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1. Background
The two volumes of Grundlagen der Mathematik are very special milestones in the
development of modern mathematical logic. They were at the forefront of
contemporaneous research and presented then current metamathematical
results: from consistency proofs (Hilbert and Bernays had obtained in weaker
forms during the twenties) through theorems of Herbrand and Gédel to a sketch
of Gentzen’s consistency proof for number theory. This material is
supplemented in the second volume by a series of important appendices
concerning focused topics, for example, a very elegant formal development of
analysis and an incisive presentation of the undecidability of the decision
problem. Indeed, the two volumes constitute an encyclopedic synthesis of

metamathematical work from the preceding two decades. What is most

remarkable, however, is the sheer intellectual force that structures the books:



these are penetrating and systematic studies concerned with the foundations of
modern mathematics as it emerged in the second half of the 19" century. That
emergence was deeply influenced by Gauss, Dirichlet, Riemann, and - above all
- by Dedekind.

Dedekind formulated abstract axiomatic theories within a general logicist
framework that was articulated most explicitly in Was sind und was sollen die
Zahlen? His way of formulating theories was used by Hilbert in Die Grundlagen
der Geometrie and Uber den Zahlbegriff. Hilbert recognized, as Dedekind had done,
the centrality of the consistency problem for such theories. For Dedekind this
was a semantic issue, and he tried to resolve it by defining suitable models
within logic. However, problematic aspects of Dedekind’s broad logicist
framework were noticed early by Cantor and formulated in letters to Hilbert in
1897. Hilbert reformulated the consistency problem as a quasi-syntactic one for
his axiomatization of the arithmetic of real numbers, both in 1900 and 1901 (for
the second of his Paris problems). He demanded that a “direct proof” be given
to establish that no contradiction can be obtained from the axioms in a “finite
number of logical steps.” The point of such a proof was to establish the existence
of a “consistent multiplicity”, i.e. a set, satisfying the axioms. At the time, Hilbert
thought that a consistency proof could be given “by means of a careful study and
suitable modification of the known methods of reasoning in the theory of
irrational numbers.”

Hilbert believed, it seems, that the genetic build-up of the real numbers
could be exploited to yield the blueprint for a consistency proof in Dedekind’s
logicist style. That is supported by Hilbert’s treatment of arithmetic in other

lectures from that period, but also by a more programmatic statement from the



Introduction to the notes for his lectures Elemente der Euklidischen Geometrie
(summer semester 1899). He maintains there: “It is important to fix precisely the
starting-point of our investigations: as given we consider the laws of pure logic
and in particular all of arithmetic.” (pp. 203-4 in Toepell) Hilbert adds
parenthetically, “On the relation between logic and arithmetic cf. Dedekind, Was
sind und was sollen die Zahlen?” And, clearly, for Dedekind arithmetic is part of
logic.
2. Naive Proof Theory

Ih Dedekind’s as well as in Hilbert’s systematic developments only the
mathematical parts are characterized axiomatically; logic is not given a
principled formulation. That changes in 1904 with Hilbert’s programmatic call
for a simultaneous development of logic and mathematics. However, it is only
more than a decade later that an appropriate logical frame is obtained through
the careful study of Whitehead and Russell’s Principia Mathematica. This fully
formal framework is then recognized as an object of metamathematical
investigation ~ to address the issues that arose at the beginning of the century.
2.1 Equational theories. Hilbert changed his basic attitude towards coﬁsistency
proofs only around 1903 after the discovery of the elementary contradiction of
Russell and Zermelo, which convinced him that there was a deep problem. In
early 1904 he wrote to Hurwitz and claimed, “exactly the most important and
most interesting questions [concerning the foundations of arithmetic] have not
been settled by Cantor and Dedekind (and a fortiori not by Weierstrass and
Kronecker).” He announced his intention to offer in the next semester a seminar

on the “logical foundations of mathematical thought.” (The German text is found



in Dugac, p. 271.) The lecture notes from that term contain remarks on

Dedekind’s achievements, but insist that fundamental difficulties remain.

He [Dedekind] arrived at the view that the standpoint of considering the integers as obvious
cannot be sustained; he recognized that the difficulties Kronecker saw in the definition of
irrationals arise already fof integers; furthermore, if they are removed here, they disappear there.
This work [Was sind und was sollen die Zahlen?] was epochal, but it did not yet provide something
definitive, certain difficulties remain. These difficulties are connected, as for the definition of the

irrationals, above all to the concept of the infinite;. ..

All of this set the stage for the Heidelberg talk of August 1904. Hilbert stresses
there the programmatic goal of developing logic and mathematics, in particular
arithmetic, simultaneously. His theory of arithmetic is now restricted and deals
only with natural numbers; it consists of axioms for identity and Dedekind's
requirements for a simply infinite system, except that the induction principle is not
formulated. The consistency of this purely equational system is established by
an inductive argument on derivations. The work has real shortcomings, as there
is neither a calculus for sentential logic nor a proper treatment of quantification.
In sum, Hilbert initiates an important shift from semantic to syntactic arguments,
but the formal set-up is inadequate as a framework for arithmetic, and the
ultimate goal of the consistency proof remains to guarantee the existence of a set,
here of the “smallest infinite.”

Poincaré challenged the foundational import of Hilbert’s considerations
on account of the inductive character of the consistency proof; his incisive
analysis shifted Hilbert's attention not away from foundational concerns (they
are documented by lectures throughout the period from 1905 to 1917), but from

the syntactic approach advocated in the Heidelberg talk. Indeed, under the



impact of a detailed study of Principia Mathematica beginning in 1913, Hilbert
flirted again with logicism. What resulted from this study, very importantly as it
contains the first exposition of modern mathematical logic, were the lectures
Prinzipien der Mathematik given in the winter semester 1917-18 with the assistance
of Paul Bernays. Their logicism was abandoned in the following year; a radical
constructivism was adopted instead and subsequently abandoned; finally, the
finitist consistency program was formulated in lectures given in the winter
semester 1921-22.

