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The whimsically modest title “Sketches of an Elephant” (you know, the
four blind men who think the elephant is like a snake, a tree trunk, etc.) fails
to do justice to the ambitious scope of this project or its masterful execution.
It could easily have been called “Principia Toposophica,” perhaps reflecting
its role in the logic of the new century.

Roughly speaking, the notion of a topos is to logic in general what a
boolean algebra is to propositional logic, but this needs to be qualified in
several ways. The original conception, due to A. Grothendieck, was mainly
to be a vehicle for cohomology (see: Allyn Jackson, “Comme Appelé du
Néant—As if Summond from the Void: The Life of Alexandre Grothendieck”,
Notices Amer. Math. Soc. 51, 2004). Logically, such a “Grothendieck topos”
is something like a universe of continuously variable sets. Before long, how-
ever, F.W. Lawvere and M. Tierney provided an elementary axiomatization
more closely related to higher-order logic. These two aspects continue to
be present, among several others referred to in the “elephant” image. Com-
pared to traditional algebraic logic, however, the “algebraic” treatment of
logic pursued in topos theory is closer in spirit to that found in “algebraic”
topology, where the use of functorial methods is taken for granted. In topos
theory, moreover, not only are such methods brought to bear on logic, but
conversely, the topos approach permits the application of logic in a range
of situations in topology, geometry and algebra — extending Grothendieck’s
original conception from cohomology.

*To appear in: The Bulletin of Symbolic Logic



This scope of application, deriving from the generality of its methods,
is what makes topos theory “foundational,” in a sense that is neither the
deductive-axiomatic one of Frege and Russell, nor entirely the descriptive-
axiomatic one of Eilenberg & Steenrod. Be that as it may, it is clear that
the book fits into the Oxford Logic Guides, and should be of great interest
to readers of this BULLETIN. The purpose of this review, then, is to provide
a field guide to this strange new territory, which may in places seem rather
forbidding to the newcomer.

First, as to the nature of the beast, this pachyderm is foremost a com-
pendium of the main results of research in the field since its Bourbakian
beginnings in the 1960s, refined, related and organized into a body of the-
ory that displays the maturity of the discipline as it now stands. No such
corpus would have been possible even twenty years ago (before e.g. the
work of A. Joyal and M. Tierney, “An Extension of the Galois Theory of
Grothendieck”, Memoirs Amer. Math. Soc. 309, 1984), and as useful as was
the author’s early textbook Topos Theory (Academic Press, 1977), the dif-
ference between it and this book displays how much the field has ripened
(but it also reflects the fact that the Elephant is not intended as a textbook).
Although it includes some results not previously published (or hard to find),
as well as many improved proofs of known results, the strength and value of
the work really lies in its encyclopedic character and remarkable success in
organizing and interrelating this amount of quite technical material into a
coherent whole, with uniform notation, terminology, prerequisites and depth
of rigor. Moreover, the high degree of deductive coherence, shared definitions
and lemmas, etc., that are possible in such a book make it far more useful
(and readable) than the sum of the individual research papers from which
its results are mainly drawn.

The actual content is not restricted to topos theory proper, but also
covers a range of results and methods from category theory that are related
to toposes, and are employed in topos theory to one degree or another. This
course of action not only serves to make the book largely self-contained, but
contributes to the uniformity of notation and terminology and systematic
organization as well. It also makes the book valuable as a resource for those
related fields, such as general categorical logic; indexed, fibered, and internal
category theory; allegories; locale theory; and several others.

The two volumes are divided into four main parts, two in each, corre-
sponding roughly to different aspects of the topos concept, as follows:



A. Toposes as categories
B. 2-categorical aspects of topos theory
C. Toposes as spaces

D. Toposes as theories
The contents of the projected third volume are indicated to be:

E. Homotopy and cohomology

F. Toposes as mathematical universes.

Each of these parts falls into several chapters and sections, the general
contents of which we will now survey individually.

