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Abstract, Two young logicians, whose work had a dramatic impact on the direction of logic, exchanged
two letters in early 1931. Jacques Herbrand initiated the correspondence on 7 April and Kurt Godel
responded on 25 July, just two days before Herbrand died in a mountaineering accident. Herbrand’s letter
played a significant role in the development of computability theory. Godel asserted in his 1934 Princeton
Lectures and on later occasions that it suggested to him a crucial part of the definition of a general
recursive function. Understanding this role in detail is of great interest as the notion is absolutely central.
The full text of the letter had not been available until recently, and its content (as reported by Godel) was
not in accord with Herbrand’s contemporaneous published work. Together, the letters reflect broader
intellectual currents of the time: they are intimately linked to the discussion of the incompleteness theorems
and their potential impact on Hilbert’s Program.

Introduction. Two important papers in mathematical logic were published in 1931, one
by Jacques Herbrand in the Journal fiir reine und angewandte Mathematik and the other
by Kurt Godel in the Monatshefte fiir Mathematik und Physik. At age 25, Godel was
Herbrand’s elder by just two years. Their work dramatically impacted investigations in
mathematical logic, but also became central for theoretical computer science as that
subject evolved in the fifties and sixties. The specific techniques of resolution and
unification derive from ideas in Herbrand’s work, whereas the very notion of
computability in the form of general recursiveness was introduced in Godel’s work three
years later, with reference to Herbrand.

Herbrand’s 193 1-paper established the consistency of a fragment of arithmetic by
elementary meta-mathematical means. These means were chosen to be “finitist” in the
spirit of Hilbert’s Program, which Herbrand was pursuing. The program aimed to secure
or guarantee the internal coherence of modern mathematics. Finitist consistency proofs
for formal theories were the means to that end and Herbrand’s were the most far-reaching
that had been obtained at the time. Godel’s 1931-paper, in contrast, showed that
sufficiently strong formal theories, even for arithmetic, have two general features: they
are syntactically incomplete, and they cannot prove their own consistency. The first fact
is the First Incompleteness Theorem, the second the Second. The Second Theorem
points to limits of Hilbert’s consistency program, whereas the First shows that the totality
of arithmetic truths cannot be captured in formal theories.

Related to these papers are two letters, which were exchanged between Herbrand
and Godel in early 1931. The letters are linked to a wider discussion on the foundations

of mathematics that involved leading mathematicians, logicians, and philosophers, for



example Johann von Neumann, Hilbert’s collaborator Paul Bernays, and members of the
Vienna Circle such as Rudolf Carnap. The letters throw a distinctive light on this
discussion, as Herbrand and Gédel focus in a very open, non-ideological way on two
central issues: (i) the extent of finitist or, at the time synonymously, intuitionist methods
and (ii) the effect of the incompleteness theorems on Hilbert’s Program. For
contemporary readers of the letters there is a third issue: Gddel remarked in his 1934
Princeton Lectures and at later occasions that Herbrand had suggested to him a central
part of the definition of general recursiveness in “a private communication.” The
conceptually fascinating question is, (iii) what did Herbrand really suggest, and how did
his suggestion affect G6del’s definition?

There is a bit of mystery surrounding this private communication. Jean van
Heijenoort queried Godel in 1963 about his remark, in part because there was a
discrepancy between Godel’s report on Herbrand’s suggestion and Herbrand’s published
remarks on related issues. Godel responded that the suggestion had been communicated
to him in a letter of 1931, and that Herbrand had made it in exactly the form in which his
lecture notes presented it. But Godel was unable to find Herbrand’s letter among his
papers. John Dawson discovered the letter in the Gédel Nachlass in 1986, and it became
clear that Godel had misremembered.

It is often the case that particular documents reflect broader intellectual currents,
and that the analysis of such documents reveals central aspects vividly and in novel ways.
This observation certainly holds for these letters. The broader intellectual currents will
be sketched in Part 1, which is entitled Immediate Context: Incompleteness. Part 2
presents Herbrand’s Issue and is followed in Part 3 by Gddel’s Response(s). Part 4 looks
at the Future Impact: Computability. 1 try to draw an informative vignette that is

illuminated by a rich past and radiates into a complex future.