2.2 Quantifier-free systems. The evolution towards this program started in the
summer semester 1920, when Hilbert came back to the syntactic approach of his
1905. The notes from that semester contain a consistency proof for almost exactly
the same fragment of arithmetic as that discussed in the Heidelberg talk; the
modified argument is presented in the first part of 1922 and its strategic point is
made explicit there:

Poincaré’s objection, claiming that the principle of complete induction cannot be proved but by

complete induction, has been refuted by my theory.

In the second part of 1922 the theory is expanded to include an appropriate
logical calculus; Hilbert emphasizes that “all formulas and statements of
arithmetic can be obtained in a formal way.” The editors of Hilbert's Gesammelte
Abhandlungen mention that “a schema for the introduction of functions by
recursion equations” has to be added, if this last goal is to be reached. As to the
- claimed consistency resultthey assert that it holds only if quantifiers are
excluded and the induction axiom is replaced by the induction rule. With these
modifications consistency is claimed, though not proved there, for a theory that

includes primitive recursive arithmetic. This work is the beginning of a



genuinely new direction, which is best articulated in Bernays 1922 and given its
principled formulation in Hilbert’s Leipzig talk: the instrumental character of
extensions that go beyond finitist mathematics is now emphasized.

The developments leading to a proof of the above result can be followed
in contemporaneous lecture notes; the proof is only sketched in Hilbert 1923, but
was given in detail during the winter semester 1922-23. The first step turns
linear proofs into trees so that any formula occurrence is used at most once as a
premise of an inference. That prepares the second step, namely, the elimination
of all (necessarﬂy free) variables through appropriate substitutions by a numeral.
In the third step the numerical value of the closed terms and the truth-value of
the formulas are determined. As all formulas in the final syntactic configuration
turn out to be true, an inconsistency cannot be proved. Primitive recursively
defined functions are admitted and treated in the argument. The rule of
induction for quantifier-free formulas is also added, though not incorporated
into the argument - it could be, as it was done already in 1921-22.

From a contemporary perspective the arguments reveal something very
important: as soon as a formal theory contains a class of finitist functions it is
necessary to appeal to a wider class of functions in this kind of consistency proof.
An evaluation function is needed to determine uniformly the numerical value of
terms, and such a function is no longer in the given class. As the formal system
considered in the above consistency proof includes primitive recursive
arithmetic, the consistency proof goes beyond the means available in primitive
recursive arithmetic. Finitist mathematics is consequently stronger than

primitive recursive arithmetic at this early stage of proof theory. Indeed, as we



will see, that assessment of the relative strength is clearly sustained throughout
the development reported in this essay.
2.3 Quantifiers and e-terms. The above proof theoretic considerations are
preliminary in that they concern a theory that is part of finitist mathematics and
thus need not be secured by a consistency proof. The truly expanding step
involves theories with quantifiers treated according to Hilbert's Ansatz; that is
indicated in Hilbert’'s 1922 and elaborated in 1923. There, Hilbert sketches how
quantifiers can be eliminated with the t-function, the dual of the e-operator,
which replaces the t-symbol in early 1923. The t-function associates with every
predicate A(a) a particular object tx.A(x) or simply TA; it satisfies the transfinite
axiom A(tA) — A(a) and allows the definition of the quantifiers:
(x) A(x) <= A(zA)

(Ex) A(x) < A(v (~A))
Hilbert extends the consistency argument to the “first and simplest case” that
goes beyond the finitist system and describes a particular process of eliminating
instances of the transfinite axiom (later also called epsilon axiom, epsilon formula or
critical formula).

The further development is quick and limited. Ackermann directly
continues in his thesis Hilbert’'s proof-theoretic work but modifies the
elimination procedure for epsilon terms. His paper, based on the thesis, was
submitted on 30 March 1924 and published in early 1925; it starts out in section II
with a concise review of Hilbert’s considerations. That section is entitled,
tellingly, “The consistency proof before the addition of the transfinite axioms.”

At first it was believed that Ackermann had established the consistency of



arithmetic and analysis; a note was added “bei der Korrektur” restricting the
result significantly. Von Neumann, whose paper Zur Hilbertschen Beweistheorie
was submitted on 29 July 1925, tried to clarify the extent of Ackermann’s result
and asserts (p. 46) that it covers Russell’s mathematics without the axiom of
reducibility or Weyl's system in his book Das Kontinuum. In his Bologna talk of
1928, Hilbert stated, quite in line with von Neumann’s observation, that the
consistency of full number theory had been secured by the proofs of Ackermann
and von Neumann; according to Bernays in his preface to the second volume that
belief was sustained until 1930. (As a parenthetical remark indicating the depth
of Dedekind’s influence we mention that Hilbert formulated as Problem I of his
Bologna talk the consistency of the e-axioms for function variables and
commented later: “The solution of problem I justifies also Dedekind’s ingenious
considerations in his essay Was sind und was sollen die Zahlen?”)

As we know now and as was recognized in 1931, Ackermann and von
Neumann had established only the consistency of arithmetic with quantifier-free
induction. In late 1933 Godel attributed the most far-reaching partial result in
the pursuit of Hilbert’s program still to Herbrand. Herbrand had extended in his
1931 the Ackermann/von Neumann result by allowing a larger class of finitist
functions that included, in particular, the non-primitive recursive Ackermann
function. By then, Herbrand knew of Gddel’s incompleteness theorems and
agreed with von Neumann’s related assertion: “If there is a finitist consistency
proof at all, then it can be formalized. Thus, Gédel’s proof implies the
impossibility of a consistency proof.” - The historical development as sketched
above is actually reflected in the structure of Grundlagen der Mathematik, whose

systematic metamathematical content is to be described in the next two sections.