A. Toposes as categories. A topos is by definition a cartesian closed
category with a subobject classifier. To the logician, cartesian closure essen-
tially means that the category is a model of the lambda-calculus, while the
subobject classifier adds in a type of “propositions” or “truth-values”. In the
presence of equality relations for each type X (provided by the diagonal arrow
X »— X x X)), this combination of resources permits not only the definition
of the usual logical operations like negation, conjunction, and quantification,
but also the formation of terms of all higher (finite) types, such as functionals
and relational quantifiers. The notion of a topos thus corresponds logically
to that of a system of higher-order predicate logic; but let us immediately
ward off a possible misconception: topos theory is not chiefly concerned with
the use of such systems of logic, in some form or other, to deduce fragments
of mathematics, the way the logician might expect. Rather, it is occupied
more with the study of the great variety of such toposes as they occur in
nature, as it were, and their interrelations. Thus the perspective is closer to
the way that group theory is about groups than the way analysis is about
the real numbers.

For instance, the category S of all sets and functions is a topos, as is
the category Sy of finite sets, but so also are the product category S x S;
and the functor category S5/. Indeed, the essentially algebraic character
of the topos concept makes it closed under many important operations for
constructing new objects out of old ones. An important class of examples



is provided by the categories Sh(X) of all sheaves on a topological space X.
From a logical point of view, such a topos can be regarded as consisting of
sets varying continuously over the space X. Another kind of topos is the
category S of sets A equipped with an action A x G — A by a group
G, and all equivariant functions; these can be seen as sets that in some
sense “respect” the group structure. There are many more kinds of toposes,
including ones constructed from various deductive logical systems, and ones
determined by different notions of computability. Part A provides the basic
definitions and examples, together with some of the most important general
facts about the concepts involved. There is also a useful survey of P. Freyd’s
theory of “allegories”, an abstraction of categories of relations which sheds
light on the topos concept from a different angle.

The mappings of greatest interest in topos theory are the “geometric
morphisms” between toposes, which arise quite naturally in a range of cir-
cumstances. If X and Y are topological spaces, for instance, each continuous
function X — Y induces an associated geometric morphism Sh(X) — Sh(Y);
similarly, a homomorphism of groups G — H gives rise to a geometric mor-
phism of toposes S¢ — S¥. But the general notion of a topos then also makes
possible geometric morphisms of the form Sh(X) — 8¢, relating a space X
and a group G, along with many others relating logical systems, computa-
tion, topology, and algebra. In logic, set-theoretic forcing, boolean-valued
and permutation models, and Kripke semantics can also all be described,
related, and combined using toposes and geometric morphisms. The ba-
sic theory of geometric morphisms including some fundamental factorization

theorems (akin to the Noether homomorphism theorem for groups) concludes
Part A.

B. 2-categorical aspects of topos theory. This is the most technical
part of the book, and will likely be the most difficult for the logical reader to
appreciate. It consists of results on indexed, fibered, and internal categories
that are motivated mainly by their use elsewhere in the theory. This not to
say that the content is of no logical interest, but only that its interest will
be more apparent in its applications. The important notion of an internal
category in a category, for instance, is related to the idea that a logical
system can be formalized as an axiomatic theory in a (meta-)language, i.e.
another logical system. This makes it possible to describe the interpretations
of a “theory” represented by an internal category C in the “meta-language”



category (perhaps a topos) S as functors of the form C — S, so that the
category of all models of the “theory” is a certain subcategory of the functor
category ST (then also a topos). Such “functorial semantics” (developed in
Part D) requires some of the notions developed here. Accordingly, the general
reader is advised to refer to results in this part of the book as required for
the comprehension of other parts.

The specialist, on the other hand, will welcome the systematic and author-
itative presentation of these tools, the development of which was scattered
across the journals. In this presentation, for instance, the theory of the 2-
category BTop/S of toposes bounded over an arbitrary base topos S now
seems to be quite mature and satisfactory.

