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The purpose of these notes is to generalize the machinery and results developed
in [4] to the predicative case. Specifically, in ibid. it was shown that:

1. every category of classes contains a model of the intuitionistic, elementary
set theory BIST,

2. BIST is logically complete with respect to such class category models,
3. the category of sets in such a model is an elementary topos,
4. every topos occurs as the sets in such a category of classes.

It follows, in particular, that BIST is sound and complete with respect to topoi
as they can occur in categories of classes.® Thus, in a very precise sense, BIST
represents exactly the elementary set theory whose models are the elementary
topoi.

In the current notes, we show that the same situation obtains with respect to
a weaker, “predicative” set theory without the powerset axiom (called “CST”),
and the new notion of a “predicative topos” (called a “II-pretopos”, and defined
as a locally cartesian closed pretopos).? As in the impredicative case, the cor-
respondence between the set theory and the category is mediated by a suitable
category of classes, now weakened by the omission of the small powerset condi-
tion (P2). This condition essentially asserted that the powerobject P, (A) of a
small object A is again small; in its place, we essentially have the requirement
that the exponential B4 of small objects A, B is again small. We also consider
an even weaker, basic set theory “BCST” without the function set axiom, for
which the corresponding categories of sets are exactly the Heyting pretopoi.

The categories of sets at issue are briefly introduced in section 1 below, and
the elementary set theories in section 2. Section 3 then develops the predicative
categories of classes and shows that the set theories are indeed sound and com-
plete for such class category models. This development follows that of [4] quite
closely, and it displays just how flexible and powerful the method developed

11t was also shown that every category of classes embeds into one of a special kind (the
“ideal completion” of a topos), strengthening the completeness statement to topoi occurring
in this special way. The predicative analogue of that result will not be considered here.

2A better notion of “predicative topos” is a II-pretopos with W—types (cf. [12] and [13]).
However, such categories will not be considered in this paper.




there proves to be. To establish point (4) above in bid., the notion of an ideal
in a topos was invented and exploited. This concept has turned out to be quite
robust and important. We here follow a suggestion of Joyal’s to reformulate it
as a certain ‘diagonal condition’ on sheaves.® As such, it also becomes a very
flexible tool for the construction of class categories of various kinds.

The main technical result in these notes is Proposition 4.4.4, stating that for
any Heyting pretopos £, the small powerobject P (A) of an ideal A on € is again
an ideal; this is key for the possibility of constructing a predicative category of
classes with £ as its category of sets. The construction makes use of the fact
that the category of ideals over any pretopos £ already satisfies the axioms for
small maps as was shown in [5]. These topics are presented in section 4.

Taken together, these results show that CST is exactly the elementary set
theory of II-pretopoi, while BCST is the set theory of heyting pretopoi. Indeed,
syntactic versions of these facts, involving translations of theories, can even be
given, although we do not pursue that here.

Finally, we wish to acknowledge many helpful discussions with Carsten Butz,
Henrik Forssell, Nicola Gambino, André Joyal, Ivar Rummelhoff, Dana Scott,
Thomas Streicher, and especially Alex Simpson. A more thorough accounting
of our debts and gratitudes will have to wait for a more polished presentation
of these results.

1 II-Pretopoi

In the following we attempt to follow the nomenclature of Johnstone [8] and [9]
as much as possible. In particular, a cover is (in all of the categories with which
we are concerned) a regular epimorphism. As regards notation, for f : ¢ — D,
we write Ay : /D —C/C for the pullback functor, Xy for its left adjoint and
I1; for its right adjoint.

As mentioned in the introduction we adopt the following definition:

Definition 1.0.1 A II-pretopos is a locally cartesian closed pretopos. <
As an easy consequence of the definition we have the following:
Proposition 1.0.2 If R is a II-pretopos, then R is Heyting.

"The reader should recall the following theorem which affirms a tight connection
between locally cartesian closed categories and dependent type theory (cf. [9]
or [7]):

Theorem 1.0.3 (LCCC Soundness and Completeness) For any judgement
in context I'lw of dependent type theory (DTT),

DTT + Tl iff, for every lece C, CE Tep.

Since every Il-pretopos is locally cartesian closed we obtain the following:

33ee [5] for a fuller treatment.




Corollary 1.0.4 (II-Pretopos Soundness and Completeness) For any
Judgement in context Tlp of dependent type theory,

DTT + Ty iff, for every II-pretopos R, R k& L.

PrOOF Soundess is trivial since every II-pretopos is locally cartesian closed.
For completeness notice that if C is locally cartesian closed, then the Yoneda
embedding y : C —> C preserves all of the locally cartesian closed structure and
C is a II-pretopos. Suppose that, for all II-pretopoi R, R E Dl|y. Then, in
particular, € Tl for every LCCC C. But since y is conservative (i.e., reflects
isomorphisms) and has the aforementioned properties it follows that C F Tle.
By the foregoing theorem + T'o. -

2 Constructive Set Theories

All of the set theories under consideration are first—order intuitionistic theories
in the language £ := {S,€} where S (‘sethood’) and € (‘membership’) are,
respectively, unary and binary predicates. We include S in the language because
we intend to allow urelements or non-sets. The majority of the results of this
section are to be found, either explicitly or implicitly, in [1] or [4].

"~ Where ¢ is a formula, FV(yp) denotes the set of free variables of ¢. We
will freely employ the class notation {z|o} which is common set theoretical
practice. Frequently it will be efficacious to employ bounded quantification
which is defined as usual:

Ve € yp(z) =Voz€y=p(z) and Izcy.plx):=JzzcyA ().

A formula ¢ is called Ay if all of its quantifiers are bounded.
Another notational convenience is the introduction of the ‘set-many’ quan-
tifier 2 defined as:

ez = Fy.(Sy) AVz.(z €y & @),
where y ¢ FV(p). We also write:
zCy = S(@)AS(y)AVzez.2€y.

We write func(f, a, b) to indicate that f is a functional relation on a x b {(which
will exist in any of the set theories we consider):

func(f,a,b) = fCaxbAVzeadyeb.(z,y)ecf
Finally, for any formula ¢, we define:
colliz €a,y€d,p) = (Vzcadychbp)A(Vyeblzre a.p).

For the sake of brevity we omit the obvious universal quantifiers in the
following axioms and schemata, for set theories:




Membership: z € a = S(a).

Universal Sethood: S(z).

Extensionality: S(a) AS(b) A (Vz.z€a o z€b)=>a=b.
Emptyset: 2z.1.

Pairing: 2z.2=zVz=y.

Binary Intersection: S(a) AS(b) = 2zz2€anzcb.

Union: S(a) A (Vx € a.5(2)) = 2z.3z € a.z € z.

Infinity: Ja.S(a) A (Jz.z € a A (Vz € a)(S(z) AJy € a.S(y) Az € y)).
€-Induction: [Va.(S(a) AVz € a.p(x) = ¢(a))] = Ya.(S(a) = ¢(a)).
Replacement: S(a) AVz € a3y = 2y.3z € a.p

Strong Collection: S(a) A (Vz € a.3y.¢) = 3b.(S(b) Acoll(z € a,y € b, ®).
Exponentiation: S(a) A S(b) = 2z. func(z, a,b).

Subset Collection: S(a) AS(b) =

Je.S(c) AVo.Vz € a.3y € b.p = 3d € cS(d) A coll(z € a,y € d)y].

Ag~Separation: S(a) = 2z.z € a Ay, if ¢ is a Ag formula.