3. The First Volume

According to the preface of this volume, a presentation of proof theory had
almost been completed, when the publication of papers by Herbrand and Gédel
in 1931 produced a deeply changed situation for proof theory. This resulted in
an extension of the scope of the work and its division into two volumes. The
volumes were completed in early 1934 and early 1939; though both volumes use
much material from joint work in the 1920s, the actual writing of the volumes
was done by Bernays.

Volume I consists of eight chapters that can be divided roughly into three
parts: chapters 1 and 2 introduce the central foundational issues, chapters 3 to 5
develop systematically the logical framework of first-order logic (with identity)
and chapters 6 to 8 investigate the consistency problem ahd other
metamathematical questions for a variety of (sub-) systems of number theory.
Volume [ focuses on the development of proof theory without use of the €-
operator.
3.1 Existential axiomatics. Chapter 1 begins with a general discussion of
axiomatics, at the center of which is a distinction between contentual and formal
axiomatic theories. This distinction occurs under different formulations
throughout Hilbert and Bernays’ writings. Contentual axiomatic theories
(examples of which include Euclid's geometry, Newton's mechanics and
Clausius” thermodynamics) draw on experience for the introduction of their
fundamental concepts and basic principles, which are understood contentually.
Formal axiomatic theories (such as Hilbert’s axiomatization of geometry), by
contrast, abstract away such intuitive content; they begin with the assumption of

a fixed system of things (or several such systems), which is delimited from the
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outset and constitutes a “domain of individuals for all predicates from which the
statements of the theory are built up.” (p. 2) The assumption of the existence of
such a domain of individuals constitutes an “idealizing assumption that joins the
assumptions formulated in the axioms.” (p. 3) Hilbert and Bernays elsewhere
refer to this approach as existential axiomatics. While they clearly consider formal
axiomatics to be a sharpening of contentual axiomatics, they nonetheless are
quite explicit that these two types of axiomatics complement each other and are
both necessary.

Through a general discussion of the consistency problem for formal
axiomatic theories, they are led to conclude that the consistency of a formal
axiomatic theory with a finite domain can be established by the exhibition of a
model satisfying that system; however, one cannot proceed in this fashion for
formal axiomatic theories with infinite domains. Consistency proofs for such
theories present a special problem, because “reference to non-mathematical
objects cannot settle the question whether an infinite manifold exists; the
question must be solved within mathematics itself.” (p. 17) One must treat, they
argue, the consistency problem for a formal axiomatic theory F with an infinite
domain as a logical problem. This involves: (i) the formalization of principles of
logical reasoning for F, and (ii) a proof that from F one cannot derive (using these
principles) both a formula and its negation. In short, one must treat the
consistency problem from a proof theoretic perspective.

Such a proof need not be given individually for each F. Instead, one need
orﬂy carry out such a proof for some axiom system F that: (1) has a structure that
is sufficiently surveyable to make a consistency proof for the system plausible,

and (2) has a rich enough structure so that by assuming the existence of a system
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S of things and relations satisfying F, one can derive the satisfiability of axiom
systems for the branches of physics and geometry. The satisfiability of an axiom
sYstem from those subjects is to be accomplished by representing its objects by
individuals (or complexes of individuals) of S and its basic relationships by
predicates constructed from those of S by logical operations. Hilbert and
Bernays identify arithmetic (including number theory and analysis) as a
candidate for such an F.

3.2 Finitist considerations. For such a consistency argument to be foundationally
significant, it must avoid the idealizing existence assumptions made by formal
axiomatic theories. But if a proof theoretic justification of arithmetic by
elementary means should be possible, might it not be possible to give a direct
development of arithmetic free from non-elementary assumptions (and thus not
requiring any additional foundational justification)?

The answer to this question involves elementary presentations of parts of
number theory and formal algebra; these presentations simultaneously serve to
introduce the finitist standpoint. The finitist deliberations take here their purest
form, i.e. the form of “thought experiments involving objects assumed to be
concretely given.” (p. 20) The word finitist is intended to convey the idea that a
consideration, a claim or definition respects that objects are to be representable,
in principle, and that processes are to be executable, in principle. (p. 32)

Having given finitist presentations of elementary number theory and
formal algebra, Hilbert and Bernays remark that one cannot obtain a direct,
elementary justification for all of mathematics, because already in number theory
and analysis one uses non-finitist principles. While it is conceivable one could

circumvent the use of such principles in number theory (where one only assumes
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the existence of the domain of integers), the case is different for analysis. There
one assumes in addition the existence of real numbers, i.e. infinite sets of
integers, and applies the principle of the excluded middle also to these extended
domains.

Thus one is led back to the strategy of proceeding in an indirect fashion,
i.e.,, of using proof theory as a tool to secure the consistency of mathematics. As
part of this strategy, Hilbert and Bernays adopt the methodological requirement
that proof theory be finitist. This requirement ensures that the sought after
consistency proof for arithmetic will avoid making idealizing existential
assumptions which, after all, are in need of justification. This requirement that
proof theory be finitist is relaxed only at the end of the second volume when
“extensions of the methodological framework of proof theory” are considered.

The first stage of this endeavor, the formulation of an appropriate logical
formalism, occupies chapters 3 through 5. The logical systems they develop are
so close to contemporary ones that we don’t discuss them in detail; they can
actually be traced back to the lectures given in 1917/1918 and are presented
already in Hilbert and Ackermann 1928. The systematic development of logical
formalisms is accompanied by their proof theoretic investigation. For instance,
these chapters contain a number of normal form results as well as a proof of the
completeness of the monadic predicate calculus with identity.
3.3 Consistency proofs. The second stage (in chapters 6 and 7) involves the
formulation and investigation of sub-systems of number theory, which can be
arranged into two groups. The first group of systems consists of weak fragments
of arithmetic containing first-order quantification but few, if any, function

symbols. These formalisms extend the predicate calculus with equality by
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mathematical axioms for 0, successor and <; some of them also involve
quantifier-free induction. Hilbert and Bernays explore relations between them
and establish independence, as well as consistency results. The main technique
for giving consistency proofs is that discussed in section 1.2. However, since the
formalisms contain quantifiers, an additional procedure is required here, namely
a reduction procedure that assigns quantifier-free formulas, reducts acting as
witnesses, to formulas containing quantifiers. The method underlying this
procedure is due to Herbrand and Presburger. Additionally, the procedure for
the replacement of free variables now must also handle free formula variables.