1. Immediate Context: Incompleteness. The sketch of the context has the structure of
concentric spheres with the letters at their center. The first sphere reflects Hilbert’s proof

theory that began to be pursued in a programmatically coherent form in 1922.



Consistency proofs were to be given for formal theories, in which mathematics can be
developed, and the proofs were to use only finitist means. The development of proof
theory was embedded in the loud foundational dispute of the 1920s between Hilbert’s
“Finitism,” Brouwer’s “Intuitionism,” and the “Logicism” that had been inspired by the
investigations of Frege, Russell, and Whitehead; this is the second sphere. The third
sphere represents the substance of the foundational dispute and reflects the intellectual
tensions between Dedekind and Kronecker, which are related to the emergence of set
theory in the second half of the 19" century. This emergence, in turn, is connected to a
new systematic self-understanding of mathematics and a thorough reexamination of its
role in the sciences; one can correctly speak of a transformation of classical mathematics
into a new subject of axiomatically formulated abstract theories.

The three outermost spheres can and will remain in the background, whereas the
innermost one has to be described more thoroughly. Before doing that, I want to make
one additional remark. Hilbert appears in all the spheres; he defends vigorously the
modern conception of mathematics and yet tries to mediate the Kronecker-Dedekind
tensions by his consistency program. In lectures and publications from 1922 and 1923,
he established the consistency of an elementary part of arithmetic. Ackermann and von
Neumann extended this result in 1924/25 but difficulties were encountered when it was
attempted to extend results further. These difficulties were first thought to be of a
“technical” mathematical sort, but instead were revealed by the incompleteness theorems
as “conceptual” philosophical ones.

Hilbert had initiated not only proof theoretic investigations, but also broader
meta-mathematical studies of logic in lectures as early as the winter term of 1917/18.
One interesting result, obtained in collaboration with Bernays, was the semantic
completeness of sentential logic. In his Bologna talk of 1928, Hilbert posed the semantic
completeness issue for full first-order logic as one in a list of problems. Gédel solved it
positively in his doctoral dissertation of 1929. Another problem, also formulated by
Hilbert in Bologna, concerned the syntactic completeness of first-order arithmetic and

Hilbert expected a positive result here as well. However, Godel obtained a negative



result in the summer of 1930. He reported it in late August to friends in Vienna and a
couple of weeks later, briefly and understatedly, during a roundtable discussion at a
conference in Kénigsberg. That’s where Godel’s and Herbrand’s paths were indirectly
linked.

Herbrand, too, was deeply influenced by Hilbert’s foundational enterprise and
wrote a thesis entitled Recherches sur la théorie de la démonstration, which he defended
on 11 June 1930. Its important main result is with us as Herbrand'’s Theorem. Herbrand
had developed strong interests in modern algebra, which was flourishing in Germany; he
actually spent the academic year 1930/31 there on a Rockefeller Scholarship.'! In his
final report to the Rockefeller Foundation, he wrote that his stay in Germany extended
from 20 October 1930 to the end of July 1931. Until the middle of May 1931 he was in
Berlin, then spent a month in Hamburg and the remaining time in Géttingen. In these
three cities he worked mainly with von Neumann, Artin, and Emmy Noether.
Concerning his stay in Berlin he went on to say: “In Berlin I have worked in particular
with Mr. von Neumann on questions in mathematical logic, and my research in that
subject will be presented in a paper to be published soon in the Journal fiir reine und
angewandte Mathematik.” The paper he alluded to is his 1931-paper, in which he
compared, as his friend Claude Chevalley ‘put it, his own results with those of Gédel, i.e.,
the incompleteness theorems. He had learned of the first theorem from von Neumann

shortly after his arrival in Berlin. In a letter of 3 December 1930, he wrote to Chevalley:

The mathematicians are a very strange bunch; during the last two weeks, whenever I have seen von
Neumann, we have been talking about a paper by a certain Gédel, who has produced very curious
functions; and all of this destroys some solidly anchored ideas.