C. Toposes as spaces. After the spade-work of the previous two Parts,
this volume begins to develop the real fruits of the theory. According to the
original conception of Grothendieck and his followers, a topos is a generalized
topological space, and the category of toposes and geometric morphisms can
replace spaces and continuous mappings for many purposes, thereby extend-
ing topological and geometric ideas to algebraic and other situations that give
rise to toposes. Accordingly, we first consider the relation between classical
topological concepts and toposes.

In passing from a space X to the topos Sh(X) of all sheaves of sets on
X, one needs only the poset O(X) of open sets of X, not the point set.
Specifically, a sheaf F' on X is a contravariant functor on O(X), thus taking
each pair of open subsets U C V to a function between sets FV — FU,
satisfying the expected condition on compositions for V- C W. To be a sheaf,
such a functor must satisfy a “patching condition” for open covers U = |, U;
that essentially says it is “continuous,” in the sense that FU is determined by
the values F'U;. A classical example is the sheaf of continuous, real-valued
functions FU = C(U,R), for which U C V acts on any g : V — R just
by restriction to U. Here it is clear that given an open cover U = |J, U,
there is a unique continuous function f : U — R for every family of such
fi : U; = R, provided only that all f; and f; agree on every U;NU;. What is
required here is just the lattice structure of O(X); thus one also has toposes
built from complete Heyting algebras or “frames”, which have (many of)
the same lattice-theoretic properties as such posets O(X). A frame can
be regarded as a “pointless space,” and they share many properties with
classical spaces, while encompassing also many other kinds of posets like



boolean algebras, Scott domains and Lindenbaum algebras of logical theories
(suitably completed). There is an intimate connection between toposes and
such “pointless spaces”; logically, boolean-valued models of set theory arise
as toposes of this kind.

In this scheme of “pointless topology” a space is determined by a system
of open subspace inclusions instead of by a set of points. One can further
generalize to “spaces” determined by “covering systems” of maps in a cate-
gory. There is an associated natural generalization of the notion of a sheaf
for such generalized covering families, and the topos of all such sheaves then
plays the role of the “space” determined by the system of covering families.
An early example of this idea was in algebraic geometry, where covering fam-
ilies of étale maps of schemes were considered, but Cohen forcing provides
another example, as do Beth models of intuitionistic logic.

Regarded thus as generalized spaces, toposes and their mappings enjoy
many familiar properties of classical spaces. Open maps, connectedness,
compactness, and similar concepts apply, and behave in ways analogous to
their classical counterparts. In some cases, classical theorems for spaces
follow from, and are subsumed under, much more general ones about toposes,
which reveal aspects that were not evident in the topological setting.. This
'is the case for the theory of open and proper maps. The appearance of
classifying toposes in the treatment of exponentiability reveals connections
between logic and topology that are also hinted at in the relation between
exponentiability, compactness and definability.

The descent theorems and groupoid representations are a bold extension
of Galois theory to toposes, with connections to logical definability and invari-
ance. Beth’s definability theorem from elementary model theory is actually
a miniature version of some of the results developed here (in this connection
see M. Makkai, “Duality and Definability in First-Order Logic”, Memoirs
Amer. Math. Soc. 503, 1993).

D. Toposes as theories. This final part (to date) is of course the most
overtly “logical” of the four, but also connects the logical aspect to the geo-
metrical and algebraic ones.

The basic propositional operations of conjunction, disjunction, negation,
etc. of course have an order-theoretic, algebraic meaning, which has long been
known and studied, but it was not until the pioneering work of F.W. Law-
vere in the 1960s (see e.g. “Adjointness in Foundations”, Dialectica 23, 1969,



pp. 281-296) that it was known how to extend this treatment to full first-
order logic. Lawvere’s discovery that all of the logical operations are in-
stances of adjointness made it possible for the first time to give a truly al-
gebraic treatment of logic, since adjoint functors are “algebraic” in a precise
sense. The following two-way rule of inference for the existential quantifier,
for instance,

o(z,y) F¥(y)
3z.0(2,y) - ¢(y)

says that the existential quantification of  is left adjoint to adding a dummy-
variable z, in a calculus of entailments 9(z,...,y) F ¥(z,... ,y) between
formulas with a common “context of variables” (a list (z,...,y) of which
variables may occur freely). Semantically, this is just the fact that taking
direct images f(U) of subsets U C X along a function f : X — Y is left
adjoint to taking inverse images f~(V) of subsets V C Y,

Ucfi(v) iff fuycv.