A further difference is that the consistency results are inferred from more
general results involving the notion of verifiability, which is an extension of the
notion of truth to certain formulas containing free variables, bound variables,
and recursively defined function signs. More precisely, letting A be a formula of
the formalism F: (i) if A is a numeric formula (i.e. if it is composed of equalities
and inequalities between numerals by means of sentential connectives), it is
verifiable if it is true; (ii) if A contains free numeric variables (but no formula
variables or bound variables), it is verifiable if one can show by finitist means
that the substitution of arbitrary numerals for variables (followed by the
evaluation of all function-expressions and their replacement through their
numerical values) yields a true numeric formula; (iii) if A contains bound
variables but no formula variables, it is verifiable if its reduct is verifiable
(according to (i) and (ii)). In order to establish the consistency of a formalism F,
one proves now that every formula not containing formula variables is verifiable,
if it is derivable in F. Since 0 = 0 is not verifiable, it is not derivable in F; it

follows that F is consistent.
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The second group of subsystems of number theory contains formalisms
arising from the elementary calculus with free variables (the quantifier free
fragment of the predicate calculus) through the addition of funcfions defined by
primitive recursion. Hilbert and Bernays start chapter 7 with a discussion of the
formalization of the principle of definition by recursion. They take the simplest
schema of recursion to be

fa, ...,k 0)=alg, ... k),
fa,....k,n)=bla, ..., knfa ..k n«n), ;
where a and b denote previously defined functions and where 4, ..., k, n are
numerical variables. After discussing this definitional principle, they prove a
General Consistency Theorem:

Let F be a formalism extending the elementary calculus with free variables by verifiable axioms (that may
contain recursively defined functions whose defining equations are taken as axioms) and the schema of

quantifier free induction, then every derivable formula of F is verifiable.

They explicitly take this theorem to establish the consistency of a number of
formalisms including that of recursive number theory, which they develop at
length in order to illustrate the strength of recursive definitions. As their notion
of recursive number theory is equivalent to primitive recursive arithmetic, finitist
mathematics here goes beyond primitive recursive arithmetic. Following this
development they discuss formalisms arising from the extension of the recursion
and induction schemas and remark that their previous consistency results are
easily extended to these systems as well; these remarks push the bounds of
finitist mathematics still further.

3.4 Full number theory. The third stage of the development carried out in the

first volume occurs towards the end of chapter 7 and in chapter 8. Here one finds
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a third group of formalisms that are equivalent to full Peano Arithmetic. The
first of these is the formalism of the axiom system (Z); call this formalism Z.
When arriving at Z, Hilbert and Bernays comment that the techniques used in
their previous consistency proofs for fragments of number theory cannot be
generalized to Z. The problem is that any reduction procedure for Z would
provide a decision procedure for Z and thus would allow one to solve all
problems of number theory. They leave the possibility of such a procedure as an
open problem (whose solution, if it exists, is a long way off) and focus on
showing that Z‘provides the means for the formalization of full number theory.

With this end in mind, Hilbert and Bernays prove in chapter 8 that all
recursive functions are representable in Z. This proof involves establishing three
separate claims: (1) that the least number operator u can be explicitly defined in
terms of Russell and Whitehead’s -symbol; (2) that any recursive definition (a
notion that they leave unanalyzed) can be explicitly defined in Z, (i.e. Z extended
by defining axioms for the p-operator) ; (3) that the addition of the -rule to Z is a
conservative extension of Z. After the discussion of some additional results, such
as the general eliminability of function symbols using predicate symbols, the first
volume concludes with the remark that the above results entail the consistency of
Z, relative to that of Z, but that none of the results or methods considered so far
suffice to show that Z is consistent.

4. The Second Volume

The second volume picks up where the first left off. It presents in chapters 1 and
2 Hilbert’s proof theoretic “Ansitze” based on the ¢-symbol as well as related

consistency proofs; this is the first main topic. The methods used there open a
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simple approach to Herbrand’s theorem, which is at the center of chapter 3. The
discussion of the decision problem at the end of that chapter leads, after a
thorough discussion of the “method of the arithmetization of metamathematics,”
in the next chapter to a proof theoretic sharpening of Godel’s completeness
theorem. The remainder of the volume is devoted to the second main topic, the
examination of the fact, “which is the basis for the necessity to expand the frame
of the contentual inference methods, which are admitted for proof theory,
beyond the earlier delimitation of the ‘finitist standpoint’.” Of course, Godel’s
incompleteness theorems are at the center of that discussion.

4.1 Limited results. The consistency proofs in chapter 7.a) of the first volume
were given for quantifier-free systems. Now these theories are embedded in the
system of full predicate logic together with the e-axioms, which have the form
A(a)—A(e,.A(x)); the e-terms ¢, A(x) represent individuals having the property
expressed by A(a), if the latter holds of any individual at all. The crucial task is
to eliminate all references to bound variables from proofs of theorems that do not
contain them; axioms used in these proofs must not contain bound variables
either. In the formulation of Hilbert and Bernays (p. 33), the consistency of a
system of proper axioms relative to the predicate calculus together with the e-
axioms is to be reduced to the consistency of the system relative to the
elementary calculus (with free variables). The consistency of the latter system is
recognized on account of a suitable finitist interpretation. Thus, Hilbert and
Bernays emphasize (pp. 12-3) that operating with the e~symbol can be viewed as
“merely an auxiliary calculus, which is of considerable advantage for many

metamathematical considerations.”
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In the framework of the extended calculus, bound Vériables can be seen to
be associated really only with e-terms, as the quantifiers can be defined in a way
dual to that shown earlier for the t-symbol. The initial elimination result is the
First e-Theorem:

If the axioms Ay, ..., Ay and the conclusion of a proof do not contain bound individual variables or (free)

formula variables, then all bound variables can be eliminated from the proof.

