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1. Introduction
A wide variety of psychological models have been proposed to explain people’s
categorization of novel instances (e.g., Medin & Schaffer, 1978; Minda & Smith, 2001, 2002;
Nosofsky, 1984, 1986, 1991; Nosofsky & Zaki 2002; Zaki, et al., 2003). That is, given that I
have a range of possible categories, Cy, ..., C, and I observe a novel case X, what is the
probability that I will classify X into one or another of the » possibilities? Essentially all of these
theories share an important structural similarity: they all first calculate some “similarity” or
“representativeness” measure of X for each C;, and then combine those measures in some way to
produce a probability (possibly of 1.0 on one particular category). I focus here on the first step in
this process, and take no particular stance on the ways in which these functions are integrated to
produce a precise behavioral response. The principal advantage to this approach is that it enables
us to focus on single categories, and avoid the theoretically (and experimentally) challenging
task of determining the second-stage behavior. In addition, results about equality between
theories in the first stage imply that those theories will remain equal for particular versions of the
second stage.
More precisely, suppose we have a list of m binary properties for a particular case. The
first-stage functions, I will refer to them as “similarity measures,” are thus functions from m-

dimensional binary vectors to non-negative real numbers. The similarity measures in all of these
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psychological theories are intended to be scale-invariant: for a given similarity measure g(X),
identical predictions would be obtained if we instead used K x g(X), for all positive K. Similarity
measures that have been normalized so that the sum over all possible cases is 1 can be
interpreted as probability distributions over the possible cases. Moreover, any probability
distribution over the possible cases can also be interpreted as a (normalized) similarity measure.
Thus, the focus here will be on connecting similarity measures and probability distributions.
There are essentially three classes of similarity measures fhat have been proposed in the
psychological literature: exemplar, feature-matching, and causal model theories. The first two
have dominated the psychological landscape for the past twenty years, and there has been some
prior work on establishing the conditions in which they behave similarly (Nosofsky, 1990). In
this paper, I will focus on exemplar and feature-matching modelé, but will not directly try to
show when the theories are identical or differ. Instead, I connect them with probabilistic models
proposed elsewhere, primarily computer science and statistics. In particular, I will show that the
similarity measures defined by the theories are isomorphic to sets of probability distributions that
are easily characterized using probabilistic models. By placing these theories into that general
framework, we can then quickly and easily establish connections between these two classes of

theories, and also causal model theory, which uses the framework of Bayesian networks.

2. Feature Matching Models and Markov Random Fields

In this section, I first provide a precise definition of a prototype model, here called a
feature matching model, then introduce the framework of Marko;/ Random Fields (MRFs), and
show that feature matching models are isomorphic to a subset of MRFs. More precisely, the

probability distributions defined by the normalized similarity measures for feature matching




models are the same probability distributions describable using MRFs and an additional
constraint.

Feature matching models (Minda & Smith, 2001, 2002) assume that a category can be
identified with some prototypical instance, though they do not assume that the prototype must
ever have been actually observed. The intuition behind a feature matching model is that novel
instances will be judged more likely to be a member of a category as we increase the number of
properties (features) shared by the novel instance and the prototyi)e. In this section, we consider
a generalization of this model that allows for interactions between the features. In particular, we
might think that certain combinations of properties are particularly important, and so our
similarity measure must be able to incorporate those second-order features as well.

To make all of this precise, let X by the case we have jusf been shown, and let £ be a
prototypical case for category C. Since we are assuming that all of the properties are binary, we
can assume (without loss of generality) that the prototypical case is “all features are present.””

Define &g) = 1 if X and E have the same value for the g-th property, and 0 otherwise.> We then

define a feature matching model S as any model of the form: S(X)= HH (sij )[I_‘g(i)‘s(j 13 (Note

that this particular characterization is not normalized.) That is, the similarity of X is the product
of s for every i, j pair (possibly i = j) in which X and E differ on at least one of the dimensions.
We assume only that all s;; are positive, though the model is only sensibly applied to
categorization data if s; < 1. s;; values smaller than 1.0 indicate increasingly important i, j

interactions; s;; = 1 indicates no i, j interaction at all. We are here concerned with models of

! This assumption is entirely one of convenience for notation. All of the claims and proofs can straightforwardly be
extended for different prototypical cases. '

> Under the assumption that E = “all present,” this is just the standard delta-function for the ¢-th dimension of X.