"The particular set theories with which we will be primarily concerned are given
in Table 1. In Table 1 we employ a solid bullet # to indicate that the axiom
in question is one of the axioms of the theory and a hollow bullet o to indi-
cate a consequence of the axioms. There are several points worth mentioning

AXxIOMS BCST CST CZF
Membership
Extensionality, Pairing, Union
Emptyset
Binary Intersection
Replacement
Ap—Separation
Exponentiation
Infinity
€-Induction
Strong Collection
Subset Collection
Universal Sethood
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Table 1: Several Constructive Set Theories




in connection with Table 1. First, CZF is conventionally formulated in the
language {€} with all of the axioms suitably reformulated. In the present set-
ting this amounts to the addition of Universal Sethood. Secondly, the form of
Ag-Separation which holds in BCST and CST is subject to the stipulation
that ¢ is also well-typed in a sense which will be made precise shortly. Finally,
the reader should note that although the theories we consider do not include
an axiom of infinity the results of this paper are easily extended to theories
augmented with (an appropriate version of) Infinity (cf. [15].*

We begin by showing that a particularly useful axiom schema holds in
BCST; namely, Indexed Union:

S(a) A (Vz € a.2y.¢) = 2y.3z € a.p.
Lemma 2.0.5 BCST |- Indexed Union.

PROOF Suppose S(a) and Vz € a.2y.¢(z, y), then for any x € a there is a unique
b such that S(b) and (Vy)(y € b & ¢(z,y)). By Replacement there exists a ¢
such that S(¢) and:

¢ = {23z €aS(z)A(Vy)(y € 2 & p(z,y)}.

Clearly S(y/) for any 3’ € ¢. By Union S(|J¢). Intuitively, we want to show that
the class w := {2|3z € a.¢(z,2)} is a set. The claim then is that w = |Jc.

To see that this is so suppose that y € {Je. Then there exists a d € ¢ such
that y € d. By the definition of ¢ there exists an e € a with (V2)(z € d &
w(e, 2)). So, since y € d it follows that ¢(e,y) and y € w.

Next, suppose that ¢ € w. Then there exists an e € a such that ¢(e,y). By
the original assumption there exists a set d such that:

d = {z]ple, 2)}.

Also d € c and since ¢(e, y) it follows that y € dand y € | Jc. Thus, 2y.3z € a.¢,
as required. -

We now show that, although BCST lacks a separation axiom, it is possible to
recover some degree of separation. To this end we define:

wla, z]-Sep = S(a) = 2z.(x € a A ¢).

Here the free variables a and = need not occur in ¢. Additionally we say that
a formula ¢ is simple when the following, written lip, is provable:

2z.(z=0A¢)

and z ¢ FV(p). The intuition behind simplicity is that certain formulas are
sufficiently lacking in logical complexity that their truth values are indeed sets.
In particular, if lp then we will write ¢, for the set {z|z = 0 A ¢} which we call
the truth value of ¢ (and, if necessary, we will exhibit the free variable of
to(z))- Separation holds for such simple formulae:

4These considerations will be addressed in a more complete version of this paper. In any
event, the form of infinity will certainly be stronger than the form mentioned above.




Lemma 2.0.6 (Simple Separation) BCST F (Vz € a.lp(z)) = wla, z]-Sep.

PROOF We will show that, given the assumptions, {z|z = z A p(z)} is a set
for each z € a. The conclusion then is an easy consequence of Union-Rep. By
assumption S(a) and that for every z € a the truth value:

to) = {zlz =0 A p(z)}

of p(z) is a set. Suppose y € ty(y), then y = B A p(z). But then Jz.z =z Ay =
@ A ¢(z). By replacement:

g:={2Fy € tyy.z = Ay =0Ap(z)}

is a set. But 3y € t,).2 = z Ay = O A p(x) is equivalent to z = z A p(z) so
that {z|z =z A p()} is a set, as required. -

Lemma 2.0.7 In BCST:
1. IfS(a) and Vz € a.lp(z), then !(3z € a.p(z)) and |(Vz € a.p(z)).
Wa =b).
Wz € a), when S(a).
- If Yo and 1, then (o A), @V ), (o = o), and !(~).
5. If oV =, then lyp.

SO X

PROOF As in [4]. .

Corollary 2.0.8 (Ap—Separation) If ¢ is a Ag formula in which there are
no occurrences of S and 1, ...,2n are all of those free variables of @ that occur
on the right hand side of occurrences of €, then:

BCSTF S(z1)A...AS(z,) AS(y) = 2z € y..

We now consider quotients of equivalence relations.

Lemma 2.0.9 If S{a) and r C a X a is an equivalence relation, then for each
z € a the equivalence class:

[z], ={zlz€an(z,2)er}
s a set.

PROOF Let z € a be given to show that 2z.z € a A (x,2) € 7. In order to apply
Simple Separation let an arbitrary y € a be given. It is an obvious consequence
of part (2) of Lemma 2.0.7 that Vz € r./(z = (z,y)). By part (1) of the lemma
!(3z € r.z = (z,y)). Since we shown that, for all y € a, (32 € r.z = (z,y)) it
follows from Simple Separation that 2y.(y € a A (3z € 7.2 = (z,y)). Le., [z], is
a set, as required. -




Lemma 2.0.10 If S(a) and r C a x a is an equivalence relation, then the
quotient
: a/r = {[z],|z € a}

of a modulo r is a set.

Proor This is an easy application of Replacement. -

Let “Sets” be the category consisting of sets and functions between them in
BCST, then, by the foregoing lemmas and some obvious facts that we omit,
we have the following:

Theorem 2.0.11 BCST proves that “Sets” is a Heyting pretopos.
Now we regard “Sets” as the category of sets in CST:

Lemma 2.0.12 For any object I of “Sets”, the category “Sets” /T is equiva-
lent to “Sets™ where I is regarded as a discrete category.

PROOF Define F : “Sets” /I — “Sets” by:

X—f-—>I | (Xi)ie[, and
h:f—g = (hiier,

where X is the fiber f=1(3) of f over 4 and:

X—"r Ly

N

commutes in “Sets”. Notice that each X; is a set by Simple Separation.
Let G : “Sets”! —> “Sets” /I by:

(Xidier —> f: X —1,

where X := [[ X; and, for any z € X, f(z) is the i € I such that z € X;. Here
I Xi == {(z,%)|z € X;} is a set by Simple Separation.
It is easily verified that F' and G constitute an equivalence of categories. -

Given f : X —Y the pullback functor Ay : “Sets”/Y — “Sets” /X serves to
reindex a family of sets (Cy)yey as (Cf(z))cex. Note also that given a set I and
a family of sets X; for each i € I, the class {X;]i € I} is a set by Replacement.

Lemma 2.0.13 For any map f : X — Y in “Sets”, the pullback functor
Ay : “Sets” /Y — “Sets” /X has both a left adjoint Y¢ and a right adjoint

II;.




PROOF We may employ the usual definitions of the adjoints:

b))
“SetS”X ! uSetSnY

(Cz):ceX = (Sy)era

where Sy = ][ ¢,y Cz, and II;:

(Caleex +—= (Py)yev,
where Py =] #(z)=y C=- Here the arbitrary product:
[[xi={:1— U X:ilvi € 1.1(3) € X3}
i€l iel

is a set. In particular, [ J X; is a set by Union and (|J X;) is a set by Exponen-
tiation. The result follows directly from Lemma 2.0.7 and Simple Separation.

By the foregoing lemmas we have proved:

Theorem 2.0.14 CST proves that “Sets” is a II-pretopos.

