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Abstract

This paper constructs models of intuitionistic set theory in suitable
categories. First, a Basic Intuitionistic Set Theory (BIST) is stated, and
the categorical semantics are given. Second, we give a notion of an ideal
over a category, using which one can build a model of BIST in which
a given topos occurs as the sets. And third, a sheaf model is given of
a Basic Intuitionistic Class Theory conservatively extending BIST. The
paper extends the results in [2] by introducing a new and perhaps more
natural notion of ideal, and in the class theory of part three.

1 Introduction

We begin with a very brief and informal sketch (elaborated in section 2 below) of
the leading ideas of algebraic set theory, as it was recently presented in [2], and
first proposed in [7] (see also (3, 9, 8]). The basic tool of algebraic set theory
is the notion of a category with class structure, which provides an axiomatic
framework in which models of set theory are constructed. Such a category C
is equipped with three interrelated structures: a subcategory S — C of small
maps, a powerclass functor P : C — C, and a universal class U in C. The
small maps determine which classes are sets, the powerclass P(C) is the class
of all subsets of a class C, and the universe I/ is a fixed point of P, in the sense
that P(U) = U (related conditions like P(U) C U are also considered).

The language of elementary set theory (first-order logic with a binary ‘mem-
bership’ relation €) can be interpreted in any such universe U, and the elemen-
tary theory of all such universes can be completely axiomatized by a very natural
system of set theory, called Basic Intuitionistic Set Theory (BIST), first formu-
lated in [2]. It is noteworthy for including the unrestricted axiom scheme of Re-
placement in the absence of the full axiom scheme of Separation (a combination
that can not occur in classical logic, where Replacement implies Separation).

The objects of a category with class structure that have a small morphism
into the terminal object are called small objects or sets. These are easily shown
to be a topos. In [2] it is shown that any topos whatsoever occurs as the subcat-
egory of small objects in some category with class structure. This is achieved by
defining a notion of an ideal on a topos. The main part of this paper consists in
a modification of this notion (elaborated in section 3). It is shown that a useful




notion of ideal on a topos can be obtained by considering certain sheaves on the
topos under the coherent (or finite epimorphic families) covering. Namely, these
are those sheaves that occur as colimits of filtered diagrams of representables,
in which every morphism is a monomorphism. Following a suggestion by André
Joyal, these sheaves are characterized as satisfying a “small diagonal” condition
with respect to maps with representable fibers. The subcategory of such ideals
then forms a category with class structure in which one can solve for fixed points
of the powerobject functor.

If the powerclass of an ideal C is thought of as the class of all subsets
of C, then the powerobject of C' in the category of sheaves can be thought
of as the “hyper class” of all subclasses of C, since ideals are closed under
sub(pre)sheaves. The first step in a comparison between these two kinds of
powerobjects is carried out in section 4, where it is shown that there is a model
in the category of sheaves of a Morse-Kelley style theory of sets and classes
which is a conservative extension of BIST.

Acknowledgements. We have benefitted from collaboration and discussions
with Carsten Butz, Alex Simpson, and Thomas Streicher. We have also had
many helpful conversations with Ivar Rummelhoff, Dana Scott, and Michael
Warren. Both André Joyal and Bill Lawvere made suggestions that lead to
some of the results given here.

2 BIST and categories with class structure

2.1 Basic Intuitionistic Set Theory

We recall the following Basic Intuitionistic Set Theory—BIST— from [2]: The
language has, in addition to the membership relation €, a predicate S for “Set-
hood”. We make use of the shorthand notation of 2z. ¢ for Jy. S(y)AVz. (zey
#), where y is not free in ¢. The expression z C y stands for S(z) A S(y) A
Vzex. zey. ,

BIST 1. (Membership) yex — S(z)

BIST 3. (Empty Set) 2z.L

(
BIST 2. (Extensionality) s CyAyCz—z=y
(
BIST 4. (
BIST 5. (Union) S(z) A (Vyez. S(y)) — 22. Jyex. zey
BIST 6. (Replacement) S(z) A (Vyex. 31z, ¢) — 2z. Iyex. ¢

BIST 7. (Power Set) S(z) — 2y. y C «

Pairing) 2z. 2=z Vz=1y

BIST 8. (Intersection) S(z) A (VYyez.y C w) — 2z. zew A Vyex.zey

These axioms allow us to define the usual notions of “ordered pair” and “func-
tion”, which allow us to state the last axiom of BIST, which we state informally
as:

BIST 9. (Infinity) There exists a set I with an injection s : I +1 — [.




