and algebra, but on a much broader front, in all mathematical disciplines."

4 The reduced theories have to be mathematically significant. Indeed, the consistency program
has been accompanied from its inception by work intended to show that the theories permit the
formal development of substantial parts of mathematics.
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coherence of a complex (new) theory in terms of comprehended
notions and does so frequently by devising suitable models. This
general goal is pursued, e.g. when Euclidean models for non-Euclidean
geometries are given. Proof theoretic reductions have two special
features: (i) they focus on the deductive apparatus of theories, and (ii)
they are carried out within theories that have to measure up to
restrictive epistemological principles. The latter are traditionally of a
more or less narrow "constructivist" character. In broadening the
range of theories to "quasi-constructive" ones and concentrating on
one central feature, namely accessibility, we will be able to evaluate
their (relative) epistemological merits. And in this way, it seems to
me, we can gain a deepened understanding of what is characteristic of
and possibly problematic in classical mathematics and of what is
characteristic of and taken for granted as convincing in constructive
mathematics.

In the current discussion, some do as if an exclusive alternative
between platonism and constructivism had emerged from the
sustained mathematical and philosophical work on foundations for
mathematics; others do as if this work were deeply misguided and did
not have any bearing on our understanding of mathematics. Both
attitudes prevent us from using the insights (of pre-eminent
mathematicians) that underly such work and the significant results
that have been obtained. They also prevent us from turning attention
to central tasks; namely, 'to understand the role of abstract
structures in mathematical practice and the function of (restricted)
accessibility notions in "foundational" theories or "methodical frames",
to use Bernays's terminology. | attempt to give a perspective that
includes traditional concerns, but that allows - most importantly - to
ask questions transcending traditional boundaries. This perspective is
deeply influenced by the writings of Paul Bernays.

1. MATHEMATICAL REFLECTIONS. They are concerned with
mathematical analysis and theories in which its practice can be
formally represented. So | start out by describing attempts to clarify
the very object of analysis and thus, it was assumed, the role of
analytic methods in number theory. These attempts came under the
headings arithmetization of analysis and axiomatic characterization of
the real numbers. | discuss two kinds of arithmetizations put forward
by Dedekind and Kronecker, respectively. Dedekind proceeded
axiomatically -and sought to secure his characterization by a
consistency proof relative to logic broadly conceived, whereas
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Kronecker insisted on a radical restriction of mathematical objects and
methods. (Dedekind's arithmetization of analysis should perhaps be
called set theoretic and Kronecker's by contrast strict.) Hilbert's
axiomatization of the real numbers grew directly out of Dedekind's and
was the basis for two proposals to overcome at least for analysis the
set theoretic difficulties that had been discovered around the turn of
the century. The second proposal, when suitably amended by the
formalist conception of mathematics, led to Hilbert's program.

1.1. CONSISTENT SETS. A systematic arithmetization is to achieve,
Dirichlet demanded, that any theorem of algebra and higher analysis
can be formulated as a theorem about natural numbers.5 If that had
been clearly so, Dirichlet's introduction of analytic methods to prove
his famous theorem on arithmetic progressions would have been
methodologically innocuous. But in using properties of "continuous
magnitudes” to prove facts concerning natural numbers, he pushed
aside a traditional, partly epistemologically motivated boundary.s
Dirichlet himself remarks: "The method | employ seems to me to merit
attention above all by the connection it establishes between the
infinitesimal analysis and the higher arithmetic..."” In another paper
that explores further uses of analytic methods in number theory he
writes: "... | have been led to investigate a large number of questions
concerning numbers from an entirely new point of view, that attaches
itself to the principles of infinitesimal analysis and to the remarkable
properties of a class of infinite series and infinite products ..." The
significance of these methodological innovations can be fathomed from
remarks such as Kummer's, who compares them in his eulogy on
Dirichlet to Descartes's "applications of analysis to geometry", or
Klein's, who stated that they gave "direction to the entire further
development of number theory".

The essays of Dedekind and Kroneckers seek an arithmetization
satisfying Dirichlet's demand, but proceed in radically different ways.
Kronecker admits as objects of analysis only natural numbers and
constructs from them (in now well-known ways) integers and rationals.

5 That is reported in the preface to (Dedekind, 1888).

6 | allude, of course, to Gauss's attitude; compare (Sieg, 1984), p. 162.

7 (Dirichlet, 1838), p. 360, respectively (Dirichlet, 1839/40), p. 411.

8 Dedekind's relevant papers are the essays Stetigkeit und irrationale Zahlen (1872) and Was
sind und was sollen die Zahlen? (1888); his letters to Lipschitz and Weber are also of

cpnsiderable interest and were published in (Dedekind, 1932). As to Kronecker | refer to his
Uber den Zahibegriff and Hensel's introduction to (Kronecker, 1901).
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Even algebraic reals are introduced, since they can be isolated
effectively as roots of algebraic equations. The general notion of
irrational number, however, is rejected in consequence of two
restrictive methodological requirements to which mathematical
considerations have to conform: (i) concepts must be decidable, and
(ii) existence proofs must be carried out in such a way that they
present objects of the appropriate kind. For Kronecker there can be no
infinite mathematical objects, and geometry is banned from analysis
even as a motivating factor. Clearly, this procedure is strictly
arithmetic, and Kronecker believes that following it analysis can be re-
obtained. In (Kronecker, 1887) we read:

| believe that we shall succeed in the future to 'arithmetize' the whole content of all these
mathematical disciplines [including analysis and algebra] ; i.e. to base it [the whole
content] on the concept of number taken in its most narrow sense..."

Kronecker did prove, to his great pleasure, Dirichlet's theorem on
arithmetic progressions satisfying his restrictive conditions.? But it is
difficult for me to judge to what extent Kronecker pursued a program
of developing (parts of) analysis systematically. In any event, such a
program is not chimerical: from mathematical work during the last
decade it has emerged that a good deal of analysis and algebra can
indeed be done in conservative extensions of primitive recursive
arithmetic.10 Finally let me mention that Kronecker begins the paper by
hinting at his philosophical position - through quoting Gauss on the
epistemologically special character of the laws for natural numbers;
only these laws, in contrast to those of geometry, carry the complete
conviction of their necessity and thus of their absolute truth.

Dedekind, a student of Gauss, emphasized already in his
Habilitationsvortrag of 1854 a quite different and equally significant
aspect of mathematical experience; namely, the introduction and use
of new concepts to grasp composite phenomena that are being
governed by the old notions only with great difficulty.!! Referring to

9 (Kronecker, 1901), p. 11.

10 1t is most plausible that such work would be enriched by paying attention to Kronecker's.
For references to the contemporary mathematical work see (Simpson, 1988). As PRA is
certainly a part of number theory unproblematic even for Kronecker, this work can be seen as
a partial realization of "Kronecker's program" (and not, as it is done by Simpson, of Hilbert's).

11 Dedekind mentions that Gauss approved of the 'Absicht' of his talk. Kneser reports in his
Leopold Kronecker, Jahresbericht der DMV, 33, 1925, that Dedekind referred often to a
remark of Gauss that (for a particular number theoretic problem) notions are more important
than notations. In pointing to the "Gaussian roots" of Dedekind's and Kronecker's so strikingly
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this earlier talk, Dedekind asserts in the preface to his (1888) that
most of the great and fruitful advances in mathematics have been
made in exactly this way. He gives, in contrast to Kronecker, a general
definition of reals: cuts are explicitly motivated in geometric terms,
and infinite sets of natural numbers are used as respectable
mathematical objects. Kronecker's methodological restrictions are
opposed by him, in particular the decidability of concepts; he believes
that it is determined independently of our knowledge, whether an
object does or does not fall under a concept. In this way Dedekind
defends general features of his work in the foundations of analysis and
in algebraic number theory.i2 But, the reader may ask, how does
Dedekind secure the existence of mathematical objects? To answer
this question | examine Dedekind's considerations for real and natural
numbers.

The principles underlying the definition of cuts are for us set-
theoretic ones, for Dedekind they belong to logic3: they allow - as
Dedekind prefers to express it - the creation of new numbers, such
that their system has "the same completeness or ... the same
continuity as the straight line". Dedekind emphasizes in a letter to
Lipschitz that the stetige Vollstdndigkeit (continuous completeness) is
essential for a scientific foundation of the arithmetic of real numbers,
as it relieves us of the necessity to assume in analysis existences

different positions, | want to emphasize already here that they can (and should) be viewed as
complementary.

12 Kronecker spurned Dedekind's algebraic conceptions. See, e.g. the note on p. 336 of his Uber
einige Anwendungen der Modulsysteme, Journal fir Mathematik, 1886, and Dedekind's gentle
rejoinder in, what else, a footnote of his (1888): "but to enter into a discussion [of such
restrictions] seems to be called for only when the distinguished mathematician will have
published his reasons for the necessity or even just the advisability of these restrictions."
Kronecker expressed his views quite drastically in letters; for example in a letter to Lipschitz
of August 7, 1883 he writes: "Bei dieser Gelegenheit habe ich das lange gesuchte Fundament
meiner ganzen Formentheorie gefunden, welches gewissermassen 'die Arithmetisierung der
Algebra' - nach der ich ja das Streben meines mathematischen Lebens gerichtet habe -
vollendet, und welches zugleich mir mit Evidenz zeigt, dass auch umgekehrt die Arithmetik
dieser 'Association der Formen' nicht entbehren kann, dass sie ohne deren Hulfe nur auf Irrwege
gerdth oder sich Gedankengespinste macht, die wie die Dedekindschen, die wahre Natur der
Sache mehr zu verhlillen als zu kldren geeignet sind." (Lipschitz, 1986), pp. 181-182.