3 Predicative Categories of Classes

In this section we introduce the axiomatic theory of categories of classes (as
well as several variants of this notion) and derive soundness and completeness
results for BCST and CST. Our approach is related to those developed in [10],
(16], [6], [4], and [14].

3.1 AxioMms FOR CATEGORIES WITH Basic CLASS STRUCTURE

A system of small maps in a positive Heyting category C is a collection S of
maps of C satisfying the following axioms:

(S1) S is closed under composition and all identity arrows are in S.

(S2) If the following is a pullback diagram:

o -2

)

D/——-g—>.D

and fisin S, then f/ isin S.
(S3) All diagonals A : C —s C x C are contained in S.




(84) Ifeis a cover, g is in S and the diagram:

C—=2—3D

N7

commutes, then f is in S.

(85) If f:C—> Aand g: D— Aarein S, then so is the copair [f,g] : C+D

— A.

A map f is small if it is a member of S and an object C is small if the canonical
map !¢ : €' —1 is small. Similarly, a relation R>—> C x D is a small relation
if the composite:

R>>CxD—D

with the projection is a small map. Finally, a subobject A > C is a small
subobject if A > C x 1 is a small relation; i.e., provided that A is a small
object.

Definition 3.1.1 A category with basic (predicative) class structure is a posi-
tive Heyting category C with a system of small maps satisfying:

(P1) For each object C of C there exists a (predicative) power object P, (C)
and a small membership relation ec > C x P, (C) such that, for any D
and small relation R>— C x D, there exists a unique map p: D—P,C
such that the square:

R——s ¢

]

CxD—CxPC
loxp

is a pullback. <

As in topos theory we call the unique map p in (P1) the classifying map of R
and R the relation classified by p.

By the definition of small subobjects and small relations there are func-
tors SSube(—) and SRelp(—) induced by restricting, for any objects A and B,
Sube(B) and Sube(B x A) to the subposets of small subobjects of B and small
relations on B x A, respectively. The content of the small powerobject axiom
(P1) is then that these functors are representable in the sense that:

hom(A,P B) = SRelg(A), and
hom(1,P, B} 2 SSub¢(B).




3.2 THE INTERNAL LANGUAGE OF CATEGORIES WITH BaSic CLASS
STRUCTURE

We will now develop some of the properties of the internal language of categories
with basic class structure. This approach is influenced by the work of Rummel-
hoff [14] and will provide a useful stepping stone for deriving further results. In
particular, our aim in developing the internal logic explicitly is twofold:

1. By deriving typed versions of the set theoretic axioms with which we are
concerned we are able to provide more elegant soundness proofs; for the
validity of the untyped axioms ultimately rests on, the validity of their
typed analogues.

2. Furthermore, we will make some use of the internal language to show that
the subcategories of small things have certain category theoretic proper-
ties. E.g., if C is a category with basic class structure, then the subcategory
Sc of small objects is a Heyting pretopos.

More generally, the development of the theory via the internal language allows
us to emphasize the contribution of the categorical structure already present
in categories with basic class structure and to compare it with the additional
structure provided by the move to categories of classes (cf. subsection 3.5 below).

Henceforth we will assume that the ambient category C is a category with
basic class structure. We will denote by 74 the composite:

Tai€a>>AXP, — P, A.

Throughout we employ infix notation for certain distinguished relations and
maps as in the use of z e¢ y for the more cumbersome ec (z,y). We abbreviate
Vry @ XiVzo @ XoV... V2, Xn.0 by Vo : X,z : Xo,..., 2 ¢ Xp.p and
similarly for existential quantifiers. Finally, we write Vz ec y in place of Vz :
Czecy.

Proposition 3.2.1 1. A relation R>> C x D is small iff, for some
p:D—PC:

CEVz:C,y:D.R(z,y) & z ec p(y).

2. Amap f:C—> D is small iff, for some f~': D —P, C:
CEVz:Cy:D.flz)=y e zec f(y).

PROOF Immediate from the definitions of small maps and relations. In par-
ticular, the map f~!, which we call the fiber map, classifies the graph I'(f) of

. 4

Proposition 3.2.2 (Typed Axioms) The following are true in any category
C with basic class structure:

10




Extensionality: For any object C':
CEVYa,b:PC.(Vz:Czxecazech) =>a=b.

Emptyset: For each object C there exists a map 0¢ : 1 — P, C such that:
CEVz:Cxeclo e L.

Singleton: For each object C the singleton map {—}c, which is the classifying
map for the diagonal A : C>—> C x C, is a small monomorphism.

Binary Union: For each C there exists a map Ug : P, C x P, C —> P, C such
that:
CEVz:Cia,b:P,Cxec (aUcb) ©zecaVzeob.

Product: For all C and D there exists a map X¢,p : BsCxPe D — P (C x D)
such that:

CEVz:C,y:D,a:P,C,b:P.D.(z,9) ecxp (axc,pb) & xec anyep b.

Pairing: For any C there exists a map {—=}c:Cx C—P,C such that:

CEVr,y,z:Cxec {y,2}c@z=yVr=-=2
PROOF For Extensionality, let the subobject r be given by the following:

I[a,b:'PsC'I(V:r:C)(xecaﬁxecb)]]#RCXPSC.

By (P1) there exist subobjects S, 5’ of C x R classified by mor and nz o1,
respectively. But by assumption S = §'. Notice that r factors through the
diagonal A iff 1y or = mp 07 (recall that A is the equalizer of 7y and m3). Thus,
by (P1), R factors through A, as required.

For Emptyset it suffices to notice that [z : C|L] is small.

For Singleton note that by Proposition 3.2.1 we have that:

[z,y: Clz ec {y}] = A,

so that if C F {z}c = {y}c, then C F z = y. To see that {—}¢ is small notice
that where:

P
C————s ¢

Al |<

CxC——CxPC
lex{-}e
we have {—}¢ = mc o p. But p is small since it has a retraction.
Binary Union follows from the fact that, by (S4) and (S5), the join of two
small subobjects is a small subobject. Product is by (82). Finally, for Pairing,
the map {—, —}¢ : € x O — P, C'is the composite Uc o ({—}c x {~}¢).

11




The foregoing is a good start, but before we are able to verify that more sophis-
ticated principles (e.g., Replacement) we must first develop several additional
properties of the categories in question.

Proposition 3.2.3 The following are equivalent given (S1), (S§2) and (P1)
(cf. [4)):

1. (83).

2. Regular monomorphisms are small.

8. If go f is small then f is small.

4. €ct €¢ == C x Ps C is a small map.

5 [z:Cou:PCov:PClrecunzeo v] is a small relation
6. Sections are small.

PROOF For (1)=>(2) notice that A is a regular mono and suppose that m : A
>> B is the equalizer of h,k : B —= C. Then:

is a pullback and m is small by (S2).
To show that (2)=>(3) suppose regular monos are small and g o f is small
where:

YRy RG]
and consider the pullback:

D2
———

B
lg
WC’.

®
D <y

There is a canonical map ¢ : A — P such that p; o ¢ = 1. By (S1) fisa
small map.

(3)=+(1) is trivial. Also (3)=>(4) is trivial. (4)=(1) is by (S2). Both (3)=>(6)
and (6)=-(1) are trivial.

For (4)=-(5) notice that if R>> C x D is a small relation and the map S
> (' x D is small, then RA S is a small relation. (5)=>(1) is by the fact that:

CEVz:Cy:Ca=yaVz:Czec {z}cAzec {y}o.

The reader should be alerted at this point that use of the previous proposition
and its corollary will often be made without explicit mention.