The argument can be extended to cover proofs of purely existential formulas, but
the formal proofs yield then as their conclusion a suitable disjunction of instances
of the existential formula. Based on this extension Hilbert and Bernays prove

their Consistency Theorem:

If the axioms Ay, ..., A, are verifiable, then (i) any provable formula containing at most free individual
variables is verifiable, and (ii) for any provable, purely existential formula (Ex;) ... (Ex,) A(x,, ..., x,)
(with only the variables shown) there are variable-free terms t,, ..., t, such that A(t,, ... , t,) is true.

This theorem is applied to establish the consistency (i) of Euclidean and Non-
Euclidean geometry without continuity assumptions in section 1.4, and (ii) of
arithmetic with recursive definitions, but only quantifier-free induction in
sections 2.1 and 2.2. In essence then, the consistency theorem from Herbrand 1931
has been reestablished in a subtly more general way, as is emphasized on p. 52:
Hilbert and Bernays allow the introduction of a larger class of recursive
functions. We can put the result also in a different historical context and see that
the consistency proof of 1923 for the quantifier-free system of primitive recursive
arithmetic has been extended to cover that system’s expansion by full classical
quantification theory.

The remainder of chapter 2 discusses the difficulty of extending the

elimination procedure (in the proof of the first e-theorem) to a system with full
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induction and examines Hilbert’s original Ansatz for eliminating e-symbols. (As
to the character of the original and the later version of the elimination method
and Ackermann’s work see pp. 21, 29, 92ff, the note on p. 121, as well as
Bernays’s preface.) The next two chapters investigate the formalism for predicate
logic, beginning in chapter 3 with a proof of the Second e-Theorem:

If the axioms and the conclusion of a proof (in predicate logic with identity) do not contain e-symbols, then
all e-symbols can be eliminated from the proof.

Then Herbrand’s theorem is obtained as well as a variety of criteria for the
refutability of formulas in predicate logic; proofs of the Lowenheim-Skolem
theorem and of Gédel’s completeness theorem are also given. These
considerations are used to establish results concerning the decision problem, and
solvable cases as well as reduction classes are discussed. In chapter 4 Godel’s
method of the “arithmetization of metamathematics” is presented in great detail
and applied to obtain a fully formalized proof of the completeness theorem.
Here is one.standard formulation of the completeness theorem:
consistency of an axiom system relative to the calculus of predicate logic
coincides with satisfiability of the system by an arithmetic model. The
formalized proof is intended to establish a kind of finitist equivalent (p. 205) to a
consequence of this formulation, namely, that the consistency relative to the
predicate calculus guarantees consistency in an open contentual sense (“im
unbegrenzten inhaltlichen Sinne”). The finitist equivalent is formulated (on p.
253) in terms of irrefutability roughly as follows: if a formula is irrefutable in
predicate logic, then it remains irrefutable in “every consistent number theoretic
formalism,” i.e., in every formalism that is consistent and remains consistent

when the axioms of Z, and possibly also verifiable formulas are added. That fact
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can be interpreted as expressing a deductive closure of the predicate calculus,
but obviously only if Z, is consistent. Thus, there is an additional reason for
establishing the consistency of this number theoretic formalism.

4.2 Incompleteness. The discussion of Gédel’s incompleteness theorems begins
with a thorough investigation of semantic paradoxes. However, this
investigation does not try to “solve” the paradoxes in the case of natural
languages, but focuses on the question under what conditions analogous
situations can occur in the case of formalized languages. These conditions are
formulated quasi-axiomatically for general deductive formalisms F taking for
granted that there is a bijection between the expressions of F and natural
numbers, a “Gédel-numbering.” The formalism F and the numbering are
required to satisfy roughly two representability conditions: R1) primitive recursive
arithmetic is “contained in” F, and R2) the syntactic properties and relations of
F’s expressions, as well as the processes that can be carried out on such
expressions, are given by primitive recursive predicates and functions.

For the consideration of the first incompleteness theorem the second
representability condition is made more specific. It now requires that the
substitution function (yielding the number of the expression obtained from an
expression with number k, when every occurrence of the number variable a is
replaced by a numeral 1) is given primitive recursively by a binary function s(k,1)
and the proof predicate by a binary relation B(m,n) (holding when m is the number
of a sequence of formulas constituting an F-derivation of the formula with
number n). Consider, as Godel did, the formula ~B(m,s(a,a)); according to the
first representability condition this is a formula of the formalism F and has a

number, say p. Because of the defining property of s(k,1), the value of s(p,p) is
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then the number q of the formula ~B(m,s(p,p)). The equation s(p,p)=q is
provable in F; thus, ~B(m,s(p,p)) is actually equivalent to ~B(m,q) and expresses
that “the formula with number q is not provable in F.” As q is the number of
~B(m,s(p,p)), this formula consequently expresses (via the equivalence) its own
underivability. The argument adapted from that for the liar paradox leads, from
the assumption that this formula is provable, directly to a contradiction in F. But
instead of encountering‘ a paradox, we infer now that the formula is not
provable, if the formalism F is consistent.