13 Why then "arithmetization"? Dedekind views cuts as_"purely arithmetical phenomena"; see
the preface to (1872) or (1888), where Dedekind talks directly about the "rein arithmetische
Erscheinung des Schnitts". In the latter work he immediately goes on to pronounce arithmetic as
a part of logic: "By calling arithmetic (algebra, analysis) only a part of logic | express already
that | consider the concept of number as completely independent of our ideas or intuitions of
space and time, that | view it rather as an immediate outflow from the pure laws of thought."
(Dedekind, 1932), p. 335. - The next three references in this paragraph are to (Dedekind,
1932), namely, p. 321, p. 472, and p. 477, respectively.
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without sufficient proof. Indeed, it provides the answer to his own
rhetorical question:

How shall we recognize the admissible existence assumptions and distinguish them from
the countless inadmissible ones...? Is this to depend only on the success, on the accidental
discovery of an internal contradiction? 14

Dedekind is considering assumptions that concern the existence of
individual real numbers; such assumptions are not needed, when we are
investigating a complete system - ein denkbar vollsténdigstes GréRen-
Gebiet. By way of contrast, and in defense against the remark that all
of his considerations are already contained in Euclid's Elements, he
notices that such a complete system is not underlying the classical
work. The definition of proportionality is applied only to those
(incommensurable) magnitudes that occur already in Euclid's system
and whose existence is evident for good reasons. And he argues in this
letter of 1876 and later in the preface to Was sind und was sollen die
Zahlen? that the algebraic reals form already a model of Euclid's
presentation. For Euclid, Dedekind argues, that was sufficient, but it
would not suffice, if arithmetic were to be founded on the very
concept of number as proportionality of magnitudes.!s

The question as to the existence of particular reals has thus been
shifted to the question as to the existence of their complete system.
If we interpret the essay on continuity in the light of considerations in
Was sind und was sollen die Zahlen? and Dedekind's letter to
Keferstein, we can describe Dedekind's procedure in a schematic way
as follows. Both essays present first of all informal analyses of basic
notions, namely of continuity by means of cuts (of points on the
straight line and rationals, respectively) and of natural number by
means of the components system, distinguished object 1, and
successor operation. These analyses lead with compelling directness
to the definitions of a complete, ordered field and of a simply infinite
system. Then - in our terminology - models for these axiom systems
are given. In Stetigkeit und irrationale Zahlen the system of all cuts of
rationals is shown to be (topologically) complete and, after the
introduction of the arithmetic operations, to satisfy the axioms for an
ordered field. The parallel considerations for simply infinite systems in
Was sind und was sollen die Zahlen? are carried out more -explicitly.
Dedekind gives in section 66 of that essay his "proof" of the existence

14 Letter to Lipschitz of July 27, 1876; in (Dedekind, 1932), p.477.
15 (1932), pp. 477-8, in particular top of 478.
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of an infinite system. Such systems contain a simply infinite (sub-)
system, as is shown in section 72.

Dedekind believes to have given purely logical proofs for the
existence of these systems and thus to have secured the consistency
of the axiomatically characterized notions.'6 With respect to simply
infinite systems he writes to Keferstein in a letter of February 27,
1890:

After the essential nature of the simply infinite system, whose abstract type is the
number sequence N, had been recognized in my analysis ... , the question arose: does such
asystemexistatall in therealm of our ideas? Without a logical proof of existence it
would always remain doubtful whether the notion of such a system might not perhaps
contain internal contradictions. Hence the need for such a proof (articles 66 and 72 of
my essay).!7

| emphasize that Dedekind views these considerations not as specific
for the foundational context of the essays analyzed here, but rather
as paradigmatic for a general mathematical procedure, when abstract,
axiomatically characterized notions are to be introduced. That is
unequivocally clear e.g. from his discussions of ideals in (Dedekind,
1877), where he draws direct parallels to the steps taken here.’8 The
particular constructions leading to the general concept of real number
provide an arithmetization of analysis: they proceed, as Dedekind
believes, solely within logic and thus purely arithmetically (cp. footnote
13). Their specific logical character implies almost trivially that
Dirichlet's demand is satisfied; any analytic statement can be viewed
as (a complicated way of making) a statement concerning natural
numbers. But Dedekind states, that it is nothing meritorious "to
actually carry out this tiresome re-writing (muhselige Umschreibung)
and to insist on using and recognizing only the natural numbers".

The very beginnings of the Hilbertian program can be traced back to
these foundational problems in general and to Dedekind's proposed
solution in particular. Hilbert turned his attention to them, as he
recognized the devastating effect on Dedekind's essays of

16 That such a proof is intended also in Stetigkeit und irrationale Zahlen is most strongly
supported by the discussion in (Dedekind, 1888), p. 338. - The Fregean critique of Dedekind in
section 139 of Grundgesetze der Arithmetik, vol. ll, is quite misguided. For a deeper
understanding of Dedekind's views on creation (Schaffung) of mathematical objects see also his
letter of January 24, 1888 to H. Weber in (Dedekind, 1932), p. 489. That, incidentally,
anticipates and resolves Benacerraf's dilemma in What numbers could not be.

17 1n (van Heijenoort, 1967), p. 101. The essay Dedekind refers to is (Dedekind, 1888).
18 (Dedekind, 1877), pp. 268-269; in particular the long footnote on p. 269.
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observations that Cantor communicated to him in letters, dated
September 26 and October 2, 1897.1® Cantor remarks there that he
was led "many years ago" to the necessity of distinguishing two kinds
of totalities (multiplicities, systems); namely, absolutely infinite and
completed ones. Multiplicities of the first kind are called inconsistent
in his famous letter to Dedekind of July 28, 1899, and those of the
second kind consistent. Only consistent multiplicities are viewed as
sets, i.e. proper objects of set theory. This distinction is to avoid, and
does so in a trivial way, the contradictions that arise from assuming
that the multiplicity of all things (all cardinals, or all ordinals) forms a
set.

In 1899 Hilbert writes Uber den Zahlbegriff, his first paper
addressing foundational issues of analysis. He intends - never too
modest about aims - to rescue the set theoretic arithmetization of
analysis from the Cantorian difficulties. To this end he gives a
categorical axiomatization of the real numbers following Dedekind's
work in Stetigkeit und irrationale Zahlen. He claims that its
consistency can be proved by a "suitable modification of familiar
methods"20 and remarks that such a proof constitutes "the proof for
the existence of the totality of real numbers or - in the terminology of
G. Cantor - the proof of the fact that the system of real numbers is a
consistent (completed) set". In his subsequent Paris address Hilbert
goes even farther, claiming that the existence of Cantor's higher
number classes and of the alephs can also be proved. Cantor, by
contrast, insists in a letter to Dedekind, written on August 28, 1899,
that even finite multiplicities cannot be proved to be consistent. The
fact of their consistency is a simple, unprovable truth - "the axiom of
arithmetic"; and the fact of the consistency of those multiplicities
that have an aleph as their cardinal number is in exactly the same way
an axiom, the "axiom of the extended transfinite arithmetic".2!

Hilbert recognized soon that his problem, even for the real
numbers, was not as easily solved as he had thought. Bernays writes in

19 1n particular on section 66 of Was sind und was sollen die Zahlen?. That is clear from
Cantor's response of November 15, 1899 to a letter of Hilbert's (presumably not preserved).
Cantor's letter is published in (Purkert and ligauds), p. 154. See also remark A in section 1.3.

ZO(HiIbert, 1900), p. 261. The German original is: "Um die Widerspruchsfreiheit der
aufgestellten Axiome zu beweisen, bedarf es nur einer geeigneten Modifikation bekannter
SchluBmethoden." (Bernays, 1935) reports on pp. 198-199 in very similar words, but with a
mysterious addition: "Zur Durchfitlhrung des Nachweises gedachte Hilbert mit einer geeigneten
Modifikation der in der Theorie der reellen Zahlen angewandten Methoden auszukommen."

21 (Cantor, 1932), p. 447-448.
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his (1935) on p. 199, "When addressing the problem [of proving the
above consistency claims] in greater detail, the considerable

difficulties of this task emerged". It is the realization, | assume, that
distinctly new principles have to be accepted; principles that cannot be
pushed into the background as "logical" ones.2 Dedekind's

arithmetization of analysis has not been achieved without "mixing in
foreign conceptions", after all;2 a rewriting, however tiresome, of
analytic arguments in purely number theoretic terms is seemingly not
always possible.