12




Proposition 3.2.4 P, (—) is the object part of a covariant endofunctor P, on
C.

PROOF As in [10] or [4]. -
It f: C— D, then we will write f : P, C — P, D instead of P (f).
Proposition 3.2.5 Where f: C — D:
CEVz:D,a: P Cuaxep fila) & Iy ec a.fly) =z.
PrOOF By Proposition 3.2.4 and the proof of the Yoneda lemma we have:
[z:D,a:P Clzep fila)] = Jfxip, o(€c ).
Also, in a regular category, given any o> X x Y and f: X — Z we have:
Ixiv(@) = [z:Zy:Y[Fe: Xalz,y) A flz) = 2],
as required. —
Corollary 3.2.6 Ifm: C>—> D is monic, then so is my: P C—P, D. Le.,
CEVz,2' : P, Comy(z) = my(z)) = z = 2.
PROOF By Typed Extensionality and the internal language. -
Corollary 3.2.7 If m: C>> D is monic, then:

€c > €p

, |

CxPC>~——DxP,D
mXm

is a pullback.
PROOF Easy. -

Proposition 3.2.8 Every small map f : C — D gives rise to an (internal)
inverse image map f*: P, D — P, C.

PROOF As in [10] or [4]. .
Proposition 3.2.9 If f : C — D is a small map, then:

CEVz:C,a: P Dxec f*(a) & flz)ep a,
where f* is as above.

PRrROOF By Proposition 3.2.8 and the proof of the Yoneda lemma, f* corresponds
to the small subobject (f x 15, p)*('ep ) of C x P, D, where here the pullback
(f x 1p, p)* is external. -

13




In the following we write C¢ for the subobject of P, C x B, C given by:
Cc = [z2:RCy:PCNzecz.z e 9.

From this description of C¢ it easily follows that Ce> P: C x P, C is the
equalizer of 71,N¢ : P. C x P, C —= P, C and that:

CEVz,y: PiCzxCoyzxnNcy=2z.

Lemma 3.2.10 If f : C — D is a small map, then f - f* internally. That
1s:
CEVz: P Cy:RD.filz) Cpy ez Co f*(y).

PRrOOF Easy using the internal language. -

Proposition 3.2.11 (Internal Beck—Chevalley Condition) If f : C —
D is a small map and the following diagram is a pullback:

o—4.c
T
D——D
g
then f*og = g{ o (f')*.
PROOF By the external Beck-Chevalley condition. -

3.3 SLICING, EXPONENTIATION AND THE SUBCATEGORY OF SMALL
OBJECTS

In this subsection we first show that the structure of categories with basic class
structure is preserved under slicing. Next, we show that small objects are ex-
ponentiable and introduce the (categorical) exponentiation axiom. Finally, we
show that the category S¢ of small objects in a category C with basic class
structure is a Heyting pretopos and, moreover, if C also satisfies the categorical
exponentiation axiom, then S¢ is a II-pretopos.

Theorem 3.3.1 IfC is a category category with basic class structure and D is
an object of C, then C/D has basic class structure.

PRrRoOOF The Heyting category structure of C is easily seen to be preserved under
slicing. Also, the collection Sp of all maps in C/D that are small in C is a system
of small maps in C/D.

Where f: C — D is an object in C/D we define the powerobject P, (f:C
—> D) as the composite p; : V > P, C' x D —> D where V is defined as
follows:

V = [z:RCy:D|fi(z) Cp {y}p].
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Notice that by the results of the previous section V = [z,y|Vz e¢ z.f(2) = yl.
Similarly, we define the membership relation e 5 as the composite M > D x
C x Py C — D where:

M = [z:D,y:C,2: P Clyec zAVZ ec z.f(z') = x]. -
We will now show that exponentials D exist when C is a small object. We
define the exponential in question as a subobject of P, (C' x D) as follows:
D = [R:P(CxD)Ve:C3ly: D.(z,y) ccxp R

Lemma 3.3.2 If C is small, then we have the following special case of the
adjunction — x C 4 —C:

5
C—D
r ' (1)
1 -4 pC
PROOF By the internal logic and the fact that D€ > P, (C x D). -

Now, using the fact that C/E has basic class structure and the pullback functor
Ay : C —= C/FE preserves this structure we arrive at the more general lemmas:

Lemma 3.3.3 Where C is a small object we have the following:

ExC-5D
gL pe
Proposition 3.3.4 Small objects are exponentiable.

ProoF Using the foregoing lemma one may construct the evaluation map and
prove that the object D has the requisite universal property. -

Proposition 3.3.5 If f : C — D is a small map, then the pullback functor
Ay :C/D~—=C/C has a right adjoint I;.

Proor Clearly (f : C — D) is a small object in C/D and, hence, exponen-
tiable there. The existence of the adjoint II then follows as usual. -

We may now state the exponentiation aziom:

(B) If f : C— D is a small map, then the functor II; : C/C — C/D (which
exists by the foregoing proposition) preserves small maps.

Proposition 3.3.6 In a category with basic class structure satisfying (E) if C
and D are both small, then so is D,

PRrROOF Notice that D¢ is II, o A, (D). Moreover, since D is small so is
A, (D). By (E) it follows that D¢ —1 is also small. -
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In the following proposition and theorem we will be concerned with the proper-
ties of the full subcategory S¢ = S/1 of C consisting of small ob jects and small
maps between them.

Proposition 3.3.7 Let C be a category with basic class structure. If8y,01: R
= C x C is an equivalence relation in S¢, then the coequalizer of 8y and 8
exists in Sc¢ and Op, 81 is its kernel pair.

PRrOOF We define the coequalizer C/R by:
C/R = [2:PCl3z:CVy:Cyec 2z R(z,y)].

Notice that since 8y and 8; are small maps so is (80,81)' tR>—>CxC. As
such, (0o, 81) is also a small relation and there exists a unique o : G — P C
such that:

P
R——— ¢

|

C x C’l—;aC x P, C
is a pullback. That is:
CEVz,y: C.R(z,y) & z ec aly). (3)
By (3) and Typed Extensionality it follows that C/R is the image of a:
im(a) = [2:PC|3z: Calz) = 2],

and, as such, that « factors through i : C/R>—> P, C via a cover a. Moreover,
by (P1), @o 8y = &o 8, since (8, D:) is an equivalence relation. Notice that
since C' is small it follows that @ is a small map and, by (S4), that C/R is a
small object.

Finally, we will show that 89, 8; is the kernel pair of &; i.e., that:

R ¢

e

C—+C/R

is a pullback. Let an object Z and maps zg,2; : Z =% C be given such that
& ozyp = &oz. Then we also have that a0 29 = @ 0 z;. Define a map 7 : Z
— €c by 7:="por oz, where r is the ‘reflexivity’ map. Then we have:

€on = {(Gy,ax0b)oroz
= (29,02
= (1¢ x @) o (B, 81).
By the universal property of pullbacks there exists a unique map7:Z — R
with po#j = n and (8o, 81) 0 7j = (20, 21). Moreover 7 is the unique map from Z
to R such that 8y o7 = 29 and 8; o = 2;. It follows from the fact that covers

coequalize their kernel pairs that @ is a coequalizer of 8y and 8;. Tt is easily
seen that if Z together with 2o and z; are in Se, then so is 7). =
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Theorem 3.3.8 S¢ is a Heyting pretopos. Moreover, if C satisfies (E), then
Sc is a II-pretopos.