Hilbert and Bernays discuss — following Godel and assuming the w-
consistency of F — the unprovability of the sentence ~(x)~B(m,q). Then they
establish the Rosser version of the first incompleteness theorem, i.e., the
independence of a formula R from F assuming just F’s consistency. Thus, a
“sharpened version” of the theorem can be formulated for deductive formalisms

satisfying certain conditions:

One can always determine a unary primitive recursive function f, such the equation f{m)=0 is not provable
in F, while for each numeral 1 the equation f(1)=0 is true and provable in F; neither the formula (x)f(x)=0

nor its negation is provable in F. (p. 279)

This sharpened version of the theorem asserts that every sufficiently expressive,
sharply delimited, and consistent formalism is deductively incomplete. An
important consequence of this result is discussed in section 5.1.

4.3 Unprovability of consistency. For a formalism F that is consistent and
satisfies the restrictive conditions, the proof of the first incompleteness theorem
shows the formula ~B(m,q) to be unprovable. However, it also shows that the
sentence ~B(m,q) holds and is provable in F, for each numeral m. The second

incompleteness theorem is obtained by formalizing these considerations, i.e. by
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proving in F the formula ~B(m,q) from the formal expression C of F’s
consistency. That is possible, however, only if F satisfies certain additional
conditions, the so-called derivability conditions. Hilbert and Bernays conclude
immediately “in case the formalism F is consistent no formalized proof of this
consistency, i.e. no derivation of that formula C, can exist in F.” (p. 284)

The formalized argument makes use of the representability conditions R1)
and R2), where the second condition now requires also that there is a unary
primitive recursive function e, which when applied to the number n of a formula
yields as its value the number of the negation of the formula. These then are the
derivability conditions: D1) If there is a derivation of a formula with number 1
from a formula with number k, then the formula (Ex)B(x, k) = (Ex)B(x,1) is
provable in F; D2) The formula (Ex)B(x,e(k)) — (Ex)B(x,e(s(k,1))) is provable in F;
D3) If f(m) is a primitive recursive term with m as its only variable and if r is the
number of the equation f(a)=0, then the formula f(m)=0 — (Ex)B(x,s(r,m)) is
provable in F. Consistency is formally expressed by (Ex)B(x,n) — ~(Ex)B(x,e(n));
starting with that assumption, the formula ~B(m,q) is obtained in F by a rather
direct argument on pp. 286-8.

There are two brief remarks with which we want to complement this
metamathematical discussion of the incompleteness theorems. The first simply states that
verifying the representability conditions and the derivability conditions is the central
mathematical work that has to be done; Hilbert and Bernays accomplish this for the
formalism Z, (starting on p. 293) and for Z (beginning on p. 324). Thus, the second
volume of Grundlagen der Mathematik contains the first full argument for the second

incompleteness theorem; after all, Godel’s paper contains only a minimal sketch of a
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proof. However, it has to added — and that is the second brief remark - that the
considerations are not fully satisfactory for a general formulation of the theorems, as
there is no argument given why deductive formalisms should satisfy the particular
restrictive conditions on their syntax. This added observation points to one of the general
methodological issues discussed next.
5. Philosophical and Mathematical Issues

The existential formal axiomatics that emerged in the second half of the 19
century and found its remarkable expression in Hilbert's Grundlagen der
Geometrie constituted the real pressing issue for the various Hilbert programs
during the period from 1899 to 1934, the date of the publication of the first
volume of Grundlagen der Mathematik. The finitist consistency program that began
to be pursued in 1922 is the intellectual thread holding the investigations in both
volumes together. The general programmatic direction was formulated clearly
in the first volume and presented above in section 2.1. The ultimate goal of proof
theoretic investigations, as Hilbert formulated it in the preface to volume I, is to
recognize the usual methods of mathematics, without exception, as consistent.
Hilbert continued, “With respect to this goal I would like to emphasize the
following: the view, which temporarily arose and maintained that certain recent
results of Godel imply the infeasibility of my program, has been shown to be
erroneous.” How is the program affected by those results? Is it indeed the case,
as Hilbert expressed it also in 1934, that the Gédel theorems just force proof
theorists to exploit the finitist standpoint in a sharper way?

5.1 Issue of completeness. The second question is raised prima facie only

through the second incompleteness theorem. However, Hilbert and Bernays
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discuss also the effect of the first incompleteness theorem and ask quite explicitly
(p- 280), whether the deductive completeness of formalisms is a necessary feature
for the consistency program to make sense. They touched on this very issue
already in pre-Godel publications, Hilbert in his Bologna Lecture of 1928 and
Bernays in his penetrating article 1930. Hilbert formulated in his lecture the
question of the syntactic completeness for number theory and analysis as
Problem III; he concluded the discussion by suggesting that “in héheren
Gebieten” (higher than number theory) it is thinkable that a system of axioms
could be consistently extended by a statement S, but also by its negation ~S; the
acceptance of one of the statements is then to be justified by “systematic
advantages (principle of the permanence of laws, possibilities of further
developments etc.).”

Hilbert conjectured that number theory is deductively complete. That is
reiterated in Bernays’ 1930 (p. 59) and followed by the remark that “the problem
of a real proof for this is completely unresolved.” The problem becomes even
more difficult, Bernays continues, when we consider systems for analysis or set
theory. However, this “Problematik” is not to be taken as an objection against

the standpoint presented:

We only have to realize that the [syntactic] formalism of statements and proofs we use to
represent our conceptions does not coincide with the [mathematical] formalism of the structure
we intend in our thinking. The [syntactic] formalism suffices to formulate our ideas of infinite
manifolds and to draw the logical consequences from them, but in general it [the syntactic

formalism] cannot combinatorially generate the manifold as it were out of itself. (p. 59)

That is also the central point in the general discussion of the first incompleteness

theorem (p. 280). Indeed, Hilbert and Bernays emphasize there that in
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formulating the problems and goals of proof theory they avoided from the very
beginning “to introduce the idea of a total system for mathematics with a
philosophically principled significance.” It suffices for their purposes to
characterize the actual systematic structure of analysis and set theory in such a
way that it provides an appropriate frame for (the reducibility of) the geometric
and physical disciplines.