For the purposes of this paper, the axiom of Infinity is of no special interest.
We introduce the notation !¢ (read ‘¢ is simple’) as a shorthand for:

2z.z=0A¢

where z is not free in ¢. Separation for simple formulas is provable in BIST [2]:
Proposition 2.1.1 (!-Sep) BIST I (Vyez. l¢) — (S(z) — 2y. yez A ¢)

Certain closure conditions also hold for provably simple formulas 12):
Lemma 2.1.2 In BIST, the following are provable:

1. z=1y)

2. S(z) —Yyex)

3. 1¢nlp =@ APIN(G V)N — )

4. S(x) AVyex. l¢ —=!(yex. H)A(Vyez. )

5. (¢V—¢) —l¢

The following form of Ay separation therefore holds.

Proposition 2.1.3 (A¢-Sep) In BIST, separation holds for S—predicate free
Ao formulas in the context of a “well-typing”, in the following sense: For a
Ag formula ¢ in which the S—predicate does not occur, let x1,. .., 2y, be a list
of all the variables occurring on the right hand side of an € in ¢. Construct
a formula ¥n by induction on n as follows: g = T. If x; is free in ¢, then
Yy = 1 AS(m;). If z; is bound by a quantifier Vaset or Iziet and t is free in
@, then v = 1;_1 A S(t) A Vset.S(s). If t itself is bound by a formula Vtew or
Jteu and u is free in ¢, then ; = Yi_1 A S(u) A Vseu.S(s) A Vpes. S(p). If u is
bound as well, then continue in the same way. We have then that:

BIST + S(z) A ¥y, — 2yex. ¢
and if z,, is free in ¢ that:
BIST | S(z) A (Vyez.S(y)) A p_1 — xnex. ¢
We remark that in order to have unrestricted Ag separation, it is sufficient

to add to BIST an axiom stating that the S-predicate is simple.

2.2 Categories with class structure

Let C be a positive Heyting category, i.e. a Heyting category with finite disjoint
coproducts that are stable under pullback (see [5, A1.4.4]). A system of small
maps on C is a collection of morphisms of C satisfying the following conditions:

(S1) Every identity map Ids : A —> A is small, and the composite go f : 4
— C of any two small maps f : A—— B and g : B— C is again
small.




(82) The pullback of a small map along any map is small. Thus in an arbitrary
pullback diagram,
A———>B

f'l lf

¢———D
[/ is small if f is small.
(S3) Every diagonal A: A —— A4 x A is small.

(84) If f oe is small and e is regular epic, then f is small, as indicated in the
diagram:

A foe B

ST

C

(85) Copairs of small maps are small. Thus if f: A—> C and g : B — C
are small, then so is the copairing [f,g] : 4+ B —C.

A relation r : R>—> Ax B is called a small relation if the second projection
maor i R>—> A X B —> B is a small map. We make the small relations
representable in requiring that C has (small) powerobjects consisting of, for
every object A in C, an object PA and a small relation ¢4 >— A x PA, such
that the following two axioms are satisfied:

(P1) For any small relation R >+ A x B, there exists a unique classifying
map p: B——s PA such that the following is a pullback:

N

AmeAxPA

(P2) The internal subset relation C4 > PA x PA is a small relation (the
definition of C4 is as expected, see [2]).

For any morphism f : A — B in C, the image of €4 along f x Idp4 is
a small relation by S4. Its classifying map Pf : PA —— PB, also known as
the internal direct image map, is the morphism part of the powerobject functor
P:C—C.

A universal object U in C is an object such that for every object A in C,
there exists a monomorphism A >—> (. A universal object is in particular
a universe, that is, an object U such that there exists a monomorphism PU
= U. We require the existence of a universal object:

(U) C has a universal object .