PRrROOF By Proposition 3.3.7 S¢ has coequalizers of equivalence relations. It
suffices to showt that S¢ is a positive Heyting category. But, this structure is
easily seen exist since C is a positive Heyting category. For instance, to show
that S¢ has disjoint finite coproducts note that if C' and D are small objects
then so is C' + D together with the maps C — C + D and D — C + D by
(85). Disjointness and stability are consequences of (S3). Similarly, by the
description of C' x D as the pullback of !¢ along !p, it follows that C x D is
a small object when C and D are. S¢ is seen to be regular by (S3). Finally,
for dual images, let a map f : C — D and a subobject m : § > C be given
in S¢. Consider the subobject ¢ : V¢(m) >= D. Notice that, in general, if a
monomorphism C > D in a category C with basic class structure is small, then
it is also regular since it is a pullback of the section T : 1 — P, 1. Moreover
since, by Proposition 3.3.5, Iy exists and is a right adjoint, it follows that i is
a small map.

The further result is a consequence of Proposition 3.3.6. -

3.4 TyYPED UNION AND REPLACEMENT

We now show that typed versions of Union and Replacement are valid in cate-
gories with basic class structure. To this end, we introduce a typed version of
the ‘2z.¢’ notation from above as follows:

ex:Cp = Iy :PCVz:Clrecye o),
where y ¢ FV(p).

Proposition 3.4.1 A relation R > C x D is small if and only if C = Vy :
D2z : C.R(z,y).

ProOOF Suppose R > C x D is a small relation and p : D — P, C is the
classifying map. Then by Proposition 3.2.1 we have C B Vy : D.Vz : C.R(z,y) <
z ¢ p(y). The conclusion may be seen to follow from this (use p to witness the
existential).

For the other direction suppose € = Vy : D.2z : C.R(z,y). Then, by Typed
Extensionality:

CEYy:D3z: P CVz: Clz e¢c 2 & R(z,vy)),
and there is a map p: D — P, C with the requisite preperty. -
Proposition 3.4.2 (Typed Union) For all C:
CFEVYa:P, (P C)2z:Clzep, ¢ azec .
ProoF Let H be defined as:
H = [2:Cy:RCz:P(RC)lyenc zAzec ],
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and note that the projection:
H>>CxPCxP (P C)—P (R C)

is small. By (84) it follows that [z : C,2 : P (P, )|y ep,c 2 Az e y] is a
small relation. We write [Jg : Ps (Ps C) —> P, C for the classifying map. -

Proposition 3.4.3 (Typed Replacement) For all C and D:
CEVa: P C(Vrec adly: D)= (Ry: D3z ¢ a.p).

PROOF Let a : 1 — P, C be given with 1 I Vz ¢ a.3ly : D.p. Let o C
be the small subobject classified by a. Then the assumption yields a map f : o
—> (' — D such that;:

L(f) = [z:a,y:Dle(z,y)].

Moreover, the image of f is the subobject:
I = [y: D3z ec ap(z,y)].

Since o is a small subobject it follows by (S4) that I is also a small subobject.
We may now pull the general problem back as usual. 4

3.5 SuMMING THE TYPES: PREDICATIVE CATEGORIES OF CLASSES

A universal object in a category C is an object U of C such that for any object
C there exists a monomorphism C > U (cf. [16] and [4]). Notice that the
monomorphism in question need not be unique. A basic (predicative) category
of classes is defined to be a category with basic class structure which satisfies:

(U) There exists a universal object U.

Similarly, a predicative category of classes is a category of classes which satis-
fies (E). Categories of classes allow us to interpret untyped first—order theories
such as BCST which are formulated in the language £ of set theory. This is in
contrast to the usual models of set theory in topoi. We will now demonstrate
that BCST is sound and complete with respect to models in basic categories
of classes and that CST is sound and complete with respect to models in pred-
icative categories of classes.

In order to interpret the theories in question in basic categories of classes
(respectively, predicative categories of classes) we must choose a monomorphism
t: Ps U>—U (this is because (U) is consistent with the existence of multiple
monos 75 U > U). An interpretation of BCST in a basic category of classes
C with is a conventional interpretation [~] of the first-order structure (€, S)
extended with the following clauses:

o [S(z)] is defined to be:
PUU.
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e [z € y] is interpreted as the subobject:

1xe

€y >—E—>U><73’SU>—>U><U.

Remark 3.5.1 We write (C,U) F ¢ to indicate that ¢ is satisfied by the inter-
pretation. As above C k ¢ indicates that ¢ is true in the internal language and
Z I ¢ means that Z forces (.

The following lemma and proposition will allow us to transfer results about the
typed internal language to the case of the untyped set theories in question:

Lemma 3.5.2 If m : C > D is a small subobject with classifying map ¢ : 1
—>= P D andr: R>> D x F is a small relation with classifying map p : E
— P D such that E I+ p Cp ¢, then there exists a restriction ' : R' > C' x E
of R to C which is a small relation with classifying map p' : E — P, C such
that p =myop'.

PROOF Let 7' : R'>> C' x E be the pullback of r : R>> D x E along m x 1g,
then, since I¢ is small so is m x 1g. As such, 7/ : R’ > C x E is a small relation
and there exists a classifying map o' : E — P, C.

We use (P1) to show that p = m o p'. In particular, let p: P> D x E
be the small relation which results by pulling ep back along 1 x (my o p),
then it is a straightforward application of the internal language to show that
the following holds:

CEVz:D,y:Exep ply) © zepmiop(y).
By (P1) it follows that p = my 0 g'. -

Proposition 3.5.3 Suppose i : > C is a small subobject with classifying
map a:1— P C, then:

Pa = [z:PClzCod

Proor By Corollaries 3.2.6 and 3.2.7 we have 4, : P, a>> P, C. As such, we
need only find a map £ : P, « —C¢ such that:

Pra——>Co

IR

»C—>P,CxP,C
1xa

is a pullback. We use the description of C¢ as the equalizer of 7 and Ng to
show that ¢ exists. To this end, notice that, by (P1) it suffices to show that:

CEVz:Cy: P a(zec in(y) Az ec a) & (z ec (y));

for then m; o (1 x a) 04y = 4y = Ng o (1 x a) 04y This is a straightforward
application of the internal language and, by (P1) and the universal property of
equalizers, there exists a map £ : P, @ —~C¢ such that jo ¢ = (1xa)oi.
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To show that the square in question is a pullback suppose given an object
Z and maps [ : Z— P C and k : Z —>Cc such that jok = (1 x a)ol. Then
[ is the classifying map of a small relation L > C x Z. By Lemma 3.5.2 the
restriction of L to o exists with classifying map A : Z — P, & such that A : Z
— P a. Moreover, A is the unique map Z —= P,  with this property since 14
is monic. Finally, we have that 71 0 (1 X @) ol =Ng o (1 x a) ol so that there
exists a unique map p : Z ~—C¢ with jou = (1x a)ol. Hence u = k. Moreover
Jjo(§oX)=(1xa)ol. Therefore, £ o A =k, as required. =

Corollary 3.5.4 Ifi : a>> C and h : 8 == D are small subobjects with
classifying mapsa:1—=P,C and b:1—P, D, respectively, then:

Py (Otxﬂ) = [[:E'Ps (CX D)I.Z‘ Cexp a X, p bl]

PrROOF This is a straightforward generalization of the proof of the foregoing
proposition using Typed Product. a

Lemma 3.5.5 Ifa:1—U and 1|~ S(a) via some map @ : 1 — P, U, then:
ES@A (VW yez=yea)] & P,

where i : a > U is the small subobject classified by & and P, « is regarded as a
subobject of U via ¢ 0 4.