? Sometimes, weighted city block distance measures are used, instead of a multiplicative measure. These versions
are isomorphic to the logs of probability distributions.




representativeness ratings for all possible cases, where the ratings are only defined up to a
multiplicative constant. Therefore, we will say that “there is a feature matching model for ratings
R” iff there exists a feature matching model S such that, for all X, 8(X) oc R(X). Similarly, there is
a probability distribution for the ratings R iff for all X; P(X) < R(X).

A Markov Random Field (MRF) is composed of two components: an undirected graph
over the variables, and a probability distribution over those same variables. For a particular
undirected graph, we define a cligue to be a set of variables S such that every pair of variables in
S is connected by an edge. A maximal clique is a clique T such that T U {4} is not a clique for
all 4 ¢ S. The Markov assumption for an MRF states: the probability distribution factors into the
product of functions over the maximal cliques in the undirected graph. That is, if Gy, ..., G, are

the maximal cliques for a particular undirected graph G, we can express the distribution as

P(X ) = ~Z—H g; (X ) , where gi(X) is a function only of the X-values of the variables in clique G;,
i=1

and Z is a normalization constant. These g functions are frequently called the clique potentials.
Because we can always renormalize the Ma;kov decomposition for an MRF, the clique
potentials in an MRF are defined only up to a multiplicative constant. Therefore, we can assume
(without loss of generality) that g(all present) = 1 for all clique potentials.* We further define X-
to be the set of variables that are absent in case X, and g(S+) to be the clique potential value for
the case in which only the variables in S are present (and so g(2+) is the clique potential value

for the “all absent” case). A clique potential then has the “g-decomposition property” iff:

g(@+) (i+)g(j+)
x| st - [120 T ({gmg’(mJ

ieX - gl+ ieX j—1+1g

* More generally, if E is not the “all present” case, then we assume g(E) = 1; that is, every clique potential equals 1
for the prototype case. The g-decomposition property must then be relativized to the particular £ in obvious ways.
All of the proofs hold under this generalization.




This property appears quite complex, and might seem quite stringent. We can prove, however,
that it holds of some important classes of cliques. (All proofs are.provided in the Appendix.)

Theorem 1: The g-decomposition property holds for all cliques with 1 or 2

variables. It holds for only some cliques with 3 or more variables.
Given all of these definitions, the keystone theorem of this section is:

Theorem 2: [There exists a feature matching model S for fatings R} iff

[there exists a probability distribution P for R such that (i) there exists an MRF U

that perfectly represents P; and (ii) the g-decomposition property holds for every

(maximal) clique potential in U]. Moreover, for a given feature matching model S,

there is a unique corresponding probability distribution, aﬁd vice versa.
That is, if there is a feature matching model for those ratings R, then we can also find a MRF U
such that P(X | U) is an equally good model of the ratings. Thus, there is not (from a theoretical
point of view) any distinction between these theories.

Causal model theory predicts that ratings should be well-modeled by P(X | B), where B is
a Bayesian network over the variables (not defined in this paper). Therefore, we also derive three
important corollaries about the relationship between them and feature matching models:

Corollary 1: If B is a Bayes net tree, then there is a feature matching model § such

that S(X) «c P(X | B) for all X.

Corollary 2: There exists a probability distribution that can be modeled by a

Bayes net (e.g., if the Bayes net has an unshielded collider), but for which there is

no feature matching model such that S(X) c P(X | B) for all X,




Corollary 3: There exists a probability distribution P that cannot be modeled by a

Bayes net, but for which there is a feature matching model such that S(X) <« P(X)

for all X.
That is, the probability distributions that can be captured by Bayes nets and by MRFs/feature
matching models are overlapping, without inclusion in either direction. There are sets of ratings
for which there are both MRF and Bayes net models, and ratings that can only be modeled by

one or the other model.