A positive Heyting category C having a system of small maps satisfying
S1-55, powerobjects satisfying P1-P2, and a universal object we call a category
with class structure, or briefly class category. We denote a category with this
structure (C,S,P,U) or briefly C.




For a class category C, the universal object U together with a choice of
inclusion ¢ : PU > U gives us a structure for a first~order set theory (e, S)
by defining the interpretation [z | S(z)] to be the mono:

?

t: PU>—UY
and [z,y | zey] as the composite:
ey>>UX PU—>U XU
The following is proved in [2, Section 3]:

Theorem 2.2.1 The set theory BIST is sound and complete with respect to
such models (U, ) in class categories C:

BIST & ¢ iff, for all C, one has U l=¢ ¢

The completeness result is proved by defining a class structure on the first-
order syntactic category of BIST. Briefly, a morphism [z,y | ¢] : [z | 9] —
[v | 0] is small if BIST F-, 2z. ¢; the powerobject of [z | ] is [u | S(u) AVzeu. ¥];
andU = [z | z = =z|.

3 Ideals over a topos

3.1 Small maps in sheaves

In a class category C, a small object is an object A such that the unique map
A —11is small. By [2], the small objects in C form a topos, and every topos
occurs as the category of small objects in a category with class structure. The
purpose of this section is to provide a new proof of the latter fact, using a more
canonical construction that avoids some of the difficulties in the original proof.

Let a small topos (or, for this subsection, just a pretopos) £ be given.
Consider the category Sh(€) of sheaves on &, for the coherent covering [5,
A2.1.11(b)]. Recall that the Yoneda embedding y : £ — Sh(€) is a full and
faithful Heyting functor [6, D3.1.17].

We intend to build a class category in Sh(€) where the representables are the
small objects. First, we define a system S of small maps on Sh(€) by including
in § the morphisms of Sh(€) with “representable fibers” in the following sense:

Definition 3.1.1 (Small Map) A morphism f : A — B in Sh(£) is small
if for any morphism with representable domain g : yD — B, there exists
an object C' in £, and morphisms f/,¢' in Sh(€) such that the following is a
pullback:

yC— D
/|- I
A —F B
'Thus, in this sense, small maps pull representables back to representables.

Proposition 3.1.2 § satisfies azioms S1, 82, and S5.




Proor S1 and S2 follow easily from the Two Pullback lemma.

For S5, the pullback of, say, yD —> C along [f,g] : A4+ B — C is the
coproduct of the pullback of h along f and of h along g. But this is representable,
since representables are closed under finite coproducts in Sh(£). o

We move to consider S3. A directed diagram (in a category C, say) is a
functor I — C where I is a directed preorder. A small directed diagram in C
in which (the image of) every morphism is a monomorphism in Cwe shall call
an ideal diagram. An ideal diagram has no non-trivial parallel pairs, and is
therefore also a filtered diagram.

Definition 3.1.3 (Ideal over £) An object A in Sets®" is an ideal over & if
it can be written as a colimit of an ideal diagram I —s & of representables,

A = Limy(yCi) 4

Lemma 3.1.4 Every ideal is a sheaf.

PRrOOF Since an ideal diagram is a filtered diagram, filtered colimits commute
with finite limits, being a sheaf is a finite limit condition, and all representables
are sheaves, all such presheaves are also sheaves. -

In accordance with a conjecture by André Joyal, it now turns out that the
ideals over £ are exactly the sheaves for which S3 holds, i.e. for which the
diagonal A>— A x A is small:

Lemma 3.1.5 Any sheaf F' can be written as a colimit (in Sets® ) of repre-
sentables Limi(yC;) where I has the property that for any two objects i,7 in
I, there is an object k in I and morphisms i — k and j —> k (i.e. I is
directed).

PRrROOF We may write a sheaf F as the colimit of the composite functor JF

LY Sets®”, where J F is the category of elements of F, and  is the
forgetful functor. The objects in Sh(€) can be characterized as the functors £°P
— Sets which preserve monomorphisms and finite products. It follows that
J F has the required property, since for any two objects (4,a), (B,b) in [F
(with a € FA, b€ FB),

(4,0)

(A+ B, (a,b)) (B,b)

(By the coproduct A+ B, we mean the coproduct in &£, hence the product 4 x B
in £°P, which is sent to the product FA x FB in Sets.) -

Theorem 3.1.6 For any sheaf F, the following are equivalent:
1. F is an ideal.