1.2. CONSISTENT THEORIES. In his address to the International
Congress of Mathematicians, Heidelberg 1904, Hilbert examines again
and systematically various attempts of providing foundations for
analysis, in particular Cantor's. The critical attitude towards Cantor
that was implicit in Uber den Zahlbegriff is made explicit here. Hilbert
accuses Cantor of not giving a rigorous criterion for distinguishing
consistent from inconsistent multiplicities; he thinks that Cantor's
conception on this point "still leaves latitude for subjective judgment
and therefore affords no objective certainty". He suggests again that
consistency proofs for suitable axiomatizations provide an appropriate
remedy, but proposes a radically new method of giving such proofs:
develop logic (still vaguely conceived) together with analysis in a
common frame, so that proofs can be viewed as finite mathematical
objects; then show that such formal proofs cannot lead to a
contradiction. Here we have seemingly in very rough outline Hilbert's
program as developed in the twenties; but notice that the point of
consistency proofs is still to guarantee the existence of sets, and that
a reflection on the mathematical means admissible in such proofs is
lacking completely. Before describing the later program, let me
mention that this address and Uber den Zahlbegriff are squarely
directed against Kronecker. In his Heidelberg address Hilbert claims

22 This general concern comes out in Husserl's notes on a lecture that Hilbert gave to the
Gottingen Mathematical Society in 1901 and, in very similar terms, in (Hilbert, 1904), p. 266;
Husserl's notes are quoted in full in Wang's Reflections on Kurt Godel, Cambridge, 1987, p. 53.

23 Dedekind points out emphatically, e.g. in the letter to Lipschitz (1932, p. 470) and in the
introduction to (1888), that his constructions do not appeal anywhere to "fremdartige
Vorstellungen"; he has in mind appeals to geometric ones. - Bernays has again and again made
the point that a "restlose strikte Arithmetisierung" cannot be achieved. In (Bernays, 1941) one
finds on p. 152 the remark: "... one can say - and that is certainly the essence of the finitist
and intuitionist critique of the usual mathematical methods - that the arithmetization of
geometry in analysis and set theory is not a complete one." It is through the powerset of the
set of natural numbers that our geometric conception of the continuum is connected to our
elementary conception of number; e.g. in: Bemerkungen zu Lorenzen's Stellungnahmeé in der
Philosophie der Mathematik, 1978.
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that he has refuted Kronecker's standpoint - by partially embracing it,
as | hasten to add. | will explain below that this is by no means
paradoxical. Indeed, a genuine methodological shift had been made;
Bernays remarks that Hilbert started, clearly before giving this
address, "to do battle with Kronecker with his own weapons of
finiteness by means of a modified conception of mathematics".24

There are a number of general tendencies that influenced the
Heidelberg address and the further development towards Hilbert's
program. First of all, the radicalization of the axiomatic method; by
that | mean the insight that the linguistic representation of a theory
can be viewed as separable from its content or its intended
interpretation. That was clear to Dedekind, was explicitly used by
Wiener, and brought to perfection by Hilbert in his Grundlagen der
Geometrie.?s  Secondly, the instrumentalist view of (strong
mathematical) theories; the earliest explicit formulation | know of is
due to Borel discussing the value of abstract, set theoretic arguments
from a Kroneckerian perspective.

One may wonder what is the real value of these [set theoretic] arguments that | do not
regard as absolutely valid but that still lead ultimately to effective results. In fact, it
seems that if they were completely devoid of value, they could not lead to anything ...
This, | believe, would be too harsh. They have a value analogous to certain theories in
mathematical physics, through which we do not claim to express reality but rather to
have a guide that aids us, by analogy, in predicting new phenomena, which must then be
verified.

Can one systematically explore, Borel asks, the sense of such
arguments. His answer is this:

It would require considerable research to learn what is the real and precise sense that
can be attributed to arguments of this sort. Such research would be useless, or at least it
would require more effort than it would be worth. How these overly abstract arguments
are related to the concrete becomes clear when the need is felt.2¢

24 The quotation is taken from a longer remark of Bernays in (Reid, 1970). It is preceded by:
"Under the influence of the discovery of the antinomies in set theory, Hilbert temporarily
thought that Kronecker had probably been right there. (l.e. right in insisting on restricted
methods.) But soon he changed his mind. Now it became his goal, one might say, to do battle
with ..."

25 Dedekind describes, on p. 479 of (1932), such a separation before making the claim that the
algebraic reals form a model of the Euclidean development. For a penetrating discussion of the
general development see (Guillaume). Such a separation appears to us as banal, but it certainly
was not around the turn of the century, as the Frege-Hilbert controversy amply illustrates.

26 (Baire e.a.), p. 273. A striking, but different suggestion along these lines was made already
in (Cantor, 1883), p. 173: "If, as is assumed here [i.e. from a restrictive position], only the
natural numbers are real and all others just relational forms, then it can be required that the
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To grapple with this problem clearly one has to use, thirdly, the strict
formalization of logic that had been achieved by Frege (Peano, and
Russell/Whitehead). That is a moment not yet appreciated in Hilbert's
Heidelberg address, where one finds a discussion of logical
consequence (Folgerung) quite uninformed by this crucial aspect of
Frege's work. Hilbert succeeded to join these tendencies into a sharply
focused program with a very special mathematical and philosophical
perspective.

The modified conception of mathematics underlying the formulation
of the program is characterized by Hilbert in the twenties most
pointedly and polemically: classical mathematics is a formula game that
allows "to express the whole thought content of mathematics in a
uniform way"; its consistency has to be established within finitist
mathematics, however. Finitist mathematics is taken to be a
philosophically unproblematic part of number theory and, in addition, to
coincide with the part of mathematics accepted by Kronecker and
Brouwer.2” Not every formula of this "game" has a meaning but only
those that correspond to finitist statements, i.e. universal sentences
of the kind of Fermat's Theorem. For a precise description of the role
of consistency proofs let P be a formal theory that allows the
representation of classical mathematical practice and let F formulate
the principles of finitist mathematics. The consistency of P is in F
equivalent to the reflection principle

(Vx)(Pr(x,'s') => s).

Pr is the finitistically formulated proof predicate for P, s a finitist
statement, and 's' the corresponding formula in the language of P. A
consistency proof in F was programmatically sought; it would show,
because of the above equivalence, that the mere technical apparatus P

proofs of theorems in analysis are checked as to their 'number-theoretic content' and that
every gap that is discovered is filled according to the principles of arithmetic. The feasibility
of such a supplementation is viewed as the true touchstone for the genuineness and complete
rigor of those proofs. it is not to be denied that in this way the foundations of many theorems
can be perfected and that also other methodological improvements in various branches of
analysis can be effected. Adherence to the principles justified from this viewpoint, it is
believed, secures against any kind of absurdities or mistakes." This is in a way closer to
Hilbert's belief that finitist statements must admit a finitist proof. That belief is implicitly
alluded to in (Bernays, 1941), p. 151: "Thé hope that the finitist standpoint (in its original
sense) could suffice for all of proof theory was brought about by the fact that the proof
theoretic problems could be formulated from that point of view."

27 See remark B in section 1.3. below.
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can serve reliably as an instrument for the proof of finitist
statements. After all, the consistency proof would allow to transform
any P-derivation of 's' into a finitist proof of s (and thus give a quite
systematic answer to Borel's question). Hilbert believed that
consistency proofs would settle foundational problems - once and for
all and by purely mathematical means. Bernays judged in (1922), p. 19:

The great advantage of Hilbert's method is precisely this: the problems and difficulties
that present themselves in the foundations of mathematics can be transferred from the
epistemological-philosophical to the properly mathematical domain.

Because of Gddel's incompleteness theorems. this advantage proved to
be illusory, at least when finitist mathematics is contained in P 28 for
such P's the Second Incompleteness Theorem just states that their
consistency cannot be established by means formalizable in P. The
radical restriction of what was "properly mathematical" had to be given
up; a modification of the program was formulated and has been
pursued successfully for parts of analysis.?? The crucial tasks of this
general reductive program are: (i) find an appropriate formal theory
P* for a significant part of classical mathematical practice, (ii)
formulate a "corresponding" constructive theory F*, and (iii) prove in
F* the partial reflection principle for P*, i.e.

Pr¢(d,'s') => s

for each P*-derivation d. Pr* is here the proof-predicate of P* and s
an element of some class F of formulas. The provability of the partial
reflection principle implies the consistency of P* relative to F*. (For
the theories considered here, this result entails that P* is
conservative over F* for all formulas in F.) Gdédel and Gentzen's
consistency proof of classical number theory relative to Heyting's
formalization of intuitionistic number theory was the first contribution
to the reductive program; as a matter of fact, their result made that
program at all plausible.

| do not intend to sketch the development of proof theory and,
consequently, | will comment only on some central results concerning

28 And that is a more than plausible assumption for those P's Hilbert wanted to investigate and
that contain elementary number theory. Consider the practice of finitist mathematics, for
example in volume | of Grundlagen der Mathematik, the explicit remarks on p. 42 of that book,
but also the analyses given by (Kreisel, 1965) and (Tait, 1981).