3. Exemplar Models

An exemplar model (e.g., Medin & Schaffer, 1978; Nosofsky, 1984, 1986, 1991;
Nosofsky & Zaki 2002; Zaki, et al., 2003) presumes that we have; a list of exemplar instances,
and the rating is the weighted average similarity measure for X compared to each exemplar as
though the exemplar is the prototype for a feature matching model and the s;-parameters are held
fixed. More precisely, define E,(i) to be the value of the i-th dimension for exemplar E,; W, to be
the (positive) relative weight of exemplar E,; and eq(4, B) = 1 if 4 and B are equal, and 0

otherwise. Then the similarity measure for novel instance X given exemplars £y, ..., E, is given

by: F( X):%Zr:W = (s, ertrne ] s
=1 =1

a
i

There is a straightforward interpretation of exemplar similarity measures in terms of
noisy measurements. Define a noisy measurement model to be one in which our measurements of
each property’s value are subject to some noise, and we correctly measure the i-th dimension

with probability g;. Further suppose that we have a probability distribution P* over a set of

* Again, weighted city block distances can be used instead of a multiplicative measure.




possibly occurring instances. For this situation, we can provide an alternate characterization of
the exemplar similarity measure:

Theorem 3: [There exists an exemplar model F for ratings R] iff [there exists a

noisy measurement model M and probability distribution P*(E) over the

exemplars such that P(X | P*, M) is appropriate for R].

That is, there is a straightforward equivalence between exemplar similarity measures and models
that calculate the probability of observing X given that (i) one of the exemplars (drawn from
probability distribution P*) actually occurred, and (ii) our measurements are noisy. As shown in
the proof, the noisy measurement model M corresponds to the s-parameters in the exemplar
model F, and the probability distribution P* corresponds to the weights in F.

Exemplar similarity measures have also been extended to include fragments of
exemplars. Specifically, we allow exemplars to be undefined on certain dimensions, and we
exclude those dimensions from the similarity product for that exemplar fragment. Note that this
extension is rot equivalent to simply expanding the set of exemplars to include all possible
completions. In the context of a noisy measurement model, an undefined dimension implies that
we do not know the true value, and so we should exclude that dimension from the calculation of
the probability. Therefore, we can straightforwardly extend Theorem 3 to hold for exemplar
fragment similarity measures. These models are equivalent to determining the probability of
observing the current instance, given noisy measurements and a probability distribution over the

exemplars, but where we may not have complete information about all of the exemplars.




4. Conclusion

This paper has focused on formal results connecting these similarity measures to other
probabilistic models. These connections can now be used to support various cross-theoretical
comparisons, as well as improved design of experiments to (potentially) distinguish the theories.
A broader discussion of the impact of these results can be found in Danks (forthcoming), but I
address one important issue in closing. Prototype/feature matching and exemplar models of
categorization are often presented as stark contrasts to one another. One striking feature about
the theoretical results presented here is that the underlying structure of both of these
psychological theories is fundamentally the same. Both are isomorphic to computing P(X
occurring | Category model). They simply disagree about the nature of the category model: it is
an MRF for feature matching models, and noisy measurement of cases in exemplar models.
Thus, we can perhaps think of human categorization not as feature matching versus exemplar
(versus causal model theory), but rather as the same process operating on different category
concepts, depending on background knowledge, historical experiences, and so on. Moreover,
there is a plausible intuitive story to be told about why our models for a particular category might
change over time: we start with only a few instances of a category (exemplar model); as we
observe more instances, we learn a correlation structure for the features (an MRF/feature
matching model); and in some cases, we finally come to understand the asymmetric causal
relationships underlying the category (a causal Bayes net/causal model theory). Important details
(both conceptual and computational) are, of course, missing from this story; an important future

research project is to attempt to fill in the gaps and test it empirically.
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Appendix

Proofs of Feature Matching Model Theorems:

Theorem 1: The g-decomposition property holds for all cliques with 1 or 2 variables. It holds for only some cliques

with 3 or more variables.

Proof of Theorem 1: The g-decomposition property states that the clique potential can be expressed as:

@ +)
H g H H ) . For all clique potentials, we set g(all present) = 1 by
xeX— IEX— J=i+l g (® +)

choice, which satisfies this property. Therefore, we need only concern ourselves with those X such that at least one
variable is absent,

Clique with 1 variable: Let g be an arbitrary clique potential. The only relevant case is (0): the variable is absent.

The second product is necessarily empty, and the first product is just g(0)/g(1). Since g(1) = 1, the g-
decomposition property holds for this clique potential.