ProoOF Note that [z, z|(Vy)(y € z = y € 2)] is the composite:

2

§U>i>7%UX7%U>+UxU.

Using Proposition 3.5.3 the proof is by the following diagram:

Pa=—>Pa Cy
S
PU—>PUEDUXPU
IIJ 12 - ILXL
PU U UxU.

4 1xa
Corollary 3.5.6 If a,b : 1 == U with 1 I+ S(a) A S(b) via maps G and b,
respectively, then:
[zIS(z) A (W) yez=ycaxb)] = P (axp),

where o and B are the small subobjects classified by @ and b, respectively, and
Ps (o x B) is regarded as a subobject of U.

Theorem 3.5.7 (Soundness of BCST) BCST is sound with respect to mod-
els in basic categories of classes.
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PROOF The Membership axiom is trivial and all of the other axioms follow
from the previous results contained in this subsection and the fact that their
typed analogues are valid in the internal languages of categories with basic class
structure. -

Theorem 3.5.8 (Soundness of CST) CST is sound with respect to models
in predicative categories of classes.

PROOF All that remains to be checked is that (C,U) F Exponentiation where
C is a predicative category of classes. To this end, the reader should note that
it is possible to eliminate the defined terms (e.g., a x b) which occur in the
Exponentiation axiom:

S(a) AS(b) = 2z. func(z, a,b)

using a combination of the internal language and the fact that BCST has been
shown to be sound with respect to models in categories of classes.

We will first show that for any a,b : 1 — U factoring through ¢ : P, U
> U via maps @ and b, respectively, the subobject [z] func(z, a,b)] is small.
By definition there exist small subobjects & and 3 of U corresponding to @ and
b.

Since these subobjects are small so is the exponential 9% by Proposition
3.3.6 and, by the foregoing lemma and Proposition 3.5.3, it follows that:

p* = [zlzCaxbAVzeadlyecbz,y) € 2] 4)

The general result follows from the fact that, given a,b : Z == U such that
Z Ik S(a) AS(b), we may pull the problem back to C/Z along Ay, -

Moreover, by constructing the syntactic categories Cgest and Cogr as in [16]
and [4] we have:

Theorem 3.5.9 (Completeness) For any formula ¢ of L, if (C,U) & ¢ for
all models (C,U) with C a category of classes, then BCST w. Similarly, if
(C,U) E ¢ for all models with C a predicative category of classes, then CST F ¢.

4 The Ideal Completion of a Pretopos

We begin by reviewing the category theoretic background necessary to under-
stand the method for constructing models of PIST ‘over’ II-pretopoi R which
is introduced in the next section. We will be interested in several categories in
this section; two of which should be familiar: sheaves (for the coherent topology
consisting of finite epi families) and presheaves. We will be concerned with two
subcategories of sheaves Sh(C); namely, the inductive completion Ind(C) of C
and the ideal completion Id1(C) of C. Although the ideal completion is more
significant from our perspective it will be useful to keep in mind that the induc-
tive completion has a more illustrious history in category theory (originating,
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as far as the authors are aware, in SGA4 [2]). The basic picture is this:
€ ——1dI(C) - Ind(C) > Sh(C) > C,
where C is presheaves on C. References for this section include [4], [14] and [5).

4.1 SoME USEFUL PROPERTIES

Definition 4.1.1 A diagram D : 7 — C is an ideal diagram on C provided
that 7 is a small filtered category such that for every map o : ¢ —j in Z the
map D(a) is a monic. An ideal I on a category C is an object of C which is a
colimit of an ideal diagram of representables. <

Using this definition, the ideal completion Idl(C) of a category C is the full
subcategory of C consisting of ideals. Indeed, since every ideal is a sheaf (cf.
(5]), Id(C) is also a subcategory of Sh(C). We state the following theorem from
[5] for the record:

Theorem 4.1.2 If R is a Heyting pretopos, then IdI{R) is a Heyting category
and y : R — IdI(R) preserves all limits existing in R.

The following theorem is a highly useful tool for the study of ideal categories:

Theorem 4.1.3 (Representable Compactness) In C, where X is a colimit
lig}i yD; of representables, any map f : yC — X factors through at least one
of the canonical maps l; : yD; — X .

PROOF Let X, yC and f be given as in the statement of the theorem and let
P =[], yD; be the coproduct of the yD;. Then there is a canonical map £ : P
— X such that each l; : yD; — X factors as l; = £ o tj, where o; : yD;
— P is the coproduct inclusion. To show that € is an epimorphism suppose
that there is a map m such that:

yD; —=—yDy

N
X

commutes and assume that there are maps A,k : X — Z such that hof = ko€,
We have trivially that holy om =ho I; (and similarly for k) and:

holj,om = hogoaj/om

]

kofol,j/om

kol om.

Therefore, by the universal property of colimits, k = k.
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Since representables are projective it follows that there is a map ¢ :yC
— P such that £o¢ = f. It follows that ¢ factors through some tj :yDj — P
via a map 7. But then:

f= ¢&o¢
= £oijoq
= lj on,
as required. -

Of course, when X is an ideal any such factorization will occur also in Idl(R)
since Id1(R) is a full subcategory of R.

Where C and D are categories with colimits of ideal diagrams, a functor
F : D —C is said to be continuous provided that it preserves colimits of ideal
diagrams.

Proposition 4.1.4 IfC is a category with colimits of ideal diagrams and R is
any category, then any functor F : R — C which preserves monomorphisms
extends to a functor F : Id(R) —= C which is continuous and unique up to
natural isomorphism. Id1(R) is the free completion of R with colimits of ideal
diagrams in this sense:

R L > 1dI(R)
F /»""‘p
C.
PrOOF Let F(H_I_)niGI yCi) = lim, _ F(C;). Notice that the assumption that F
preserves monomorphisms is necessary so that the colimit lim, F(C;) exists in
C. 3

4.2 CrAss STRUCTURE IN IdI(R)

Let R be a pretopos, then based on the intuition of small maps as those maps
with small fibers we adopt the following definition:

Definition 4.2.1 A map f: X — Y in IdI(R) is small provided that it pulls
representables back to representables. Le., f is small provided that, for every
yC —Y the object P in the following pullback diagram is a representable:

P——yC

]

X —>Y,
f

As such, an object is small if and only if it is a representable since the terminal
object of IdI(R) is y1. <

We will make use a characterization proposed by André Joyal of the objects of
Idl(R). Call an object X of Sh(R) separated it its diagonal A : X — X x X
is a small map.
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Theorem 4.2.2 (The Joyal Condition) Let R be a pretopos, then, for any
sheaf F in Sh(R), the following are equivalent:

1. F is an ideal.
2. F' is separated.
3. For all arrows f : yC — F with representable domain, the image of f is
representable; i.e., f : yC —pyD > F for some yD.
PRroOOF See [5]. =

As shown in [5], if R is a pretopos, then the small map axioms from 3.1 are
satisfied:

Proposition 4.2.3 Let R be a pretopos, then IdI(R) satisfies azioms (S1)-
(S5).

PROOF (81) and (S2) are easy. (S3) is by the Joyal Condition.
For (S4) suppose we have:

X——Y

7

with e a cover and f o e small. Let i : yC —= Z be given and consider the
diagram:

yC' P N yC

Lol

X—>Y —>2

where both squares are pullbacks (as is the outer rectangle). Then it follows
that P is representable.