29 Hilbert and Bernays, Gentzen, Lorenzen, Schutte, Kreisel, Feferman, Tait, and many other
logicians and mathematicians have contributed; for detailed references to the literature see
(Buchholz, e.a., 1981) or (Sieg, 1985).
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theories for the mathematical continuum. Second order arithmetic was
taken by Hilbert and Bernays as the formal framework for analysis.
The essential set theoretic principles are the comprehension principle

(@X)(Vy)(yeX <=> S(y))

and forms of the axiom of choice
(Yx)(AY)S(x,Y) => (3Z)(¥Xx)S(x,(Z)x);

S is an arbitrary formula of the language and may in particular contain
set quantifiers. These general principles are impredicative, as the sets
X and Z whose existence is postulated are characterized by reference
to all sets (of natural numbers). Subsystems of second order
arithmetic can be defined by restricting S to particular classes of
formulas. The subsystems that have been proved consistent contain

for example the comprehension principle for Ii- and Aj- formulas; the
latter have the shape (VX)R, respectively are provably equivalent to
formulas of the shape (VX)(3Z)R and (3Z)(VX)T, where R and T are
purely arithmetic.3® These particular subsystems are of direct
mathematical interest, as analysis can be formalized in them by
(slightly) refining the presentation of Hilbert and Bernays in
supplement IV of Grundlagen der Mathematik Ill. The proof theoretic
investigations have been accompanied by mathematical ones, showing
that even weaker subsystems will do. Really surprising refinements
have been obtained during the last fifteen years: all of classical
analysis can be formalized in conservative extensions of elementary
number theory, significant parts also of algebra already in
conservative extensions of primitive recursive arithmetic.3! These two
complexes of results indicate corresponding complexes of problems
for future development; namely, (1) to give constructive consistency
proofs of stronger subsystems of analysis, first of all for the system
with IT3-comprehension, and (2) to find weaker, but mathematically still
significant subsystems (whose consistency is easily seen from the
finitist standpoint and) whose provably recursive functions are in
complexity classes. These are mathematically and logically most
fascinating problems.

30 For details concerning the theories with versions of the axiom of choice see (Feferman and
Sieg, 1981). The character of the consistency proofs is indicated below. Foundationally
significant results are also described in (Feferman, 1988).

31 For the discussion of these results and detailed references to the literature see (Simpson,
1988) and (Sieg, 1988).
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1.3. REMARKS. They are partly of historical, partly of systematic
character and concern mostly the axiomatic method underlying
Hilbert's program. Though they are intended to ease the transition to
the philosophical reflections in the second part of this essay, they are
also to defuse some of the widely held misconceptions of the program:
e.g. its "crude formalism" or its ad-hoc-character to serve as a
"weapon" against Brouwer's intuitionism.

A. PARADOXICAL BACKGROUND. The concern with consistent sets and
“the explicit use of Cantorian terminology in Uber den Zahlbegriff show
clearly that Hilbert was informed about the set theoretic difficulties
Cantor had found and communicated to Dedekind in the famous letter
of July 28, 1899. The recently published earlier letters of Cantor's to
Hilbert | mentioned above throw light on this background. (They provide
also surprising new information on the early history of the set
theoretic paradoxes and on the circumstances surrounding Cantor's
letter to Dedekind.) There is no doubt that Hilbert was prompted by
these difficulties to think seriously about foundational issues. After
all, as | pointed out, he recognized the impact of Cantor's observations
on Dedekind's logical foundations of arithmetic presented in Was sind
und was sollen die Zahlen?. Here | just want to recall Dedekind's
reaction to the Cantorian problems, reported in a letter of F. Bernstein
to Emmy Noether and published in (Dedekind, 1932). Bernstein had
visited Dedekind on Cantor's request in the spring of 1897. The
express purpose was to find out what Dedekind thought about the
paradox of the system of all things; Cantor had informed Dedekind
about it already by letter in 1896. Bernstein reports: "Dedekind had
not arrived yet at a definite position and told me, that in his
reflections he almost arrived at doubts, whether human thinking is
completely rational."32 Strong words from a man as sober and clear-
headed as Dedekind.

B. ASSUMPTION. How is it possible to reconcile Hilbert's programmatic
formalism with his deep trust in the correctness of classical

32 (Dedekind, 1932), p. 449. Even six years later, in 1903, Dedekind still had such strong
doubts that he did not allow a reprinting of his booklet. In 1211, he consented to a republication
and wrote in the preface, "Die Bedeutung und teilweise Berechtigung dieser Zweifel verkenne
ich auch jetzt nicht. Aber mein Vertrauen in die innere Harmonie unserer Logik ist dadurch nicht
erschiittert; ich glaube, daR eine strenge Untersuchung der Schépferkraft des Geistes, aus
bestimmten Elementen ein neues Bestimmtes, ihr System zu erschaffen, das notwendig von
jedem dieser Elemente verschieden ist, gewiR dazu fithren wird, die Grundlagen meiner Schrift
einwandfrei zu gestalten." (Dedekind, 1932), p.343.
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mathematics? - Most easily, when the formal theories of central
significance are complete or deductively closed, as the Hilbertians used
to say. This completeness assumption is already found in Uber den
Zahlbegriff. Hilbert writes there that the set of real numbers should
be thought of as "... a system of things, whose mutual relations are
given by the above finite and closed system of axioms, and for which
statements have validity, only if they can be deduced from those
axioms by means of a finite number of logical inferences". Hilbert talks
about a non-formalized axiomatic theory. But if it is adequately
represented by a formal theory P, then P must naturally be
deductively closed. As a matter of fact, it was believed in the Hilbert-
school - until Godel's incompleteness theorems became known - that
the formalisms for elementary number theory and analysis were
complete. For the purpose of obtaining a completeness proof Hilbert
suggested in his Bologna address (1928) to reinterpret finitistically
the familiar arguments for the categoricity of the Peano-axioms and
of his axioms concerning the real numbers. The assumed
completeness and the ensuing harmony: of provability and truth help
understand how Hilbert could take his radical formalist position, in
order to simply bypass the epistemological problems associated with
the classical infinite structures.’? - The finitist mathematical basis was
thought to be co-extensive with the part of arithmetic accepted by
Kronecker and Brouwer. As to Kronecker, Hilbert mentions in his
(1931): "At about the same time [i.e. at the time of Dedekind's
(1888)] ... Kronecker formulated most clearly a view, and illustrated it
by numerous examples, that essentially coincides with our finitist
standpoint." The relation to intuitionism is discussed explicitly at a
great number of places by Bernays; e.g. (Bernays, 1967), p. 502. A
particularly concise formulation was given by Johann von Neumann in
his Formalistische Grundlegung der Mathematik, Erkenntnis 2 (1931),
pp. 116-7.

C. DOUBTS. Two mathematicians with quite different foundational
views criticized Hilbert's formalism at exactly this point; i.e. they
criticized the assumption that parts of mathematics can be
represented (completely) by formal theories. The first of them was
Brouwer, the second Zermelo.

Brouwer used in his development of analysis infinite proofs and treated
them mathematically as well-founded trees. He wrote with respect to

33 Compare (Hilbert, 1929), pp. 14-15, (Bernays, 1930), pp. 59-60, and the discussion in
section 2.1. ‘
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them: "These mental mathematical proofs that in general contain
infinitely many terms must not be confused with their linguistic
accompaniments, which are finite and necessarily inadequate, hence do
not belong to mathematics."3# He added that this remark contains his
"main argument against the claims of Hilbert's metamathematics".
The well-founded trees of Brouwer's can be viewed as inductively
generated sets of sequences of natural numbers; that is the essential
claim of the bar-theorem. In the case of the constructive ordinals the
inductive generation proceeds by the following rules (on the right-hand
side | indicate the graphic representation of the ordinal):

0¢O °

0aeQ =>a'e0

(Vn) 0, e 0 =>a:i=supa,e0 Qo O ...

Notice, it is the bar-theorem together with the continuity principle that
implies the fan-theorem and thus the properties of the intuitionistic
continuum so peculiar from a classical point of view; e.g. the uniform
continuity of all real-valued functions on the closed unit interval.

Also Zermelo claimed that finite linguistic means are inadequate to
capture the nature of mathematics and mathematical proof. In a brief
note he argued: "Complexes of signs are not, as some assume, the
true subject matter of mathematics, but rather conceptually ideal
relations between the elements of a conceptually posited infinite
manifold. And our systems of signs are only imperfect and auxiliary
means of our finite mind, changing from case to case, in order to
master at least in stepwise approximation the infinite, that we cannot
survey directly and intuitively."* Zermelo suggested using an infinitary
logic to overcome finitist restrictions. The concept of well-
foundedness is fundamental for Zermelo's infinitary logic as well, but in

34 n (Brouwer, 1927), footnote 8, p. 460.
35 (Zermelo, 1931), p. 85.
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an unrestricted set theoretic framework. Zermelo's investigations of
infinitary systems can be found in (Zermelo, 1935).

D. REDUCTION. Ironically, the constructive consistency proofs of
impredicative theories, mentioned at the end of section 1.2, use
infinitary logical calculi; but the syntactic objects constituting them
(namely, formulas and derivations) are treated in harmony with
intuitionistic principles. The theories F* - in which the infinitary calculi
are investigated and to which the impredicative theories are reduced -
are extensions of intuitionistic number theory by definition and proof
principles for constructive ordinals or other accessible i.d. [inductively
defined] classes of natural numbers.36 The above process of inductive
generation for constructive ordinals can be expressed by an
arithmetical formula A(X,x). The two crucial principles are

(01) (VX)( A(0,x) => 0(x) ), and
(02) (V) A(F,x) => F(x) ) => (Vx)( O(x) => F(x) ) .