Clique with 2 variables: Let g be an arbitrary clique potential. The right-hand side of the g-decomposition property

g(00) g(01)g(10)

. Since g(11) = 1, this product equals g(10). Similarly, the g-
g(01) " g(t1)g(00)
decomposition property holds for (0,1). Now consider (0,0). The right-hand side equals:
£(00)_£(00)_g(01)e(10)

X - This product must equal g(00). Therefore, the g-decomposition property
g(01) " £(10) " g(11)g(00)

holds for g.

for (1,0) is equal to:

Clique with 3 variables: Let g be an arbitrary clique potential. The right-hand side of the g-decomposition property

g(000) £(000) £(000) g(100)g(010) g(100)g(001) g(010)g(001)

or 000 el (160) ™ ¢(010) < 2(001) " ¢{110)(000) * g(101(000) 2(011)g(000)’

which equals: g(l OO) g(OlO) g(OOl) . Clearly, this value need not equal g(000), and so the g-decomposition
(110)g(101)g(011)

property does not hold for all g. At the same time, the g-decomposition property must hold for some g, since
there must be some clique potential for the probability distribution defined by the feature matching model with

three features and all possible second-order features.

11




A similar procedure clearly demonstrates that some clique potentials for more than 3 variables do not have the f-

decomposition property, but some do (namely, those that correspond to some feature matching model). m

Theorem 2: [There exists a feature matching model S for ratings R] iff [there exists a probability distribution P for
R such that (i) there exists a MRF U that perfectly represents P; and (ii) the g-decomposition property holds for
every (maximal) clique potential in U]. Moreover, for a given feature matching model S, there is a unique
corresponding probability distribution, and vice versa.

Proof of

Theorem 2: We prove this theorem using a series of lemmas. The first lemmas demonstrate conditional uniqueness.
The later lemmas demonstrate existence (i.¢., that the conditional holds). Note that the proofs demonstrate only that
§ o P, and exclude the ratings entirely. If they are proportional to each other, then if one is proportional to the
ratings, so is the other.

Lemma I: For every feature matching model S, if there is a probability distribution P such that S(X) < P(X), then P
i unique.

Proof of Lemma 1: Let Py and P, be such that K; x P;(X) = S(X) = K; x Py(X), for all X. Therefore,

ZKI ijl(X)=Z]('2 x}’Z(X).Butsince ZE(X)=1=ZP2(X),itmustbethe case that K| = X,
X X X X

Therefore, for all X, P)(X) = Py(X). m

We will now use P to denote the (possibly non-existent) unique probability distribution for a particular S.

Lemma 2: For all probability distributions P, if there exists a feature matching model S such that S(X) oc P(X), then S
18 unique.

Proof of Lemma 2: Let S, and S, be such that K, x §;(X) = P(X) = K3 x $x(X), for all X. We first show that K; = K. If
4 is the “all present” instance, then Si(4) = 1 = S,(4) by definition of feature matching model. Therefore, K, =

1/P(4) = K. Now, we must prove that, for all ;, j, s,-j' = s,-jz. Recall that S+ is the case in which only the features in S

P@+) KS,(D+)
Pli+)  K,S,(i+)

1 -
=, ,and similarly for

are present, and so J+ is the “all absent” case. For all 7, we have:

s;7. Therefore, since the left-hand side is the same for both s;' and 5,2, they are equal for all i. We also have, for all ,

12




q: P(?l .(lq-g) ) = Klzl La .(Zq-;) ) = S,.,.lsiql , and similarly for s,-qz. Since s;' = 5,7, that implies that s,-,,] = s,-qz.

Therefore, S) and §; have identical parameters. m
Lemma 3: If § is a feature matching model, then (i) there exists a Markov ﬁel& U such that (ii) U perfectly represents
Py (that is, for all X, S(X) < P(X | U)), and (iii) every maximal clique potential has the g-decomposition property.
Proof of Lemma 3: Proof by construction: given a feature matching model, we will construct a Markov field U that
has the necessary properties. Let U be the Markov field such that;

1. There exists node X; in U iff feature F; exists in S;

2, Xi-XinUiff Sy 1;

3. Let N;= # of (maximal) cliques containing X;, and N; = # of (maximal) cliques containing both X; and X

Then the clique potential for clique C; is given by: g(Ci ) = H( )_[l ~0U) H( S )_[1 ~0U)]