For (S5) notice that the pullback of yC —= Z along [f,g] : X +Y — Z is
the coproduct f*(yC) + ¢*(yC) which is representable since both f*(yC) and
g*(yC) are representable. =

We will strengthen this result by showing that, where R is a Heyting pretopos,
the category IdI(R) is a category with basic class structure. In order to motivate
the definition of the (predicative) powerobjects P (X) in Id1(R) suppose that
the indexing category is a topos £ and consider a provisional definition of the
powerobject of an object yC in £ as follows:

P (yC) = y(P(C)),

where P(C) is the usual (topos) powerobject of C in £. Then we have P, (yC) =
y(Q2¢) and at an object E in &:

P (yC)(E)

IR

y(Q°)(E)

homg (E, Q°)
homg(E x C,9Q)
Subg(E x C).

R 1R
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Dropping both the assumption that the indexing category is a topos and that
we are working in presheaves, we adopt the following provisional definition of
the small powerobject of yC in Id1(R):

P (yC) = Subr(—xC).

We then extend P, (—) continuously to ideals; i.e. where X = lii)ni yC; is an
arbitrary ideal:

P (X) = I_H_,Tlps (yCs).

We will show that this definition of 7, (X) is justified by first showing that there
is a functor Sub%k : R — IdI(R) which takes C to Subr(— x C) and which
preserves monomorphisms. Then it will be possible to apply Proposition 4.1.4
to arrive at an extension P, : Idl(R) — IdI(R) which will be seen to be a
powerobject functor in the sense of satisfying (P1).

4.3 7P, 1S AN IDEAL

Lemma 4.3.1 If R is a pretopos and C is an object of R, then the purported
powerobject functor Py (yC) := Subg(— x C) is a sheaf.

PROOF Notice that P (yC)(0) = {*} and, since coproducts in R are stable,
Ps(yC)(A+B) = P,(yC)(A)x Ps(yC)(B). Suppose f : A—>B is a cover and let
h,k : Z % Subg (B x C) be given such that Subgr (f x C)oh = Subgr(f x C)ok.
Then, for any » € Z, h(2), k(2) € Subg(B x C) and the pullback P of h(z) along
f x1¢ is also the pullback of k(2) along f x 1¢. But covers are preserved under
pullback in R so that h(z) = k(z) by the uniqueness of image factorizations.

Proposition 4.3.2 If R is a Heyting pretopos and C is an object of R, then
the small powerobject functor Ps (yC) is an ideal.

Proor Since R is effective it suffices to show that P, (yC) is separated. To that
end let yD —P; (yC) x Ps (yC) be given and consider the following diagram:

yD

!

P, 4C) =5 P. (4C) x Pr (yC) =% s (4C)

We will show that the equalizer of m, 04 and 75 04 is representable.

By the Yoneda lemma there are subobjects ¢, 8 € Subgr (D x C) correspond-
ing to w1 04 and 3 o ¢, respectively. We want to find some H and h: H — D
in R such that the result of pulling o back along A x 1¢ is

the same as the result of pulling 3 back along k X 1. Define a subobjects
G and H of D x C and D, respectively, as follows:

G = [z,yla(z,y) & B(z,v)],
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and:
H = Ypp(Q)
= [zl(V2)(a(z, 2) & B(z, 2))],

where 7p is the projection D x C'~ D. Finally, let h: H>> D.
To see that o and B both pull back to the same thing along h x 1¢ notice
that, where & is the pullback of o along h x 1¢ and 3 is similarly defined:

|

& = [oyla(e,y) A (V2)(alz,2) & Bz, )]
[z, 18z, ) A (¥2)(a(, ) & B, 2)]
3.

So, M 0t oyh = my 0o yh.

To see that yH is the equalizer suppose given some 7 : X — yD with
7 oion=myoion. It suffices to assume that X is representable, so suppose
X 2 yE. Consider the image factorization yE' of n:

I

yE—L  pyF

N

Notice that 71 040 ye = w3 0 0 ye since ye' is a cover. That is, it suffices to
consider monomorphisms m into yD with 7 0tom = mo0iom. In particular,
if & and (3 pull back to the same thing along 7 x 1¢, then they already are the
same when pulled back along e x 1¢. Let € denote the result of pulling o, 8
back along e x 1¢.

We will now show that B/ === D factors through H > D in R. Note that:

E' < H in Subg(D) iff nh(E') <G in Subgr(D x C),
iff 7p(E)<a=pFand <f= o0,
if aArp(E)<Band BATH(E) <o
But aATH(E) =e=BATH(E') is < a and < 3 by definition.
So there exists a map € : ' — H such that ho&=e. To show go¢' is the

unique map from E making 7 factor through H suppose that f : F — H and
ho f =mn. By the uniqueness of image factorizations it follows that f = o e’.

Lemma 4.3.3 The functor Suby, : R —> IdI(R) defined by Subf(C) =
Subgr (— x C) preserves monomorphisms.

PROOF A map f : D — C induces a natural transformation ¢ : Subg(— x D)
— Subgr (- x C) given at an object E of R by:

S € Subr(E x D) +22> §' € Subg(E x C), where
§ = (1 x fu(8).
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As such, we define Subf (f) := ¢. Notice that ¢ is natural since R satisfies the
Beck-Chevalley condition.

If f is monic, then each component g is monic and, by the Yoneda lemma,
¢ is monic (smce the monomorphisms, like other limits, in IdI(R) agree with
those in ). -

Definition 4.3.4 For any object X = lim. yC; of IdI(R), where R is a Heyting
pretopos, we have by Proposition 4.1.4 that there is a unique functor P, : IdI(R)
—> IdI(R) with:

P (X) = P (limyCy)

i

& lim Subr (C;)
= limSubg(~ x Cy). - <
1

4.4 P, (X)1s A POWEROBJECT

We will now show that the axiom (P1) holds in Idl(R) where R is a Heyting
pretopos. It will be more efficient to break the proof into several steps. Also,
notice that we write €x for the membership relation in R and ex for the
membershlp relation in Id1(R). Similarly, we write PX for the power object in
R and P, X for the small power object in IdI(R).

Lemma 4.4.1 Given any small relation R>"> X x Y in IdI(R) there ezists a
unique classifying map #: Y — P, X.

PROOF First consider the case where R>— yC x yD. Then in R both of the
following squares (and the outer rectangle):

€yC > EyC

! !

nyPsyCmnyPyC

P, yC>——i—+PyC

are pullbacks where €,¢ and PyC are the presheaf membership and powerobject
relations and 4 is the inclusion of P, yC into PyC (P, yC is, by definition, a
subfunctor of 7, yC). Notice that R is representable since 7 is a small relation.
In particular, R = yE for some object E of R and r = ye. So, using the ‘twist’
isomorphism ~: C'x D 2 D x C, we have a relation & : E>»> D x C. By the
Yoneda lemma such an element corresponds to a map # : yD — P, yC. N

We will now show that the canonical classifying map p : yD — PyC in R
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factors through 7. IL.e., we show that:

yD —" > P yC

N A

PyC

commutes. Notice that, by the two pullbacks lemma, this will suffice to show
that 7 is a classifying map for R in Id}(R). By the proof of the Yoneda lemma
the action of # on a given member f of yD(F) is:

o= P O)(f) (&)

But, pr(f) = (yf x 1yc)*(y€) = i(P. (yO)(£)(&)).
For uniqueness suppose that ¢ : yD — P, yC such that:

yE €yC

} I

nyyDl—X;ny’PayC

is a pullback. Then, in R, ye is the pullback of €,¢ along t0q and along i0 = p.
Since p is unique with this property it follows that io# = i o g and, since i is
monic, g = 7.