This sentence opens the letter. Having sketched Godel's argument and reflected on the
result, Herbrand concluded the logical part of his letter by: “Excuse this long beginning;
but all of this has been haunting me, and by writing about it I exorcise it a little.”

How did von Neumann, in November of 1930, know of a result that was to be

published only in 1931? I alluded to an answer when I mentioned that Gédel reported on

! For the next academic year he intended to go to Princeton University, but he died in a mountaineering accident at La
Bérarde (Isére) on 27 July 1931.



his first incompleteness theorem at the Second Conference for Epistemology of the Exact
Sciences held from 5 to 7 September 1930 in Kénigsberg. On the very last day of the
conference, a roundtable discussion on the foundations of mathematics took place to
which Godel had been invited. Hans Hahn, Godel’s dissertation advisor, chaired the
discussion and its participants included Carnap, Heyting, and von Neumann. Toward the
end of the discussion, Gddel made brief remarks about the first incompleteness theorem.
This is the background for a more personal encounter with von Neumann in Konigsberg;

Wang reported Godel’s view about this encounter in his /981:

Von Neumann was very enthusiastic about the result and had a private discussion with Gédel. In this
discussion, von Neumann asked whether number-theoretical undecidable propositions could also be
constructed in view of the fact that the combinatorial objects can be mapped onto the integers and
expressed the belief that it could be done. In reply, Godel said, “Of course undecidable propositions about
integers could be so constructed, but they would contain concepts quite different from those occurring in
number theory like addition and multiplication.” Shortly afterward Godel, to his own astonishment,
succeeded in turning the undecidable proposition into a polynomial form preceded by quantifiers (over
natural numbers). At the same time but independently of this result, Godel also discovered his second
theorc;m to the effect that no consistency proof of a reasonably rich system can be formalized in the system
itself.

This makes clear that Godel did not yet have the second incompleteness theorem at the
time of the Konigsberg meeting; on 23 October 1930 Hahn presented, however, an
abstract containing its classical formulation to the Vienna Academy of Sciences. The full
text of Godel’s 1931-paper was submitted to the editors of Monatshefte on 17 November
1930. Three days later, von Neumann wrote to Gddel and characterized Goédel’s first
result as “the greatest logical discovery in a long time.” He went on to sketch a proof of
the second incompleteness theorem, at which he had arrived independently of Gédel.
Godel responded almost immediately, and von Neumann assured him in his next letter
that he would not publish on the subject “as you have established the theorem on the
unprovability of consistency as a natural continuation and deepening of your earlier
results.” However, there emerged a disagreement between Gddel and von Neumann on

how this theorem affects Hilbert’s finitist program.

2 Wang 1981, pp. 654-5. Parsons’ Introductory Note to the correspondence with Wang in Godel’s Collected Works vol.
V describes in section 3.2 the interaction between Godel and Wang on which this paper is based.



2. Herbrand’s issue. Godel insisted in his paper that the second incompleteness theorem

does not contradict Hilbert’s “formalist viewpoint:”

For this viewpoint presupposes only the existence of a consistency proof in which nothing but ﬁmtary
means of proof is used, and it 1s conceivable that there exist finitary proofs that cannot be expressed in the
formalism of P (or of M and A).’

Having received the galleys of Godel’s paper, von Neumann writes in a letter of 12

January 1931:

I absolutely disagree with your view on the formalizability of intuitionism. Certainly, for every formal
system there is, as you proved, another formal one that is (already in arithmetic and the lower functional
calculus) stronger. But that does not affect intuitionism at all.

Denoting first order number theory by A, analysis by M, and set theory by Z, von
Neumann continues:

Clearly, I cannot prove that every intuitionistically correct construction of arithmetic is formalizable in A
or M or even in Z -- for intuitionism is undefined and undefinable. But is it not a fact, that not a single
construction of the kind mentioned is known that cannot be formalized in A, and that no living logician is
* in the position of naming such [[a construction]]? Or am I wrong, and you know an effective intuitionistic
arithmetic construction whose formalization in A creates difficulties? If that, to my utmost surprise, should
be the case, then the formalization should work in M or Z!