JjeC; JkeC;
Now, we must show that U, as constructed by the above method, defines a probability distribution such that, for all
X, 5(X) = K * P(X| U). Clearly, the construction of the Markov field is well-defined, and each clique potential is

well-defined. Therefore, we can normalize the product of clique potentials to get a well-defined probability

distribution by dividing throughby Z = > | [ £,(C,)
X i

1
Let K =Z, and consider an arbitrary case X: K X P(X X% ) =K x —ZH gi'( ; H g.\C, Substltutlng in
i

the clique potentials, this equals: H{H( i )_,-[1 2 H( )_[1"5(1 ﬁ(ﬂ]} . Every variable X; is part of at
i JjeC, JkeC;

least one clique, and X; and X, are part of the same clique iff s; = 1. Using these two facts, we can reorder the
product to get:
1 1
s —[1-5(;)5(k
H H(Sjj )N,[ Q) H H(Sjk )N,,,[ (s |
J | CpjeC; Jokij<k&sy#1| Cp:jkeC;
The term in the first set of brackets is either equal to 1 (if X; is present) or s,-WNJ] (if V; is absent). Thus, when we

multiply the N; instances of that term together (since N, is defined to be the number of distinct cliques in which ;

occurs), we get either 1 (if present) or s; (if absent). By similar reasoning, the term in the second set of brackets is

13




always either 1 or 5. We can thus rewrite the product as: H (S i )[1_5“ 1 H (S P )[1_50 Jo(k)] . Now, notice that,
J Jokj<k&s y#1

if sy =1, then (S P )[1-5(;') o] _ 1 regardless of X;’s and X,’s presence or absence. Therefore, we can, without

changing the value of the expression, rhultiply the product by H (S P )ll_a(j)s(k)] , yielding a full product of:
Sk j<k&s =1

H H (Sij )[l_a(i)a(j)] , which is what S(X) is defined to be.

i=l j=i

Now, we must show that all of the maximal clique potentials have the g-decomposition property. By construction,

I , I ‘
the clique potential value for an arbitrary X is given by: g(X ) = H (S i )7\/7[1_5(])] H (S i )N‘,,([l_(s(j)(s(k)] , also
JjeC; JkeC;

representable as: g(X ) = H (S J )%VJ H (S P )%vjk . Using this latter representation, we can explicitly

jeXx- JjeX—;j<keC;
compute g for particular cases: g(@ +) = H(Sj )%’; H(Sjk )%ij , g(q +) = H(Sj )%’/ H(Sjk )%ka )
jeC; JkeC; jeCi\g J.keC;

H (S J )%’ s
and g({q, I’}+) = jecli—\{[q,r.s}‘ j )%V j LI:Z?:)/T Using these equations, we have i((f :)) = (s g )%Vq , and

glg+)e(r+) i - | _
S - . Substituting these values back into the earlier equation for g(X), we can see that
i lglps) o) e subsining e

the g-decomposition property clearly holds for this (arbitrary, maximal) clique potential, m

We now must prove the other direction of the biconditional. We do this in two steps: first, considering only a single
maximal clique, and second, assembling the cliques into a full Markov field U.

Lemma 4: For a given probability distribution P and single-clique MRF U that perfectly represents P, if the clique
potential has the g-decomposition property, then there is a feature matching model S such that S(X) ec P(X) for all X.
Proof of Lemma 4. Proof by construction: we show how to construct an appropriate feature matching model:

1. FiinSiffX;in U,

2. Setthe s; and s; values as: §,; =

14




Clearly, this feature matching model is well-defined. And since the g-decomposition property holds for g, we have:

g®+ g(z’+
"Il Iz T L =S

ieX- g i+ ieX—- ' ieX-ji<jeX

Therefore, S(X) o« g(X) o« P(X) forall X. m
Lemma 5. For given probability distribution P and perfect Matkov field U, if there is a feature matching model for
every maximal clique in U, then there is a feature matching model for P.

Proof of Lemma 5: We use 5,(C)) to denote the value of s; in the feature matching model for maximal clique C;, and

define 5,(Cj) = 1 if X; ¢ C;. We define s;(C;) similarly. Now, let s, —Hs ( )and Sy Hs,k( ) These

parameters are clearly well-defined. We will show that the resulting feature matching model, denoted S*, is

appropriate for P,

Because there is a perfect MRF U for P, we have P = —H gl ; for all X. Note that each clique potential

in U is determined only up to a multiplicative constant, since we normalize the product to get a probability
distribution. Therefore, we choose (without loss of generality) the clique potential functions such that g{all present)
=1 forall i. Let K = Z, and consider K x P(X). The K and 1/Z terms cancel out, and then—since there is a feature
matching model for every g—we can substitute the cliqﬁe feature matching models into the product to get:

I 16 @) a0 .