Now, for any ideal X = h_r_)ni yC; and small relation 7 : R>> X x yD, R
must be representable since the projection:

R>—> X xyD—yD

is small. Le., R = yFE for some E. By Representable Compactness there exists
then a factorization of r:

R>—yC; x yD>> X x yD
for some 4. Thus indeed SRelx & lim. SRelyc, . =
Lemma 4.4.2 For any ideal X, €x is a small relation.

PROOF We verify this for the case where X is a representable yC. Let yD
>> P yC be given. Then there is a r: R>> C x D in R such that:

yR ToYT yD

I

Ebz,lC' m P yC

is a pullback, as required. =

Corollary 4.4.3 Any relation R >> X x Y such that there exists a unique
classifying map p: Y — P, X is a small relation.
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PrOOF By (S2) and the fact that ex is a small relation. o

Putting the foregoing together we have the following proposition:

Proposition 4.4.4 If R is a Heyting pretopos and X = hm yC; is an object
of IdI(R), then P (X) = lim, ,Subr(— x C;) is a small powerobject

Moreover, when combined with the fact that axioms (S1)-(S5) are satisfied in
pretopoi we have shown the following:

Theorem 4.4.5 If R is a Heyting pretopos, then IdI(R) is o category with
basic class structure.

Remark 4.4.6 It should be mentioned that Alex Simpson was the first to re-
alize that it is sufficient for R to be a Heyting pretopos in order for Id1(R) to
have basic class structure. Moreover, Simpson also was the first to give a proof
of Proposition 4.3.2 (the main difference between his proof and the one given in
this paper is that his proof does not make use of the Joyal Condition).

4.5 EXPONENTIATION

We now extend the results of the preceding subsection by showing that if R is a
II-pretopos, then Idl(R) satisfies (E). First we need the following useful fact:

Proposition 4.5.1 IfC is a small category and P is an object of Id1(C), then:

1dI(C)/P ~ IdI( / P).
[

PROOF It is well known (cf. exercise 8 on p. 157 of [11]) that C /P fc

In particular, there are two functors R : C/P — fc P and L : fc P —C/P
such that L 4 R and the two maps are pseudo-inverse to one another. These
functors are defined as follows:

e R(n: F — P) is a functor given by:

(¢,C) +— homcﬂ/P(ézyC'———->P,n:F—>P),

where ¢ is the map in 9 corresponding to the element ¢ € P(C) by the
Yoneda lemma.

o L(F):= lim 7o where J := ff pr b fCP—>5/P is the map taking
[o4
an object (¢, C) to the corresponding & : yC — P as above and 7 is the

projection from the category of elements.

We begin by showing that if (n : FF — P) is an object of IdI(C)/P, then R(P)
is isomorphic to an object of Idl(f, P). Let n be given as mentioned. Then,
since F' is an ideal we have F' & hm yD; with maps y; : yD; — F making up
the cocone.
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We define a functor G': T — [, P such that lim_ yG; = R(n) and lim, yG;
is an object of IdI( f, P). Let G(3) := 7 o z; be the object corresponding via the
Yoneda lemma to no p;. Given f :i—jin Z, let G(f) := D(f). G is easily
seen to be functorial.

Next, let T := lim yG. We now define an isomorphism ¢ : R(n) —
T. If f € R(n)(c,C) then we have f : yC — F. But using Representable
Compactness there exists an ¢ together with a map yl : yC — yI); such that
i oyl = f. Now, an element of T(c, C) is an equivalence class [g : C —= D;],
where g : C — D; ~ ¢’ : C — Dy if and only if there exists an object 1" of Z
together with maps h : 4 —=i" and b’ : ¢/ — 1"’ such that D(h)og = D(h')og’.
So we define ¢(c,¢)(f) := [{]~. The naturality of ¢ follows from the fact that Z
is filtered and the maps uy, : yDi —> F' are monic.

Now we need an inverse map 9 : T — R(n). If [g: C — D;]~ € T(c, ),
then let ¥ cy{[g]l~) = pi o yg. This definition is independent of choice of
representative by the fact that Z is filtered and naturality is straightforward.

Finally, it is straightforward to verify, using the fact that T is filtered, that
wo = lp. Moreover, pop =1 R(n) 1s trivial. Furthermore, G is easily seen
to preserve monomorphisms. As such, we have shown that R(n) is an ideal in
Idi(f, P).

Similarly, given an object F of Id1( f, P) it follows from the fact that 7 : [ P

— [, Pandi: [, P— C/P both preserve monomorphisms that L(F)is an
object of Id1(C)/P. ~

Proposition 4.5.2 If R is a II-pretopos, then Id(R) satisfies (E).

PrOOF First, we show that given lyc : yC — 1 and f : X — yC the map
Iy, (f) — 1 is small. By definition we have the following pullback square:

H!yc (_‘If) — X¥°

l l P

1 —— yC¥°
Ty

where Ty is the transpose of 1,c. However, since f is small it follows that X is
representable. Le., X & yF for some E. But since R is a II-pretopos it follows
that:

yC¥° = y(C°), and
yEYC = y(E°).

Therefore f¥C is a small map and by (S2) so is the map e (f) — L
The general case then follows from the foregoing proposition. -

4.6 UNIVERSES AND ADDITIONAL TOPICS

Recall from [16] and [3] that a universe U in a category with basic class structure
C is an object U such that P, U > U. Where R is a Heyting pretopos, we may
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construct universes U in Idl(R) as fixedpoints for endofunctors (cf. [14] or [5]).
Moreover, given a universe U in Id1(R), the full subcategory | (U) of IdI(R)
consisting of those objects X of Idl(R) which are subobjects of U is a category
of classes with U as the universal object (cf. [16]). Putting this fact together
with the results of the foregoing subsections we have:

Theorem 4.6.1 If R is a Heyting pretopos, then there ezists a universe U in
Id(R) such that | (U) is a basic category of classes in which R is equivalent to
the category of small objects:

R =~ Sir)-
Moreover, if R is a Il-pretopos, then | (U) is a predicative category of classes.
PROOF Let A :=[[5.r C and U a fixed point of F(X) = A+ P, (X):
U A+P (U).
_..!

Ideal categories actually have some additional properties which are worth briefly
mentioning. First, another axiom in which we will be interested is the strong
collection aziom:

(S6) For any cover p: D —>C and f : C —= A in S there exists a quasi—
pullback square:

¢'— D20
7 |
A/ —*h—'—"DA
such that & is a cover and f is in S.

Proposition 4.6.2 (Typed Strong Collection) If o category C with basic
class structure satisfies (S6), then:

CFVYa: P C.(Vzec a3y : Dop(x,y) = 3b: P, D.coll(z ec a,y ep b, o(z, 7)),
where @ is any relation on C x D.
PROOF A routine but fairly lengthy exercise in the internal language. -

Proposition 4.6.3 (Small Covers) In a category C with basic class struture
if, given any cover e : E —>C with C a small object, there exists a small
subobject 1 : D> E such that e o4 is also a cover, then C satisfies (S6).

ProoF By Theorem 3.3.1, it suffices to show consider the case where we are
given a cover e : E —>C with o : C — 1 a small map. By (2) there
exists a small subobject m : B> E and the following is easily seen to be a
quasi—pullback:

B> FE—24C

| !

l—l1
1
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Proposition 4.6.4 If R is a pretopos, then IdI(R) has small covers.

ProoF Using the fact that representables are projective in R and split epis are

the same in Idl(R) as they are in R. .
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