2. The diagonal F > F x F' is a small map.

8. For all arrows with representable domain yC 4, F, the image of f in
sheaves is representable, f : yC —s=yD > F, for some D in E.




Proor (1)=(2):
We write I as an ideal diagram of representables, F' = Lim;(yC;). Note

that the pullback of any arrow A N FxF along F ~2. FxFisthe equalizer

of the pair A ——= =t F. Thus let g,h : yD ——% F be given, and we must verify
7|'2f

that their equalizer e : E > yD is representable. Recall that, in SetsEop, if
we are given a colimit Lim;(yC;) and an arrow yX e Lim(yC;) , f factors

through the base of the colimiting cocone, i.e.

N

Lzm; (yC:)

for some ¢ (where f; is an arrow of the colimiting cocone) Hence we may factor

hoas yX —2> yC; e Limi(yC;) and g as yX = C; o, Limr (yCs).
Since the diagram is d1rected there is a Cy and arrows u,v such that the two
triangles in the following commute:

yD—Eh—*yCi

Since f, is monic, the equalizer e : E >—> yD of h = frue, and g = frveg
is precisely the equalizer of ue;, and ve,. But Yoneda preserves and reflects
equalizers, so we may conclude that the equalizer of A and g is representable,
E=yC.

(2)=(3):

Let yD . F be given. The kernel pair k;, ks of f can be described as the
pullback:

K F
(kl;k2)l - lA
yD x yD 7 FxF

Since yD x yD = y(D x D) is representable and the diagonal of F' is small, K is
representable (K 2 yK, with some abuse of notation). Hence we may rewrite
the kernel pair as

yk1
yK ——ZyD —> F
ykz




The kernel pair is an equivalence relation in &. Since Yoneda is full and faithful
k1

and cartesian, K ——% D is an equivalence relation in €. Since & is effective,
k2

there is a coequalizer
k1
K—rD-5E
ko

such that ki and k; is the kernel pair of e. Since Yoneda preserves pullbacks
and regular epis into Sh(€),

yki
yKT"yD——-—»yE
yr2

is a coequalizer diagram in Sh(C). This gives us, then, the required epi-mono

factorization:
ykl f
yK _ZyD F

yE

(3)=(1):
Step 1: To construct an ideal diagram of representables.
We write F as a colimit F' = Lim;(yD;), in accordance with Lemma 3.1.5

(so that I is the category of elements of F). Now, for each i € I, factor in

f.
sheaves the cocone arrow yD; —— F

D; ! F
% %
yE;

For yD; —%» yD; in the diagram I, consider the diagram:

|-
u :v F
Y /
yD; ve; yE;

Since f; = fju, it follows that f; factors through yE;, which gives us the
mono v, making the triangle in the diagram commute (to see this, the diagram
must be considered in Sh(E), where e; is a cover). Since m; is monic, the square
commutes.

The new diagram I’ of the yE; and v thus obtained is directed, since I has
the property described in Lemma 3.1.5 and any parallel pair of arrows collaps
by the construction.

Step 2: To show F = Limp (yE;)




Observe that the ye;’s in the diagram above give us a morphism e : LimyD;
— LimyE;, while the m;’s give us a monomorphism Lim 1yE; > F, such
that the following commutes:

LimeDi LimpyEi
E\k %
F
Thus m is also an isomorphism. ~

In order to ensure that S3 is satisfied, we therefore narrow our attention
from Sh(€) to the full subcategory of ideals, denoted Id1(£). We shall see that
no further restriction is needed. First, we verify that Id1(€) is a positive Heyting
category:

Lemma 3.1.7 1d1(€) is closed under (presheaf) subobjects and finite limits.

PROOF We use the description of ideals as sheaves with small diagonal. That
Id1(€) is closed under subobjects follows from S2.

128511 is iso, hence small.
If A, B are ideals and C is any sheaf, we consider the pullback:

p—=" 3
k1l ‘J g
A 7 C
Now, if we pull the diagonals back:
Aq A B, B
AR O N

DxDmAxA DxDmeB

By a diagram chase, the diagonal of D is A; N By, which is small since smallness
is preserved by pullback and composition.