The former expresses the closure principle for O, the latter the
appropriate induction schema for any formula F. These principles and
corresponding ones for other inductively defined classes are correct
from an intuitionistic point of view; the theories F* are based on
intuitionistic logic. Because of these facts we can claim that the
consistency of the impredicative theories has been established relative
to constructive theories.

2. PHILOSOPHICAL REFLECTIONS. The reductions of impredicative
subsystems of analysis to intuitionistic theories of higher number
classes or other distinguished inductively defined classes are certainly
significant results; were not all impredicative definitions supposed to
contain vicious circles? The question is, nevertheless, what has been
achieved in a general, philosophical way. Godel remarked that giving a
constructive consistency proof for classical mathematics means "to
replace its axioms [i.e. those of classical mathematics] about abstract
entities of an objective Platonic realm by insights about the given

36 gee (Buchholz e.a., 1981) and for an informal introduction the second part of (Sieg, 1984).
- Accessible or deterministic i.d. classes are distinguished by the fact that all their elements
have unique construction trees. If the construction trees for all elements of an i.d. class are
finite, we say that the class is given by a finitary inductive definition. For a detailed discussion
of these notions see (Feferman and Sieg, 1981), pp. 22-23, and Feferman's paper Finitary
inductively presented logics for Logic Colloquium '88.
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operations of our mind".37 This pregnant formulation gives a most
dramatic philosophical meaning to such proofs; it seems to me to be
mistaken, however, in its radical opposition of classical and
constructive mathematics and even in the very characterization of
their subject matters. | prefer to formulate the task of such proofs
as follows: they are to relate two aspects of mathematical experience;
namely, the impression that mathematics has to do with abstract
objects arranged in structures that are independent of us, and the
conviction that the principles for some structures are evident,
because we can grasp the build-up of their elements. | will argue that
this is indeed central to the mediating task of the (modified) Hilbert
program. The starting point of my argument is a re-analysis of the
reductive goals of the original program; that will lead to the notion of
"structural reduction" and to questions concerning its epistemological
point.

2.1. STRUCTURAL REDUCTION. The description of Hilbert's program
in section 1.2 brings out, appropriately, the goal of justifying the
instrumentalist use of classical theories for the proof of true finitist
statements; it captures also important features of Hilbert's approach
in a natural way, for example his concern with "Methodenreinheit" and
the method of ideal elements. And yet, it truncates the program by
leaving out essential and problematic considerations. Hilbert and
Bernays both argue for a more direct mathematical significance of
consistency proofs: such proofs are viewed as the last desideratum in
justifying the existential supposition of infinite structures made by
modern axiomatic theories.3® It is clearly this concern that links the
program to Hilbert's first foundational investigations and to Dedekind's
attempted consistency proofs. Dedekind considers consistency proofs
also as a last desideratum, but there seems to be a decisive difference
as to the nature of theories: for him the theories (of natural and real
numbers) are not just formal systems with some instrumentalist use.
On the contrary, they are contentually motivated, have a materially
founded necessity, and mathematical efficacy. They play an important
epistemological role by giving us a conceptual grasp of composite
mathematical as well as physical phenomena; Dedekind claims, for

37 (Reid, 1970), p. 218; compare also Gédel's remarks in Hao Wang's From Mathematics to
Philosophy, London, 1974, pp. 325-326.

38 "Existential supposition" is to correspond to the term "existentielle Setzung" that is used
by Hilbert and Bernays as a quasi-technical term. The problem pointed to is presented as a
central one in Grundlagen der Mathematik I, see the summary of the discussion on p.19 of that
work. As to the role of the reflection principle, compare the informative remarks on pp. 43-44.
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example, that it is only the theory of real numbers that enables us "to
develop the conception of continuous space to a definite one".3

None of these points are lost in the considerations of Hilbert and
Bernays. The contentual motivation of axiom systems, for example,
plays a crucial role for them, as is clear from the very first chapter of
Grundlagen der Mathematik | where the relation between contentual and
formal axiomatics ("inhaltliche", respectively "formale Axiomatik") and
its relevance for our knowledge is being discussed. "Formal
axiomatics," they explain, "requires contentual axiomatics as a
necessary supplement; it is only the latter that guides us in the
selection of formalisms and moreover provides directions for applying
an already given formal theory to an objective domain".4 The basic
conviction is that the contentual axiomatic theories are fully
formalizable; formalisms, according to Hilbert (1928), provide "a
picture of the whole science". Bernays (1930) discusses the
completeness problem in detail and conjectures that elementary
number theory is complete. Though there is "a wide field of
considerable problems", Bernays claims, "this 'problematic' is not an
objection against the standpoint taken by us". He continues, arguing as
it were against the doubts of Brouwer's and Zermelo's:

We only have to realize that the [syntactic] formalism of statements and proofs we use to
represent our conceptions does not coincide with the [mathematical] formalism of the
structure we intend in our thinking. The [syntactic] formalism suffices to formulate our

39 (Dedekind, 1932), p. 340. - The underlying general position is persuasively presented in
(Dedekind, 1854). Dedekind viewed it as distinctive for the sciences (not just the natural ones)
to strive for "characteristic" and "efficacious" basic notions; the latter are needed for the
formulation of general truths. The truths themselves have, in turn, an effect on the formation
of basic notions: they may have been too narrow or too wide, they may require a change so
that they can "extend their efficacy and range to a greater domain". Dedekind continues, and
that just cannot be adequately translated: "Dieses Drehen und Wenden der Definitionen, den
aufgefundenen Gesetzen und Wahrheiten zuliebe, in denen sie eine Rolle spielen, bildet die groRte
Kunst des Systematikers". In mathematics we encounter the same phenomenon, e.g. when
extending the definition of functions to greater number domains. In contrast to other sciences,
however, mathematics does not leave any room for arbitrariness in how to extend definitions.
Here the extensions follow with "compelling necessity", if one applies the principle that "laws,
that emerged from the initial definitions and that are characteristic for the notions denoted by
them, are viewed as generally valid; then these laws in turn become the source of the
generalized definitions..." What a marvelous general description of his own later work in
algebra (in particular the introduction of ideals) and in his foundational papers, the guiding idea
of which is formulated clearly on p. 434 of this very essay.

40 Grundlagen der Mathematik |, p. 2. - | translated by "an objective domain" the phrase "ein
Gebiet der Tatsdchlichkeit". - Similar remarks can be found in earlier, pre-Gédel papers; see
especially the comprehensive and deeply philosophical (Bernays, 1930).
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ideas of infinite manifolds and to draw the logical consequences from them, but in general
it cannot combinatorially generate the manifold as it were out of itself.4!

The close, but not too intimate connection between intended structure
and syntactic formalism is to be exploited as the crucial means of
reduction. This idea is captured in papers by Bernays through a
mathematical image. (The papers are separated by close to fifty
years; | emphasize this fact to point out that the remarks are not
incidental, but touch the core of the strategy.) The first observation,
from 1922, follows a discussion of Hilbert's Grundlagen der Geometrie.

Thus the axiomatic treatment of geometry amounts to this: one abstracts from geometry,
given as the science of spatial figures, the purely mathematical component of knowledge
[Erkenntnis]; the latter is then investigated separately all by itself. The spatial
relations are projected as it were into the sphere of the mathematically abstract, where
the structure of their interconnection presents itself as an object of purely
mathematical thinking and is subjected to a manner of investigation focused exclusively
on logical connections.

What is said here for geometry is stated for arithmetic in (Bernays,
1922) and for theories in general in (Bernays, 1970), where a sketch
of Hilbert's program is supplemented by a clear formulation of the
epistemological significance of such "projections".

In taking the deductive structure of a formalized theory ... as an object of investigation
the [contentual] theory is projected as it were into the number theoretic domain. The
number theoretic structure thus obtained is in general essentially different from the
structure intended by the [contentual] theory. But it [the number theoretic structure]
can serve to recognize the consistency of the theory from a standpoint that is more
elementary than the assumption of the intended structure.

Recalling that - according to Hilbert - the axiomatic method applies in
identical ways to different domains, these projections have a uniform
character. Thus Hilbert's program can be seen to seek a uniform
structural reduction: intended structures are projected through their
assumed complete formalizations into the properly mathematical
domain (of Kronecker's and Brouwer's), i.e. finitist mathematics. The
equivalence of consistency and satisfiability was claimed or at least
conjectured;*2 consequently, it seemed that the existence of intended

41 (Bernays, 1930), p. 59. The words in brackets were added by me to make the translation as
clear as the German original. - The next longer quotations are taken from (Bernays, 1922 A),
p. 96, and (Bernays, 1970), p. 186.