From these reflective remarks it follows that the first incompleteness
theorem for the central formalisms F (of number theory, analysis, and set theory)
does not directly undermine Hilbert's program. It raises nevertheless in its
sharpened form a peculiar issue: any finitist consistency proof for F would yield
a finitist proof of a statement in récursive number theory - that is not provable in
F. Finitist methods would thus go beyond those of analysis and set theory, even
for the proof of number theoretic statements. This is a “paradoxical” situation, in
particular, as Hilbert and Bernays quite unambiguously state in the first volume
(p. 42), “finitist methods are included in the usual arithmetic.” Consequently,
even the first theorem forces us to address two general tasks, namely, (i) to
explore the extent of finitist methods, and (ii) to demarcate appropriately the
methodological standpoint for proof theory.

5.2 Extent of finitist methods. Tasks (i) and (ii) are usually associated with the
second incompleteness theorem, which, as emphasized at the end of section 4.3,
allows us to infer directly and sharply that a finitist consistency proof for a
formalism F (satisfying the representability and derivability conditions) cannot
be carried out in F. Hilbert and Bernays explore the extent of finitist methods in
chapter 5.a) by first trying to answer the question, in which formalism their

various finitist investigations can actually be carried out. The immediate claim
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(p. 340) is that most considerations can be formalized, perhaps with a great deal
of effort, in primitive recursive arithmetic. But then they assert: “At various
places this formalism is admittedly no lénger sufficient for the desired
formalization. However, in each of these cases the formalization is possible in
Z,” They point to the more general recursion principles from chapter 7 of the
first volume as an example of “procedures of finitist mathematics” that cannot be
captured in primitive recursive arithmetic, but can be formalized in Z,.

In the remainder of chapter 5.3.a) they discuss “certain other typical
cases,” in which the boundaries of primitive recursive arithmetic are too narrow
to allow a formalization of their prior finitist investigations. There is, first of all,
the issue of an evaluation function (p. 341) that is needed for the consistency
proof of primitive recursive arithmetic (already in volume I) but cannot be
defined by primitive recursion. Secondly, there is the general concept of a
calculable function (p. 342); that concept is used (p. 189) to formulate a
finitistically sharpened notion of satisfiability, i.e. effective satisfiability, in finitist
treatments of solvable cases of the decision problem. Thirdly, they discuss (p.
344) the principle of induction for universally quantified formulas used in
consistency proofs. The issue surrounding this principle is settled
metamathematically, as we now know, by later proof theoretic work: the system
of elementary number theory with this induction principle is conservative over
primitive recursive arithmetic.

As to (ii), some remarks concerning supplement II are relevant in the
above context, as the notion of a calculable function has to be sharpened in such

a way that it can be formalized. The presentation in that supplement of the
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negative solution of the decision problem is preceded by a conceptual analysis of
the concept “reckonable function”, i.e. of a function whose values can be
calculated according to rules. The latter rather vague notion is sharpened, in a
way that is methodologically very similar to the analysis of the incompleteness
theorems, namely by formulating recursiveness conditions for deductive
formalisms that allow equational reasoning. The central condition requires the
proof predicate to be primitive recursive. It is then shown that the functions
calculable in formalisms satisfying the recursiveness conditions are exactly the
general recursive ones. The latter notion can be defined in the language of
number theory as is necessary for the formalization in (ii). Though the
conceptual analysis is not fully satisfactory for the reason mentioned in section
4.3, it is nevertheless a major and concluding step in the analysis of effectively
calculable functions as pursued in the mid-1930s by Go6del, Church, Kleene, and
others.

5.3 Beyond finitism? The examination of their own proof theoretic practice
leads Hilbert and Bernays to the conclusion that some considerations require
means that go beyond primitive recursive arithmetic, but can be formally
captured in Z,. It is at exactly this point that the second incompleteness theorem
provides, as the title of Chapter 5 states, the “reason for extending the
methodological frame for proof theory.” Already on p. 253, as a transition from
Chapter 4 to Chapter 5, Hilbert and Bernays state specifically that consequences
of the theorem force us to view the domain of the contentual inference methods
used for the investigations of proof theory more broadly “than it corresponds to

our development of the finitist standpoint so far.”



27

The question is, whether there are any methods that can still be called
properly “finitist” and yet go beyond Z,. Hilbert and Bernays argue that this is
not a precise question, as “finitist” is not a sharply delimited notion, but rather
indicates methodological guidelines that enable us to recognize some -
considerations as definitely finitist and others as definitely non-finitist. The
limits of finitist considerations are to be “loosened” (p. 348), and two possibilities
of such loosenings are considered that are quickly seen to be “conservative.”
Which further loosenings are “admissible, if we want to adhere to the
fundamental tendencies of proof theory?” Against this background two then
recent results are examined: the reduction of classical arithmetic Z to the system
Gof arithmetic with just minimal logic, and Gentzen’s consistency proof for a
version of @(and thus of Z) using a special form of transfinite induction.