Lemma 3.1.8 1dl(£) is closed under finite coproducts (of sheaves), and inclu-
sion maps are small.

PrOOF 0 — 0 x 0 is iso, so small.

Now, the terminal object 1 in Sh(£) is representable, and so is 1 + 1, since
Yoneda preserves finite coproducts. The inclusion 4; : 1 — 1+ 1 is therefore
small. But coproducts in Sh(£) being disjoint, the following is a pullback:

A———1

i) ln
A+B——1+1

lat+!s

So by S2, the inclusion map i4 is small.




The diagonal of A+ B can be regarded as the disjoint union of the diagonal
of A and of B:

A pa A+B pB

:| | |2

AXA- - - >(A+B)x(A+B)<—- - ~BxB

k% %

(Ax A)+ (Ax B)+ (B x A) + (B x B)

By smallness of coproduct inclusions and isos, and applying S5, if A, B are ideals
then so is A + B. -

Proposition 3.1.9 IdI(&) is positive Heyting, and this structure can be calcu-
lated in Sh(E).

PROOF We have done finite limits and finite coproducts. For a morphism f: A
—> B of ideals, Im(f) is an ideal, since there is a monomorphism Im(f)
>— B. The cover e : A —s Im(f) is the coequalizer of its kernel pair in
Sh(&), the kernel pair is the same in IdI(£), so e is also a regular epimorphism
in Id}(E).

For dual images, since IdI(£) is closed under subobjects and finite limits can
be taken in sheaves, dual images can also be taken in sheaves.

Lemma 3.1.10 §4 is satisfied in IdI(E).

PROOF Let A —% B —2» (' be given, and assume b o g is small. Let yG
— C be given, and consider the following two pullback diagram:

yD E yG
_ .|
S S

By Theorem 3.1.6, the image of a representable is a representable in 1d1(&).
Hence E in the diagram above is (isomorphic to) a representable. o

We summarize the results of this subsection:

Theorem 3.1.11 For any pretopos £, the full subcategory Idl(€) < Sh(&) of
ideals is a positive Heyting category with a system of small maps satisfying
azioms S1-S5.

3.2 Powerobjects and universes in IdI(£)

We end the section with a brief discussion of the remaining part of the class
structure in Idl(€), powerobjects and universes. In this subsection, we require
€ to be a topos, for we shall use the powerobjects in £ to build powerobjects
for ideals. Here we rely heavily on the characterization of IdI(€) as the colimits
of ideal diagrams of representables. As such, Idl(£) is a subcategory of Ind(&),

10




the category of filtered colimits of representables. We refer to [8, section C2]
for the properties of Ind(£). Much of what is said about IdI(€) here are just
special cases of that.

Lemma 3.2.1 IdI(€) has colimits of ideal diagrams (“ideal colimits”).

PROOF Any such diagram is an ideal diagram of representables, see [6, section
C2]. 4

Proposition 3.2.2 If C is a category with ideal colimits, and F : £ —=C is a
functor which preserves monomorphisms, then there is a unique (up to natural
isomorphism) extension F : 1dl(€) — C of F such that F' is continuous, in
the sense of preserving ideal colimits, and such that the following commutes:

1d(§) ———=¢

e

&
ProoF Write E = Lim(yC;) and set F(E) = Lim(FC;). -

The powerobject functor P : £ — £ preserves monomorphisms, as does y : £
—1dl(£), and so yo P extends to a continuous functor P : Idl(E) — Id1(£).
If Limy(yA;) is an ideal then Lims(yPA;) is its powerobject. The epsilon
subobject is similarly constructed.

Proposition 3.2.3 With these powerobjects, I1d1(£) satisfies P1 and P2.

PROOF We do one example: Let a yC be a small subobject of the ideal Limi(yA;).
The inclusion arrow yC >—- Lim(yA;) factors through some yA4;, and we get
the following diagram:

YO ————————yey,

I Idxa I

yA,; x 1 *—ﬁyAi X yPA,

J

Lim;(yAi) x 1> Limr(yA;) x Limy(yPA;)
whence we get the global point 1 — Lim(yPA;) classifying yC. -

The main point is that every small subobject B >—> Lim1(yA;) of an ideal
is already a (small) subobject B> yA; of some yA; in the diagram.