42 |n (Bernays, 1930), p. 21, one finds the following phrase: "It is for this reason necessary
to prove for every axiomatic theory the satisfiability, i.e. the consistency of its axioms."
Compare also Grundlagen der Mathematik I, p. 19. - Minc and Friedman have shown that Godel's
completeness theorem for predicate logic can be established in a conservative extension of
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structures would be secured by the mathematical solution of the
purely combinatorial consistency problem. The principles used in the
solution were of course to be finitist; the epistemological gain of such
reductions is described in Grundlagen der Mathematik I

Formal axiomatics, too, requires for the checking of deductions and the proof of
consistency in any case certain evidences, but with the crucial difference [when
compared to contentual axiomatics] that this evidence does not rest on a special
epistemological relation to the particular domain, but rather is one and the same for any
axiomatics; this evidence is the primitive manner of recognizing truths that is a
prerequisite for any theoretical investigation whatsoever.43

This reconstruction of the intent of Hilbert's program is supported
most explicitly by Bernays (1922 and 1930). Let me focus briefly on
the earlier paper, not to report on all its detailed points, but rather to
depict the structure of its argumentation. The problem faced by the
program is seen in the following way. In providing a rigorous foundation
for arithmetic (taken in a wide sense to include analysis and set
theory) one proceeds axiomatically and starts out with the assumption
of a system of objects satisfying certain structural conditions. But in
the assumption of such a system "lies something so-to-speak
transcendental for mathematics, and the question arises, which
principled position is to be taken [towards that assumption]". Bernays
considers two "natural positions". The first, attributed to Frege and
Russell, attempts to prove the consistency of arithmetic by purely
logical means; this attempt is judged to be a failure. The second
position is seen in counterpoint to the logical foundations of
arithmetic: "As one does not succeed in establishing the logical
necessity of the mathematical transcendental assumptions, one asks
oneself, is it not possible to simply do without them". Thus one
attempts a constructive foundation, replacing existential assumptions
by construction postulates; that is the second position and is
associated with Kronecker, Poincaré, Brouwer, and Weyl. The
methodological restrictions to which this position leads are viewed as
unsatisfactory, as one is forced "to give up the most successful, most
elegant, and most proven methods only because one does not have a
foundation for them from a particular standpoint”. Hilbert takes from

primitive recursive arithmetic. (That is an obvious improvement of Bernays' proof of the
completeness theorem in elementary number theory.) The result is of considerable interest in
this connection, as it justifies the equivalence of consistency and satisfiability from a finitist
point of view - at least for formal first order theories.

43 Grundlagen der Mathematik I, p. 2. The parenthetical remark is mine. - Bernays uses the
term "primitive Erkenntnisweise" which | tried to capture by the somewhat unwieldy phrase
"primitive manner of recognizing truths".
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these foundational positions what is "positively fruitful": from the
first, the strict formalization of mathematical reasoning; from the
second, the emphasis on constructions. Hilbert does not want to give
up the constructive tendency, but - on the contrary - emphasizes it in
the strongest possible terms. The program, as described in 1.2, is
taken as the tool for an alternative constructive foundation of all of
classical mathematics.

It is not the case - as is so often claimed - that the difficult
philosophical problems brought out by the axiomatic method and the
associated structural view of mathematics were not seen. They
motivated the enterprise and were seen perfectly clearly; however, it
was hoped, perhaps too naively, to either avoid them directly in a
systematic-mathematical development (by presenting appropriate
models) or to solve them in the case of "fundamental"™ structures on
the finitist basis. In any case, a so-to-speak absolute epistemological
reduction was envisioned. These radical, philosophically motivated
aspirations of Hilbert's program were blocked by Godel's
incompleteness theorems: according to the first theorem it is not
possible, even in the case of natural numbers, to exclude
systematically all contentual considerations concerning the intended
structure; the second theorem implies that formal theories can be
used at most as vehicles for partial structural reductions to
strengthenings of the finitist basis. Bernays wrote in the epilog to his
(1930), p. 61:

On the whole the situation is like ‘this: Hilbert's proof theory - together with the
discovery of the formalizability of mathematical theories - has opened a rich field of
research, but the epistemological views that were taken for granted at its inception have
become problematic.

At the inception of Hilbert's program, it seems, the epistemological
views had not been dogmatically and unshakably fixed. As will be
pointed out in the next section, Hilbert's original position had to be and
was extended; in addition, to judge from (Bernays, 1922), the focus on
finitist mathematics was viewed as part of an "Ansatz" to the solution
of a problem. Having formulated the question as to a principled position
towards the transcendental assumptions underlying the axiomatic
foundations of arithmetic (see above), Bernays remarks, p. 11:
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Under this perspective** we are going to try, whether it is not possible to give a
foundation to these transcendental assumptions in such a way that only primitive
intuitive knowledge (primitive anschauliche Erkenntnisse) is used.

Viewing the philosophical position in this more experimental spirit, we
can complement the metamathematical reductive program by a
philosophical one that addresses two central issues: (i) what is the
‘nature and the role of the reduced structures? and (ii) what is the
special character of the theories to which they are reduced? As to
the latter issue, our greater metamathematical experience allows us
to point to perhaps significant general features.

2.2. ACCESSIBLE DOMAINS. The reductive program | described in
section 1.2. has been pursued successfully. | think there can be no
reasonable doubt that (meta-) mathematically and, prima facie, also
philosophically significant solutions have been obtained. As to the
mathematical results it can be observed:

e A considerable portion of classical mathematical practice, including all of analysis, can
be carried out in a small corner of Cantor's paradise that is consistent relative to the
constructive principles formalized in intuitionistic number theory. This is not trivial,
if one bears in mind that in particular for analysis non-constructive principles seemed
to be necessary.

The metamathematical results concerning the relative consistency of
impredicative theories speak also for themselves.

e The constructive principles formalized -in intuitionistic theories for i.d. classes*
allow us to recognize the relative consistency of certain impredicative theories. This is
again not trivial, if one takes into account that any impredicative principle, from a
broad constructive point of view, seemed to contain vicious circles.46

These relative consistency results provide material for critical
philosophical analysis. After all, they raise implicitly the traditional
question: "What is the (special) evidence of the mathematical principles
used in (these) consistency proofs?" - The intuitionistic theories for
i.d. classes formulate complex principles that are recognized by
classical and constructivist mathematicians alike. On the one hand

44 of taking into account the tendency of the exact sciences to use as far as possible only the
most primitive "Erkenntnismittel". That does not mean, as Bernays emphasizes, to deny any
other, stronger form of intuitive evidence.

45 je. very special ones: higher number classes and, more generally, accessible i.d. classes.

46 That point is clearly and forcefully made in Godel's paper Russell's Mathematical Logic; see
pp. 455-456 in the second edition of Philosophy of Mathematics, Benacerraf and Putnam (eds.),
Cambridge, 1983.
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they are more elementary than the principles used in their set
theoretic justification, but on the other hand they cannot be given a
direct (primitive) intuitive foundation. For a philosophical analysis that
attempts to clarify extensions of the finitist standpoint and to
explicate - relative to them - the epistemological significance of these
particular results some clear and concrete tasks can be formulated.

At the very beginning of the development of Hilbert's program one
finds an extension not of, but rather towards the finitist standpoint.
Originally, Hilbert intended to make do with a mathematical basis that
did not even include the "Allgemeinbegriff der Ziffer": all mathematical
knowledge (Erkenntnis) was to be reduced to primitive formal
evidence.¥’ This extremely restricted undertaking was given up
quickly: how could the central goal of the program, consistency, be
formulated within its framework? A "finitist standpoint" that is to
serve as the basis for Hilbert's investigations cannot be founded on
the intuition of concretely given objects; it rather has to correspond to
a standpoint, as Bernays explained, "where one already reflects on the
general characteristics of intuitive objects".# A first task presents
itself.

47 This is reported in (Bernays, 1946), p. 91; an example of the form of this quite primitive
evidence can be found l.c. p. 89, but compare also (Bernays, 1961), p. 169. As to the
historical point see (Bernays, 1967), p. 500: "At the time of his Zurich lecture Hilbert tended
to restrict the methods of proof-theoretic reasoning to the most primitive evidence. The
apparent needs of proof theory induced him to adopt successively those suppositions which
constitute what he then called the 'finite Einstellung'."

48 From (Bernays,1930), p. 40. The context is this: "Diese Heranziehung der Vorstellung des
Endlichen [used from the finitist standpoint] gehért freilich nicht mehr zu demjenigen, was von
der anschaulichen Evidenz notwendig in das logische SchlieRen eingeht. Sie entspricht vielmehr
einem Standpunkt, bei dem man bereits auf die allgemeinen Charakterziige der anschaulichen
Objekte reflektiert." - This is a clearer and more promising starting point for an analysis than
the one offered through Hilbert's own characterization in (van Heijenoort), p. 376. Important
investigations, in addition to those of Bernays, have been contributed by i.a. Kreisel, Parsons,
and Tait. See (Tait, 1981) and the references to the literature given there. However, in this
systematic context (and also for a general discussion of feasibility) | should point out that
weakenings of the finitist standpoint are of real interest; a penetrating investigation is carried
out by R. Gandy in Limitations of mathematical knowledge, in: Logic Colloquium '80, Amsterdam
1982, pp. 129-146. Notice that the type-token problematic has to be faced already from
weakened positions. - The crux of the additional problematic was compressed by Bernays into
one sentence: "Wollen wir ... die Ordnungszahlen als eindeutige Objekte, frei von allen
unwesentlichen Zutaten haben, so missen wir jeweils das bloRe Schema der betreffenden
Wiederholungsfigur als Objekt nehmen, was eine sehr hohe Abstraktion erfordert." (Bernays,
1930, pp. 31-32.) It is for these formal objects that the "Gedankenexperimente" are carried
out, that play such an important role in Grundlagen der Mathematik | (p. 32) for characterizing
finitist considerations.
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(1) Analyze this reflection for the natural numbers (and the elements of other accessible
i.d. classes given by finitary inductive definitions) and investigate, whether and how
induction and recursion principles can be based on it.