Herbrand had sharpened this line of argument by the time he wrote to Godel on 7 April
1931. In the meantime he had discussed the incompleteness phenomena extensively with
von Neumann, and he had read the galleys of Gddel 1931, which Bernays had given to
him. On that very day, April 7, he also sent a note to Bernays and enclosed a copy of his
letter to Godel. In the note he first contrasts his consistency proof with that of

Ackermann, which he attributes mistakenly to Bernays:

In my arithmetic the axiom of complete induction is restricted, but one may use a variety of other functions
than those that are defined by simple recursion: in this direction, it seems to me, my theorem goes a little

farther than yours.4

He then formulates the central issue to Bernays as follows: “I also try to show in this
letter how your results can agree with these of Godle [sic].” This information puts

Herbrand’s remark to Hadamard (made in early 1931) into sharper focus.

Recent results (not mine) show that we can hardly go any further: it has been shown that the problem of
consistency of a theory containing all of arithmetic (for example, classical analysis) is a problem whose
solution is impossible. In fact, I am at the present time preparing an article in which I will explain the
relationships between these results and mine.

3 Gédel 1931, p. 197, in Collected Works, vol. I, p. 195. P is the version of the system of Principia Mathematica in
Godel s 1931 paper, M is the system of set theory introduced by von Neumann, and A is classical analysis.

Bemays in his letter to Godel of 20 April 1931, pointed out that Herbrand had misunderstood him in an earlier
discussion: he, Bernays, had not talked about a result of his, but rather about Ackermann's consistency proof.



It is quite clear that Herbrand's attempt to analyze the relationship between Godel's
theorems and ongoing proof theoretic work, including his own, prompted the specific
details in his letter to Gddel as well as in his paper.

At issue is the extent of finitist or, synonymously for Herbrand, intuitionist
methods and thus the reach of Hilbert’s consistency program. Herbrand’s letter has to be
understood (and Godel in his response quite clearly did) as giving a sustained argument
against G6del’s assertion that the second incompleteness theorem does not contradict
Hilbert’s “formalist viewpoint.” Herbrand introduces a number of systems for arithmetic,
all containing the axioms for predicate logic with identity and the Dedekind-Peano
axioms for zefo and successor. The systems are distinguished by the strength of the
induction principle and by the class F of finitist functions for which recursion equations
are available. The system with induction for all formulas and recursion equations for the
functions in F is denoted here by F; if induction is restricted to quantifier-free formulas, I
denote the resulting system by F*. The axioms for the elements fj, f,, f3, ... in F must

satisfy according to Herbrand the following conditions:
(1) The defining axioms for f; contain, besides fy,, only functions of lesser index.

(2) These axioms contain only constants and free variables.

(3) We must be able to show, by means of intuitionistic proofs, that with these axioms it is possible to
compute the value of the functions univocally for each specified system of values of their arguments.

As examples for classes F, Herbrand considers the set E; of addition and multiplication,
as well as the set E, of all primitive recursive functions. He asserts that many other
functions are definable by his “general schema,” in particular, the non-primitive recursive
Ackermann function. He also argues that one can construct by diagonalization a finitist
function that is not in E, if E satisfies axioms such that “one can always determine,
whether or not certain defining axioms are among these axioms.”

This fact of the open-endedness of any finitist presentation of the concept “finitist
function” is crucial for Herbrand’s conjecture that one cannot prove that all finitist
methods are formalizable in Principia Mathematica. But he claims that, as a matter of
fact, every finitist proof can be formalized in a system of the form F* with a suitable

class F that depends on the given proof and, thus, also in Principia Mathematica.



Conversely, he insists that every proof in the quantifier-free part of F* is finitist. He

summarizes his reflections by saying in the letter and with almost identical words in

1931:

It reinforces my conviction that it is impossible to prove that every intuitionistic proof is formalizable in
Russell’s system, but that a counterexample will never be found. There we shall perhaps be compelled to
adopt a kind of logical postulate.