The reductive result Hilbert and Bernays formulate is a slightly stronger
one than that obtained by Gédel and, independently, by Gentzen. The proof
showing that Z is consistent relative to @is an elementary finitist one. Thus, the
obstacle for obtaining a finitist consistency proof for Z does not lie in the fact that
it contains the typically non-finitist logical principles like tertium non datur! The
obstacle appears already when one tries to give a finitist consistency proof for ¢
The consistency of Z would be established (p. 357) on the basis of any
assumptions, “which suffice to give a verifying interpretation of the restricted
formalism.” Such a contentual verification, based on interpretations of
Kolmogoroff and Heyting, is then examined with the conclusion that it involves

the intuitionistic understanding of negation as absurdity.
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The question is raised, whether - in a proof of the consistency of Z - the
systematic use of absurdity could be avoided, as well as the appeal to an
interpretation of the formalism (in contrast to its direct proof theoretic
examination). It is claimed that Gentzen’s consistency proof addresses both
these issues. After a thorough discussion of the details of the system of ordinal
notation and the (justification of the) principle of transfinite induction, but only
the briefest indication of the structure of Gentzen’s proof, the main body of the
book concludes with some extremely general remarks about the significance of
Gentzen’s proof: it provides a perspective for the proof theoretic investigation
also of stronger formalisms, when one clearly has to countenance the use of
larger and larger ordinals. The volume concludes with the sentence: “If this
perspective should prove its value, then Gentzen'’s consistency proof would open
a new phase of proof theory.” In this way, it seems, Bernays sees Gentzen’s
approach as overcoming “the temporary fiasco of proof theory” he discussed in
the introduction to volume II and attributed to “... exaggerated methodological
demands put on the theory.”

No explicit final and definitive judgment on the (non-) finitist character of
these two consistency proofs is actually articulated in the book. However, in the
first volume (p. 43), intuitionism is viewed as a proper extension of finitist
mathematics. That view is also expressed in contemporaneous papers by
Bernays and in many later comments, perhaps most dramatically in his article
1967 on Hilbert, where (on p. 502) the above relative consistency proof for Z is
seen as the reason for the recognition “that intuitionistic reasoning is not
identical with finitist reasoning, contrary to the prevailing views at the time.” As

to Gentzen’s consistency proof, Bernays states in the introduction to the second



29

edition of volume II that the transfinite induction principle used in it is “a non-
finitist tool.”

5.4 Demarcation. In the introduction of the first edition and the detailed
discussion there is perhaps an ambiguity, whether the extension of the finitist
standpoint necessitated by the incompleteness theorems essentially still is the
finitist standpoint as articulated in the first two chapters of volume I or whether
it is a proper extension compatible with the broader strategic considerations
underlying proof theory. We think the ambiguity should be resolved in the latter
sense; after all, the considerations in Chapter 5.5 come under the heading
“Transcending the former methodological standpoint of proof theory. —
Consistency proofs for the full number theoretic formalism.”

However, there is not even a broad demarcation of a new, wider
methodological standpoint for proof theory; a reason for this lack is perhaps
implicit in the remarks connecting the consistency proof for Z relative to
intuitionistic arithmetic with Gentzen's consistency proof (p. 360). It is claimed,
first of all, that it is “unsatisfactory from the standpoint of proof fheory” to have
only a consistency proof for Z that “rests mainly on an interpretation of a
formalism.” It is observed, secondly, that the only method of going beyond the
formalism Z has been the formulation of truth definitions: a classical truth
definition is given for Z on pp. 329 - 340, and the formalization of the consistency
proof based on an intuitionistic interpretation would amount to using a truth
definition. Thirdly and finally, it isv argued that a consistency proof is desirable
that rests on “the direct treatment of the formalism itself;” that is seen in analogy
for obtaining the consistency of primitive recursive arithmetic, where Hilbert and

Bernays were not satisfied with the possibility of a finitist interpretation, but
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rather convinced themselves of the consistency by specific proof theoretic
methods. Where in this discussion is even an opening for a broader
demarcation?
6. Concluding remarks

The free and open way in which Hilbert and Bernays joined in the 1920s a
number of different tendencies into a sharply focused program with a special
mathematical and philosophical perspective is remarkable. The program has
been transformed, in accord with the broad strategy uhderlying Hilbert's
proposal, to a general reductive one; here one tries to give consistency proofs for
strong classical theories relative to “appropriate constructive” ones. The
expanding development of proof theory is one effect of Hilbert's broad view on
foundational problems and of his sharply articulated questions. Another effect is
visible in the rich and varied results of Hilbert, Bernays, and other members of
the Hilbert School (Ackermann, Gentzen, Schiitte); finally, we have to consider
the stimulus his approach and questions provided to contemporaries outside the
school (von Neumann, Herbrand, Godel, Church, and Turing). Indeed, there is
no foundational enterprise with a more profound and far-reaching effect on the
emergence and development of mathematical logic. What Ackermann
formulated in his review of just the first volume, holds even more for the
complete two-volume work, namely, that it “is to be viewed in a line with the

great publications of Frege, Peano, and Russell-Whitehead.”
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Table 1. Summary by Sections of Grundlagen der Mathematik (1934-1939).

Section; pages

‘Section title’

I.1; 19 ‘The consistency problem in axiomatics as a logical decision
problem.’

1.2;23 ‘Elementary number theory. - Finitist infererence and its
boarders.’

I.3; 23 ‘The formalization of logical inference I; the propositional
calculus.’

1.4, 79 ‘The formalization of logical inference II; the predicate
calculus.’

L5; 46 ‘Inclusion of identity. Completeness of the one-place predicate
calculus.’

1.6; 78 “The consistency of infinite domains of individuals. Beginnings
of number theory.’

L7;97 ‘Recursive definitions.’

1.8; 76 “The concept "that, which' and its eliminability.’

II.1; 48 ‘The method of elimination of bound variables by means of
Hilbert's e-symbol.’

I1.2; 82 ‘Proof theoretic investigation of number theory by means of
methods connected with the e-symbol.’

I1.3; 75 ‘Application of the e-symbol for the investigation of the logical
formalism.’

I1.4; 48 ‘The method of the arithmetization of metamathematics applied
to the predicate calculus.’

I1.5; 120 “The reason for extending of the methodological frame for proof

theory.’

II.Supplement I; 16

‘Overview of the predicate calculus and connected formalisms.'

II.Supplement II; 29

‘A sharpening of the concept of calculable function and
Church’s theorem on the decision problem.’

II. Supplement III; 58

‘On certain parts of the propositional calculus and their
deductive demarcation by means of schemata.’

II. Supplement IV; 44

‘Formalisms for the deductive development of analysis.’
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