Without attempting to summarize the extended (and subtle) discussion
in (Bernays, 1930) | want to point to one feature that is crucial in it
and important for my considerations. For Bernays the natural
humbers (as ordinals) are the simplest formal objects; they are
obtained by formal abstraction and are representable by concrete
objects, numerals. This representation has a very special
characteristic: the representing things contain ("enthalten") the
essential properties of the represented things in such a way that
relations between the latter objects obtain between the former and
can be ascertained by considering those.® It is this special
characteristic that has to be given up when extending the finitist
standpoint: symbols are no longer carrying their meaning on their face,
as they cannot exhibit their build-up.® For the consistency proofs
mentioned in Remark D above one uses accessible i.d. classes of
natural numbers; numerals for the elements of such a class are now
understood as denoting infinite objects, namely the unique construction
trees associated effectively with the elements. So we have as a
generalization of (I) - to begin with - the task:

(I) Extend the reflection to constructive ordinals and the elements of other accessible
i.d. classes and investigate, whether and how induction and recursion principles can be
based on it. :

One delicate question has not been taken into account here. For the
consistency proofs of strong impredicative theories the definition of

49 This is found on pp. 31-32, in particular in footnote 4 on that very page. The general
problematic is also discussed in (Bernays, 1935 A), pp. 69-71. Compare the previous footnote
to recognize that not an isomorphic representation by a particular, physically realized object is
intended. The uniform character of the generation and the local structure of the schematic
"iteration figure" are important.

S0 Godel described in his Uber eine bisher noch nicht beniitzte Erweiterung des finiten
Standpunktes, Dialectica 12 (1958), pp. 280-287, a standpoint that extends the finitist one and
that is appropriate for the consistency proofs for number theory given by Gentzen and Godel
himself. The starting point of this proposal are considerations of Bernays - e.g. in his (1935)
and (1941) - concerning the question, "In what way does intuitionism go beyond finitism?"
Bernays's answer is "Through its abstract notion of consequence." And it is this abstract
concept that is to be partially captured by the computable functionals of finite type. - Note that
the specifically finitist character of mathematical objects requires, according to Gédel, that
they are "finite space-time configurations whose nature is irrelevant except for equality and
difference”. This seems to conflict with Bernays's analysis pointed to in the previous two
footnotes.
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i.d. classes has to be iterated uniformly; that means the branching in
the well-founded construction trees is not only taken over natural
numbers, but also over other already obtained i.d. classes. These trees
are of much greater complexity. For example, it is no longer possible -
as it is in the case of constructive ordinals - to generate effectively
arbitrary finite subtrees; that has to be done now through procedures
that are effective relative to already obtained number classes. Thus
we have to modify (lI).

(Il) Extend the reflection to uniformly iterated accessible i.d. classes, in particular to
the higher constructive number classes.

Buchholz and Pohlers used in their investigations of theories for
i.d. classes systems of ordinal notations. It is clearly in the tradition
of Gentzen and Schiitte to use for consistency proofs the principle of
transfinite induction along suitable ordinals (represented through
effective notation systems). But in parallel to proving the consistency
of formal theories by such means, Gentzen wrote in a letter to
Bernays of March 3, 1936, one has to pursue a complementary task,
namely " ... to carry out investigations with the goal of making the
validity of transfinite induction constructively intelligible for higher and
higher limit numbers". It is only through such investigations that the
philosophical point of consistency proofs can be made, namely, to
secure a theory by reliable ("sichere") means. Gentzen's task is
included in (lll), since the systems of notations used in Buchholz and
Pohlers' work are generated as accessible i.d. classes, and their well-
ordering is recognized through the proof principle for these i.d.
classes. These systems of notations were quite complicated, but in
their latest and conceptually best form they are given by clauses of
the same character as those for higher number classes (Buchholz,
1990). | mentioned earlier the consistency problem for the subsystem
of analysis with IT3-comprehension; this is not only a mathematical
problem, but also an open conceptual problem, as new "constructive"
objects are needed for a satisfactory "constructive" solution.s!

The number classes provide special cases in which generating
procedures allow us to grasp the intrinsic build-up of mathematical

51 Work of Pohlers and his students to extend the method of local predicativity make it most
likely that a close connection to set theory (in particular the study of large cardinals and the
fine structure of the constructible universe L) is emerging.
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objects.’? Such an understanding is a fundamental and objective
source of our knowledge of mathematical principles for the structures
or domains constituted by those objects: is it not the case that the
definition- and proof principles follow directly this comprehended build-
up? Clearly, we have to complement an analysis of this source - as
requested in (I)-(lll) - by formulating (the reasons for the choice of)
suitable deductive frames in which the mathematical principles are
embedded. Thus there are substantial questions concerning the
language, logic, and the exact formulation of schematic principles. But
notice that for the concerns here these questions are not of primary
importance. For example, the restriction to intuitionistic logic is rather
insignificant: the double-negation translation used by G&del and
Gentzen to prove the consistency of classical relative to intuitionistic
arithmetic can be extended to a variety of theories to yield relative
consistency results. Indeed, Friedman showed for arithmetic, finite
type theories, and Zermelo-Fraenkel set theory that the classical
theories are II-conservative over their intuitionistic version. Using
Friedman's strikingly simple techniques Feferman and Sieg (1981)
established such conservation results for some subsystems of
analysis and also for the theories of iterated inductive definitions.s3 In
the latter case it is the further restriction to accessible i.d. classes
that is (technically difficult and) conceptually significant.

Disregarding the traditional constructive traits of the objects
considered up to now we can extend the basic accessibility conception
from i.d. classes of natural numbers to broader domains. A
comprehensive framework for the "inductive or rule-governed
generation" of mathematical objects is given in (Aczel, 1977); it is
indeed so general that it encompasses finitary i.d. classes, higher
number classes, the set-theoretic model of Feferman's theory T, of

explicit mathematics and of other constructive theories (like Martin-
Lof's), but also segments of the cumulative hierarchy. Clearly, not all
of Aczel's i.d. classes have the distinctive feature of accessible i.d.
classes; those whose elements do have unique associated well-founded
"construction" trees are called deterministic and, here again,
accessible. Segments of the cumulative hierarchy - that contain some

52 By calling their build-up "intrinsic" | point again to the parallelism between the generating
procedure and the structure of the intended object; compare the case under discussion here, for
example, with that of the computable functionals of finite type.

53 The theory of arithmetic properties and ramified systems were shown to be Hg-
conservative over their intuitionistic versions in (Feferman and Sieg), pp. 57-59. - The
generality of Friedman's techniques was brought out by Leivant in Syntactic translations and
provably recursive functions, Journal of Symbolic Logic 50 (3), 1985, 682 - 688.
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ordinals (0, w, or large cardinals) and are closed under the powerset,
union, and replacement operations - are in this sense accessible: the
uniquely determined transitive closure of their elements are
"construction" trees.’* Here, as above, we have the task of explicating
(the difficulties in) our understanding of generation procedures. After
all, for accessibility to have any cognitive significance such an
understanding has to be assumed. The latter is in the present case
relatively unproblematic, if we restrict attention to hereditarily finite
sets; then we have an understanding of the combinatorial generation
procedures and, in particular, of forming arbitrary subcollections.

Indeed, ZF", i.e. Zermelo-Fraenkel set theory without the axiom of
infinity, is equivalent to elementary number theory. The powerset
operation is the critical generating principle; its strength when applied
to infinite sets is highlighted by the fact that ZF without the powerset
axiom is equivalent to second order arithmetic.’s But if we do assume
an understanding of the set theoretic generation procedure for a
segment of the cumulative hierarchy, then it is indeed the case that

the axioms of ZF~ together with a suitable axiom of infinity "force
themselves upon us as being true" - in Gédel's famous phrase; they just
formulate the principles underlying the "construction" of the objects in
this segment of the hierarchy.¢ In summary, we have a wealth of
accessible domains, and it seems that we can understand the pertinent
mathematical principles quasi-constructively, as we grasp the build-up
of the objects constituting such structures.

54 Here is the basis for e-induction and recursion. It seems to me that in this context the
discussion and results concerning Fraenkel's Axiom of Restriction would be quite pertinent.

55 Using powerset one obtains not the elements of a subclass from a given set, but rather all
subclasses in one fell swoop. It is this utter generality that creates a difficulty even when the
given set is that of the natural numbers; see the comprehensive discussion of Bernays's views
in (Mdller). The difficulty is very roughly this: in terms of the basic operations one does not
have "prior" access to all elements of the powerset, unless one chooses a second order
formulation of replacement. That would allow the joining of arbitrary subcollections, but
"arbitrary subcollection" has then to be understood in whatever sense the second order
variables are interpreted. - A focus on definable subsets leads to the ramified hierarchy, to
Godel's constructible sets, and to the consideration of subsystems of ZF. The investigations
concerning subsystems of analysis can be turned into investigations of natural subsystems of
set theory. That was done by G. Jager. His work is presented in Theories for admissible sets -
A unifying approach to proof theory; Bibliopolis, Naples, 1986.