What is the direct consequence of the second incompleteness theorem? — The reader may
recall that, under general conditions on a theory T, T proves the conditional (cony — G);
cony is the statement expressing the consistency of T, and G is the Godel sentence.’> G
states its own unprovability and is, by the first incompleteness theorem, not provable in
T. Consequently, G would be provable in T, as soon as a finitist consistency proof for T
could be formalized in T. That’s why the issue of the formalizability of finitist

considerations plays such an important role in this discussion.

3. Godel’s response(s). Herbrand’s conjectures and claims are much more detailed than
those von Neumann communicated to Gddel in his letters of November 1930 and January
1931. We know of Gédel’s response to von Neumann’s dicta not through letters from
Godel, but rather through the minutes of a meeting of the Schlick or Vienna Circle that
took place on 15 January 1931. According to these minutes, Godel viewed as
questionable the claim that the totality of all intuitionistically correct proofs is contained
in one formal system. That, he emphasized, is the weak spot in von Neumann’s
argumentation.®

When answering Herbrand’s letter, Godel makes more explicit his reasons for
questioning the formalizability of finitist considerations in a single formal system like
Principia Mathematica. He agrees with Herbrand on the indefinability of the concept
“finitist proof.” However, even if one accepts Herbrand’s very schematic presentation of
finitist methods and the claim that every finitist proof can be formalized in a system of

the form F*, the question remains “whether the intuitionistic proofs that are required in

* The general conditions on T include, of course, the representability conditions for the first theorem and the Hilbert-
Bernays derivability conditions for the second theorem.
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each case to justify the unicity of the recursion axioms are all formalizable in Principia

Mathematica.” He continues:

Clearly, 1 do not claim either that it is certain that some finitist proofs are not formalizable in Principia
Mathematica, even though intuitively I tend toward this assumption. In any case, a finitist proof not
formalizable in Principia Mathematica would have to be quite extraordinarily complicated, and on this
purely practical ground there is very little prospect of finding one; but that, in my opinion, does not alter
anything about the possibility in principle.

At this point, there is a stalemate between Herbrand’s “logical postulate” that no finitist
proof outside of Principia Mathematica will be found, and Gédel’s “possibility in
principle” that one might find such a proof.

By late December 1933 when he gave an invited lecture to the Mathematical
Association of America in Cambri‘dge (Massachusetts), Godel had changed his views
significantly. In the text for his lecture, Gddel 1933, he sharply distinguishes intuitionist
from finitist arguments, the latter constituting the most restrictive form of constructive
mathematics. He insists that the known finitist arguments given by “Hilbert and his
disciples” can all be carried out in a certain system A.” Proofs in A, he asserts, “can be
easily expressed in the system of classical analysis and even in the system of classical
arithmetic, and there are reasons for believing that this will hold for any proof which one
will ever be able to construct.” This observation and the second incompleteness theorem
imply, as sketched above, that classical arithmetic cannot be shown to be consistent by
finitist means. (The system A is similar to the quantifier-free part of Herbrand’s system
F*, except that the provable totality for functions in F is not mentioned. Godel’s reasons
for conjecturing that A contains all finitist arguments are not made explicit.)

Godel discusses then a theorem of Herbrand’s, which he considers to be the most
far-reaching among interesting partial results in the pursuit of Hilbert’s consistency

program. He does so, as if to answer the question “How do current consistency proofs

fare?” and formulates the theorem in this lucid and elegant way: “If we take a theory

¢ Godel did respond to von Neumann, but his letters seem to have been lost. The minutes are found in the Carnap
Archives of the University of Pittsburgh.

7 The restrictive characteristics of the system A are formulated on pp. 23 and 24 of 7933: and include the requirement
that notions have to be decidable and functions must be calculable. Gédel claims, that “such notions and functions can
always be defined by complete induction.” Definition by complete induction is to be understood as definition by
recursion, which is by no means restricted to primitive recursion. That is made explicit in section 9 of Godel’s 1934,
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which is constructive in the sense that each existence assertion made in the axioms is
covered by a construction, and if we add to this theory the non-constructive notion of
existence and all the logical rules concerning it, e.g., the law of excluded middle, we shall
never get into any contradiction.” The proof theoretic result mentioned in Herbrand’s
letter can be understood in just this way and foreshadows, of course, the central result of
Herbrand’s 1931. Godel conjectures that Herbrand’s method might be generalized, but
emphasizes that “for larger systems containing the whole of arithmetic or analysis the
situation is hopeless if you insist upon giving your proof for freedom from contradiction
by means of the system A.” As the system A is essentially the quantifier-free part of F*,
it is clear that Godel now takes Herbrand’s position concerning the impact of the second
theorem on Hilbert’s Program.