G LisG J.keC;
Reordering the product some, we get: H H(S i (C ; ))[l_a(j J H H (s i (C : ))[1_6(j)5(k)] . Consider the
j | ijeC Jk> i keC,
product over /. For any arbitrary j, each term in the product is either 1 (if X; is present) or 5,(C;) (if X; is absent). A

similar argument holds for the product over j, k. But since we are taking the product over all C; for j (k), we can

rewrite the product as: H( i )[1 U ]H( S ik )[1 -00)s)] , which is simply the feature matching model prediction
j Jik>j

for §* for arbitrary X. m

Theorem 2 follows immediately from Lemmas 1-5. m

15




Corollary 1: If B is a Bayes net tree, then there is a feature matching model S such that S(X) < P(X| B) for all X.
Proof of

Corollary 1: Let P denote the probability distribution defined by B. If B is a Bayes net tree, then since there are no
unshielded colliders, there is a MRF U with the same skeleton that perfectly represents P. Since B is a tree, that
skeleton has no triangles, and so every maximal clique has at most 2 variables. Therefore, by Theorem 1, the g-
decomposition property holds of all of the maximal cliques in U. Therefore, by

Theorem 2, there is a feature matching model that is proportional to U. Hence, there is a feature matching model that

is proportional to P. m

Corollary 2: There exists a probability distribution that can be modeled by a Bayes net (e.g., if the Bayes net has an
unshielded collider), but for which there is no feature matching model such that S(X) oc P(X | B) for all X.

Proof of Corollary 2: Let P denote the probability distribution defined by B. If B contains an unshielded collider,
then there is no MRF U such that U perfectly represents P. Therefore, there is no feature matching model such that

SX) c PX) forall X. m

Corollary 3: There exists a probability distribution that cannot be modeled by a Bayes net, but for which there is a
feature matching model such that S(X) « P(X) for all X.

Proof of Corollary 3: Let P be the probability distribution that is perfectly represented by the MRF F| — F3 — F;
Fy — F4— F,, There is no Bayes net for this distribution (since every possible joint edge orientation results in either
a cycle or a collider). But the maximal cliques are all of size 2, and so they all have the g-decomposition property,

and so there is a feature matching model for this distribution. m

Proofs of Exemplar Model Theorems:

Theorem 3: [There exists an exemplar model F for ratings R] iff [there exists a noisy measurement model M and
probability distribution P*(E) over the exemplars such that P(X | P*, M) is appropriate for R].

Proof of Theorem 3: For both directions of the biconditional, we will simply demonstrate that F(X) oc P(X | P*, M).
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(=) Assume there exists an exemplar model F with s-parameters and weights W. We will further assume that the
weights are normalized so that X/ = 1. Define the noisy measurement model to have noise parameters g;= 1 / a+
5;), and set P*(E,) = W,.. Since the s-parameters are positive, the g-parameters will fall in [0,1] as required. Since the
weights are positive and normalized to sum to 1, they define a probability distribution. P(X | P*, M) is just the
weighted average over E, of P(X | E,, M), weighted by P*(E,). In addition, because the noise parameters are
independent of each other, we can factor each E,-specific probability, resulting in: P(X | P*, M) =
1 r m ) ‘
— Z P* (E Y )H P(X N E, (z), M ) If X; = E,(i), then this probability is given by g;; otherwise, it is given by (1
V= i=1
- ¢;). Therefore, if we also substitute in the P*(E,) values, we can rewrite this expression as:

a
i

1 Z W (qi )eq(x”E" ) (1 -q, )[1_eq(X”E" O Now divide this expression by Z = H q; - (Since we are only
= =1 =1

concerned with proportionality, it doesn’t matter if we divide by a positive cohstant.) Because g; will cancel out

1< 1-g, Lo
when X and E, agree on dimension i, we can rewrite this expression as; — z w, H i 11 . Substituting in the

Faa ey 4

1 r
value for g, yields: — Z w, l l S; , which is just the exemplar similarity measure.
Flasl  ix=E,()

(«) Assume that there exists a noisy measurement model M and probability distribution P*. Define the exemplar

l_qi
q;

similarity measure vsing the same instances, let s =

, and set W, = P*(E,,). (Since g; is a probability, it is

less than or equal to 1, and so s; will be non-negative.) Because this is simply the inverse of the g; definition in the
first half of the proof, and every step in the first half is reversible, this exemplar similarity measure must be

proportional to P(X'| P*, M). m
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