56 This reason for accepting the axioms of ZF seems to be (at least) consonant with Godel's
analysis in What js Cantor's continuum problem? and does not rest on the strong Platonism in
the later supplement of the paper. The conceptual kernel of this analysis goes back to Zermelo's
penetrating paper of 1930. A discussion of the rich literature on the "iterative conception of
set" is clearly not possible here. - Notice that the length of iteration is partly determined
through the adopted axiom of infinity built into the base clause of the i.d. definition.
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2.3. CONTRASTS. The "ontological status" of mathematical
objects has not been discussed. The reason is this: | agree with the
subtle considerations of Bernays in the essay Mathematische Existenz
und Widerspruchsfreiheit and suggest only one amendation, namely to
distinguish the "methodical frames" (methodische Rahmen) by having
their objects constitute accessible domains. The contrast between
"platonist" and "constructivist" tendencies is then not localized in the
stark opposition formulated by Godel; it comes to light rather in
refined distinctions concerning the admissibility of operations, of their
iteration, and of deductive principles. In this way, it seems to me,
methodical frames are not only distinguishable from each other, but
also epistemologically differentiated from "abstract" theories
formulated within particular frames. | want to focus on this
differentiation now and contrast the quasi-constructive aspect of
mathematical experience | have been analyzing to - what | suggest to
call - its "conceptional" aspect. The latter aspect is most important
for mathematical practice and understanding, but also for the
sophisticated uses of mathematics in physics; it is quite independent
of methodical frames.

As a first step let us consider Dedekind's way of comprehending the
accessible domain of natural numbers. The informal analysis underlying
Was sind und was sollen die Zahlen? described in his letter to
Keferstein, (Dedekind 1890), starts out with the question:

What are the mutually independent fundamental properties of the sequence N, that is,
those properties that are not derivable from one another but from which all others
follow? And how should we divest these properties of their specifically arithmetic
character so that they are subsumed under more general notions and under activities of
the understanding without which no thinking is possible at all but with which a
foundation is provided for the reliability and completeness of proofs and for the
construction of consistent notions and definitions?

One is quickly led to infinite systems that contain a distinguished
element 1 and are closed under a successor operation ¢. Dedekind
notes that such systems may contain non-standard "intruders" and
that their exclusion from N was for him "one of the most difficult
points" in his analysis; "its mastery required lengthy reflection.”"s? The

57 The minimalist understanding is taken for granted when it is claimed that the induction
principle is evident from the finitist point of view. Thus, even this seemingly most elementary
explanation of induction leaves us with a certain. "impredicativity". "The same holds", Parsons
rightly argues, "for other domains of objects obtained by iteration of operations yielding new
objects, beginning with certain initial ones. It seems that the impredicativity will loose its
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notion of chain allows him to give "an unambiguous conceptual
foundation to the distinction between the [standard] elements n and
the [non-standard] t". By means of this notion he captures the
informal understanding that the natural numbers are just those
objects that are obtained from 1 by finite iteration of ¢, or rather the
objects arising from any simply infinite system "by entirely
disregarding the special nature of its elements, and retaining only their
distinguishability and considering exclusively those relations that obtain
between them through the ordering mapping ¢".5¢ He continues: "Taking
into account this freeing of the elements from every other content
(abstraction), we can justifiably call the [natural] numbers a free
creation of the human mind." How startlingly close is this final view of
natural numbers to that arrived at by Bernays through "formal
abstraction™!

For Dedekind the considerations (concerning the existence of
infinite systems) guarantee that the notion "simply infinite system"
does not contain an internal contradiction.® The "purely logical" and
presumably reliable foundation did not, of course, allow this goal to be
reached. In 1.1 | emphasized methodological parallels between
Dedekind's treatment of the natural and real numbers; here | want to
bring out a most striking difference. We just saw that Dedekind's
analysis of natural numbers is based on a clear understanding of their
accessibility through the successor operation. This understanding
allows the distinction between standard objects and "intruders" and
motivates directly the axioms for simply infinite systems. Given the
build-up of the objects in their domains, it is quite obvious that any two
simply infinite systems have to be isomorphic via a unique
isomorphism. By way of contrast consider the axioms for dense linear
orderings without endpoints; their countable models are all isomorphic,
but Cantor's back-and-forth argument for this fact exploits broad
structural conditions and not the local build-up of objects. The last
observation gives also the reason, why these axioms do not have an
"intended model": it is the accessibility of objects via operations not
just the categoricity of a theory that gives us such a model. Similar

significance only from points of view that leave it mysterious why mathematical induction is
evident." (Parsons, 1983), pp.135-136.

58 gection 73 of (Dedekind, 1888).

59 What is so astonishing in every re-reading of Dedekind's essay is the conceptual clarity, the
elegance and generality of its mathematical development. As to the latter, it really contains
the general method of making monotone inductive definitions explicit. The treatment of
recursive definitions is easily extendible; that it has to be restricted, in effect, to accessible
i.d. classes is noted. Compare (Feferman and Sieg), footnotes 2 and 4 on p. 75.
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remarks apply to the reals, as the isomorphism between any two
models of the axioms for complete, ordered fields is based on the
topological completeness requirement, not any build-up of their
elements. (That requirement guarantees the continuous extendibility of
any isomorphism between their respective rationals.)

This point is perhaps brought out even more clearly by a classical
theorem of Pontrjagin's stating, that connected, locally-compact
topological fields are either isomorphic to the reals, the complex
numbers, or the quaternions. For this case Bourbaki's description,
that the "individuality" of the objects in the classical structures is
induced by the superposition of structural conditions, is so wonderfully
apt; having presented the principal structures (order, algebraic,
topological) he continues:

Farther along we come finally to the theories properly called particular. In these the
elements of the sets under consideration, which, in the general structures have remained
entirely indeterminate, obtain a more definitely characterized individuality. At this
point we merge with the theories of classical mathematics, the analysis of functions of
real or complex variable, differential geometry, algebraic geometry, theory of numbers.
But they have no longer their former autonomy; they have become crossroads, where
several more general mathematical structures meet and react upon one another.0

Here we are dealing with abstract notions, distilled from mathematical
practice for the purpose of comprehending complex connections, of
making analogies precise, and to obtain a more profound
understanding; it is in this way that the axiomatic method teaches us,
as Bourbaki expressed it in Dedekind's spirit (l.c., p. 223),

to look for the deep-lying reasons for such a discovery [that two, or several, quite
distinct theories lend edach other "unexpected support"], to find the common ideas of
these theories, buried under the accumulation of details properly belonging to each of
them, to bring these ideas forward and to put them in their proper light.

Notions like group, field, topological space, differentiable manifold
fall into this category, and (relative) consistency proofs have here
indeed the task of establishing the consistency of abstract notions
relative to accessible domains. In Bourbaki's enterprise one might see
this as being done relative to (a segment of) the cumulative hierarchy.
But note, this consideration cuts across traditional divisions, as it
pertains not only to notions of classical mathematics, but also to some
of constructive mathematics. A prime example of the latter is that of

. 60 p. 229 of N. Bourbaki, The architecture of mathematics, Math. Monthly (57), 1950, pp.
221-232. The natural numbers are not obtained at a crossroad.
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a choice sequence introduced by Brouwer into intuitionistic
mathematics to capture the essence of the continuum; the
consistency proof of the theory of choice sequences relative to the
theory of (non-iterated) inductive definitions can be viewed as fulfilling
exactly the above task.6! The restriction of admissible operations (and
deductive principles) can lead to the rejection of abstract notions; that
comes most poignantly to the surface in the philosophical dispute
between Kronecker and Dedekind, but also in Bishop's derisive view of
Brouwer's choice sequences. Bishop is not only scornful of the
"metaphysical speculation” underlying the notion of choice sequence,
but he also views the resulting mathematics as "bizarre". (Bishop,
1967), p. 6.

CONCLUDING REMARKS. The conceptional aspect of mathematical
experience and its profound function in mathematics has been
neglected almost completely in the logico-philosophical literature on the
foundations of mathematics.62 Abstract notions have been important
for the internal development of mathematics, but also for
sophisticated applications of mathematics in physics and other
sciences to organize our experience of the world. It seems to me to be
absolutely crucial to gain genuine insight into this dual role, if we want
to bring into harmony, as we certainly should, philosophical reflections
on mathematics with those on the sciences.

Results of mathematical logic do not give precise answers to large
philosophical questions; but they can force us to think through
philosophical positions. Broad philosophical considerations do not
provide "foundations" for mathematics; but they can bring us to raise
mathematical problems. We shall advance our understanding of
mathematics only if we continue to develop the dialectic of
mathematical investigation and philosophical reflection; a dialectic that
has to be informed by crucial features of the historical development of
its subject. In Brecht's Galileo Galilei one finds the remark:

A main reason for the poverty of the sciences is most often imagined wealth. It is not
their aim to open a door to infinite wisdom, but rather to set bounds to infinite
misunderstanding.63

61 Kreisel and Troelstra, Formal systems for some branches of intuitionistic analysis, Annals
of Mathematical Logic 1(3), 1970, pp. 229-387. It is really just the theory of the second
constructive number-class that is needed.

62 The exception are papers of Bernays; there it is absolutely central.

63 The German text is: "Eine Hauptursache der Armut der Wissenschaften ist meist
eingebildeter Reichtum. Es ist nicht ihr Ziel, der unendlichen Weisheit eine Tur zu &ffnen,
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What is said here for the sciences holds equally for mathematical logic
and philosophy.
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