Since the powerobject functor P is continuous in the above sense, we can find
fixed points for it. For one example, we compose P on Idl(€) with the continuous
functor C — A+ C for a fixed A4 in Idl(€). To construct a universal object, we
wish for every representable to have a monomorphism into our universe, so take
as our starting point A := [[o¢s yC (where the coproduct is taken in sheaves).
This is an ideal, for it is the colimit of the ideal diagram of finite coproducts of
representables, which themselves are representable, with arrows the coproduct
inclusions.

11




Now consider the diagram

As2s A4 pAsTéatPia

A+ P(A+ PA)>—...
Call the colimit U. Then A + PU >—> U , 80 we have a universe consisting of
the class A of atoms and the class PU of sets. (U is the free algebra on A for
the endofunctor P.)

Although it is a universe, U is not yet a universal object. We obtain, finally,
our category with class structure containing £ as the small objects by cutting
out the part of Idl(£) we need (as in [9]):

Proposition 3.2.4 If (C, S,P) is a category with class structure (with or with-
out a universal object) and U is a universe in C, then the full subcategory | (U)
of objects A in C such that there exists a monomorphism A>— U is a cate-
gory with class structure, with the structure it inherits from C, and with U as
its universal object.

PrOOF We can demonstrate the existence of a encoded ordered pair map U x U
— PPU which, when composed with the inclusions PPU >—> PU >— U
gives a monomorphism U x U >— U. The rest is straightforward (see also
[9)). 5

There are of course a number of universes in Idl(£) that contain the repre-
sentables, in the sense above. From [2], we know that:

Theorem 3.2.5 BIST+Coll is sound and complete with respect to class cate-
gories of the form | (U) >—IdI(E), for toposes £ and universes U containing
the representables.

Here, we either do not consider BIST to include an axiom of infinity, or we
* restrict attention to topoi containing a natural numbers object, see [2] and [1]
for details. Coll is the axiom scheme of Collection which says that for any total
relation R on a set A, there is a set B contained in the range of R:

(Coll) S(z) A (Vzez. Jy. ¢) — Fw. (S(w) A (Vzez. Tyew. d) A Vyew. Izez. @))

4 BICT and full powerobjects
4.1 BICT

We introduce the following Basic Intuitionistic Class Theory:' Its language
is a two-typed first-order language, where we use lower case variables for the
“type of elements” and upper case variables for the “type of classes”. There is
a “Sethood” predicate S and a binary “element” relation ¢, both of which are
“element”-typed. In addition, there is a binary predicate 1 which takes elements
on the left and classes on the right:

BICT1. (BIST axioms)

All axioms of BIST, i.e. BIST1-BIST9, except, if one prefers, Replace-
ment, which gets covered below.

It is intended to stand to BIST as Morse-Kelley stands to ZF, and is patterned on the
system B in [4].

12




BICT2. (Class extensionality)
Vz.znX e 2nY) = X =Y

BICTS. (Replacement) For any formula ¢:
S(z) A (Vyez. 2. ¢) — 22 Jyex. ¢

BICT4. (Comprehension) For any formula ¢ (X not free in ¢):

AX. Vz. z2nX < ¢

We say that a class is represented by a set if they have the same elements.
Replacement now holds also for formulas ¢ with class quantifiers. Actually, it
need not be a schema, since one could reformulate it as: If the domain of a
functional class of ordered pairs is represented by a set, then so is the image.

4.2 A model of BICT in sheaves

Let two categories and a functor z : C — G be given, and assume that
o C is a category of classes.
e G is a topos.
o 2 is full and faithful and Heyting.

o 2C generates G (in the sense that if f # g : G == G’ in G then there is
some h : 2C — G such that fh # gh.)

Then we shall conclude that G contains a model of BICT.

Lemma 4.2.1 IfC €C, thenC/C and G/2C and z/C : C/C — G /2C inherit
the above-listed properties.