Given the resulting description of a first-order logical theory 7 as an
algebra of a certain kind (a suitably structured category), a model M of T in
another such algebra & then becomes simply a homomorphism M : 7 — S.
If § is e.g. the category of all sets, then the category Homay(7,S) of all
such algebra homomorphisms is essentially the same as the category of all
classical 7-models (the notion of natural transformation of functors usually
gives the right definition of a homomomorphism between T -models). In this
framework of “functorial semantics,” the sorts of theories usually studied in
logic occur as the “free algebras”, and more generally, the algebras presented
by generators and relations corresponding to the basic non-logical constants
of the language and the axioms of the theory.

As in the theory of classifying spaces in topology, every logical theory
has a “classifying topos”, the geometric morphisms into which correspond
uniquely (up to isomorphism) to models of the theory. This remarkable fact
establishes a fundamental connection between functorial semantics, classi-
fying spaces in topology, and the theory of algebraic extensions, that cuts
three ways, as it were. It makes it possible to import logical methods into
algebra and topology, and conversely, in ways that are only beginning to be
exploited (see e.g. I. Moerdijk, “Classifying Spaces and Classifying Topoi”,
Lecture Notes in Math. 1616, Springer-Verlag, 1995).
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One issue that deserves mentioned here is the appearance of intuitionistic
logic in connection with categorical semantics and toposes. It appears, not
for any philosophical reasons, but for practical, mathematical ones, related to
the effect of continuous variation and the “internalization” of logic. That in-
tuitionism should thus reappear is a surprising and fascinating mathematical
development which should be of especially great interest to logicians, who can
thereby relate their methods and results to naturally occurring phenomena
in other branches of mathematics. .

The higher-order and type-theoretic structure of toposes results, as al-
ready mentioned, from cartesian closure, which is the algebraic basis un-
derlying the so-called “Curry-Howard Isomorphism” familiar to logicians.
‘Toposes provide convenient models for systems of higher-order logic, as well
as various type theories like the typed lambda-calculus and the dependent
type-theory of Martin-Lof. Moreover, these theories are actually deductively
complete with respect to topos models (Gddel-incompleteness not withstand-
ing!).

But perhaps even more importantly, the usual systems of type theory and
higher-order logic are, of course, also sound with respect to topos semantics,
permitting the use of such theories to reason about objects and structures in
any toposes. It can thus be of real practical benefit to, say, a geometer using
toposes for some geometric purpose to have at his disposal the logical calculus
of dependent type theory or higher-order logic. This sort of approach has
been pursued in some parts of algebraic topology and geometry, and more
systematically in what is called “synthetic” differential geometry. Some of
these topics will presumably be addressed in Volume Three, which should be
of particular interest to readers of this BULLETIN.

Throughout, the exposition is rigorous without being formal; it is also re-
spectful and pleasantly literary. The style overall is more Halmos than Lang,
and it meets the standard of clarity set by the author’s lucid Stone Spaces
(Cambridge University Press, 1982). Definitions and proofs are transpar-
ent, and diagrams are used effectively, if not profusely, in the contemporary
style (as opposed to the more diagrammatic fashion evident in some older
category theory). The mathematical prerequisites are moderately high (this
is no textbook), but appropriate to the intended audience of research logi-
cians and mathematicians who are not specialists in category theory; Mac
Lane’s Categories for the Working Mathematician (Springer-Verlag, 1971)
surely suffices. While not intended to document the historical developments
or priority in results, the suggestions for further reading provided in each sec-
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tion form a useful guide to the literature, and the bibliography is the most
comprehensive one currently available in the field.

With the completion of this mammoth undertaking, Professor Johnstone
will have performed an invaluable service to the topos theory community by
bringing in the harvest of their collective labors over the last four decades.
May Logic reap some of the fruits.