PROOF The class structure is preserved by slicing by [2]. -

Denote by U the universal object of C, and consider the relation zey >—>
2U x 2PU. Then there exists a unique classifying arrow & : 2PU —s P2U
making the following a pullback in G:

ZEy €U
I T

2U x zPU—Id;;—->zU x PzU

where (PzU, e,y ) is the (full) powerobject in the topos §. We claim that the

objects 2U and PzU model BICT, with [z | S(z)] interpreted as zPU >

2U, [z,y | zey] as the composite zey >—s= 2U x 2PU L2 U x zU, and

lz,Y | znY] as e,y >— 2U x PzU. Let us call this structure M.

Because the standard notation for class categories is so similar to the no-
tation usually employed for topoi, we introduce some modifications. We shall
often not bother to write out the z denoting the embedding. Instead, we write
P; A for the powerobject of A in C, and call it the small powerobject of A. €4
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remains the notation for the (small) elementhood relation in C. We continue to
use PA for the powerobject in G (or PzA, if it is not clear from context that A
is in the image of z), but we denote the full elementhood relation by 74. Our
pullback diagram above will then look like this:

€y U
UxPsU——}d—->U><PU
XK

Proposition 4.2.2 M models BICT.

Proor BICT1(BIST axioms): Since z is Heyting.

BICT2(Class extensionality): By topos extensionality.

BICT3(Replacement): The proof in [2] that replacement (BIST6) holds in
a category with class structure carries over to our case, using Lemma 4.2.1 and
the fullness of z and the fact that 2C generates G. (Briefly, the idea is that
replacement holds in C and there are no “new” arrows in G between objects
from C.)

BICT4(Comprehension): By topos comprehension.

Corollary 4.2.3 BICT is a conservative extension of BIST.

PROOF Let C be the syntactic category of BIST, G the category of sheaves
(coherent covering) on € and z the Yoneda embedding. ~

Another instance worth considering is when C is | (U) in Idl(£) for some
topos £, and § is the category of sheaves on & (coherent covering), and z is the
embedding of | (U) into Sh(&).

We end this paper with some further observations concerning the case where
C is a syntactic category. Observe that BIST may be extended to many a
familiar set theory by adding appropriate axioms. The syntactic category of
this set theory is still a class category, and the model M in sheaves is then a
model of BICT extended by the axioms originally added to BIST.

For instance, BIST may be extended to ZF by adding an axiom of universal
sethood, an axiom of foundation, and the law of excluded middle (LEM) for
every formula of the language: Adding these same axioms to BICT, then, pre-
serves conservativity. Call the theory consisting of BICT and these new axioms
BIMK (Basic Intuitionistic Morse-Kelley). Note that we have added LEM only
for formulas of BIST, i.e. those without class variables.

Corollary 4.2.4 BIMK is a conservative extension of ZF. -

Separation—the assertion that the intersection of a class with a represented
class yields a represented class—fails in general in BICT and in BIMK (and as a
result, these extensions may at first strike the reader as rather pointless). How-
ever, we may repeat the analysis of simplicity from BIST to yield the following:

Lemma 4.2.5

BICT F (S(z) AVyez. 2z z = @ AynX) — 2y. yex AynX
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ProOOF As in BIST. -

Finally, we introduce a predicate X for Vz.!(znX ), to be read “X is simple”.
Observe that in BIMK, !X iff Vz.(znX V —(znX)), and the simple classes are
Just the complemented ones. The subobject [X | ! X] >—= PU is of independent
interest, as it is the exponent (P,1)V, We will not go into the analysis of these
objects here, but simply point out that if we use these objects, instead of the
sheaf powerobjects, as our “types of classes”, we will get a class theory with
full separation but restricted comprehension, instead of full comprehension and
restricted separation.

In the case where C is the syntactic category of ZF, it can be shown that we
have comprehension for any formula ¢ in which every class variable is free. We
state the implication of this for BIMK, but leave the proof for a proper presen-
tation of simplicity, in BIST and BICT, and the simple powerobjects (P,1)4 in
locally cartesian closed categories with class structure.

Proposition 4.2.6 If a formula ¢ in BIMK is such that all class variables
X,Y,...,Z occurring in ¢ are free, then

MEIXNY AL ANZ = (Vz. By, V2. zey & zex A @)
(where z and y are not free in ¢).
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