Nowhere in the correspondence does the issue of general computability arise.
Herbrand’s discussion, in particular, is solely trying to explore the limits of consistency
proofs that are imposed by the second theorem. Godel’s response focuses also on that
very topic. It seems that he subsequently developed a more critical perspective on the

very character and generality of his theorems.®

This perspective allowed him to see a
crucial open question and to consider Herbrand’s notion of a finitist function as a first

step towards an answer.

4. Future Impact: Computability. The crucial open question that remained in Godel’s
mind was this: For which formal theories do the incompleteness theorems hold? Just for
the systems PM, ZF, and “related systems”? What is the extension of “related system™?
For a fully satisfactory answer one needs a general and rigorous definition of “formal
theories.” Godel points to their central features in §1 of his Princeton Lectures by saying
that the rules of inference and the notions of formula and axiom have to be given

constructively, i.e.,

where “an example of a definition by induction with respect to two variables simultaneously” is discussed; an example
that defines a function “that is not in general recursive in the limited sense of §2,” i.e., not primitive recursive.

¥ How much the interaction with Church in 1933/34 contributed to this perspective, we can only speculate; see my
paper Sieg 1997.
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for each rule of inference there shall be a finite procedure for determining whether a given formula B is an
immediate consequence (by that rule) of given formulas A,, ... , Ay, and there shall be a finite procedure for
determining whether a given formula A is a meaningful formula or an axiom.

To a similar discussion of formal theories in the Cambridge Lecture he added the remark
that the rules of inference are purely formal, i.e., “refer only to the outward structure of
the formulas, not to their meaning, so that they could be applied by someone who knew
nothing about mathematics, or by a machine.”'°

Godel strove in his Princeton Lectures to make his results less dependent on
particular formalisms. That is indicated even by their title On undecidable propositions of
SJormal mathematical systems. He used, as he had done in his /931, primitive recursive
functions and relations to present syntax, viewing the primitive recursive definability of
formulas and proofs as a “precise condition, which in practice suffices as a substitute for
the unprecise requirement of §1 that the class of axioms and the relation of immediate
consequence be constructive.” A notion that would suffice in principle was needed,
however, and Godel attempted to arrive at a more general notion.

In his subsequent reflections, Godel focused on the “computability” of number
theoretic functions. He considers the fact that the value of a primitive recursive function

can be computed by a finite procedure for each set of arguments as an “important

property” and adds in note 3:

The converse seems to be true if, besides recursions according to the scheme (2) [i.e. primitive recursion as
given above], recursions of other forms (e.g., with respect to two variables simultaneously) are admitted.
This cannl(])t be proved, since the notion of finite computation is not defined, but it can serve as a heuristic
principle.

What other recursions might be admitted is discussed in the last section of the Notes
under the heading “general recursive functions.” Godel describes in it the proposal for
the definition of a general notion of recursive function that (he thought) had been

suggested to him by Herbrand:

If ¢ denotes an unknown function, and v, ... , Y« are known functions, and if the {'s and ¢ are substituted in
one another in the most general fashions and certain pairs of resulting expressions are equated, then, if the
resulting set of functional equations has one and only one solution for ¢, ¢ is a recursive function.

® Godel 1934, p. 346.

10 Gédel 1933, p. 45.

" Godel emphatically rejected in the sixties (in a letter to Martin Davis) that this formulation anticipates a form of
Church’s Thesis: he was not convinced that his notion of recursion was the most general one.
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Godel went on to make two restrictions on this definition. He required, first of all, that
the left-hand sides of the equations be in a standard form with ¢ as the outermost symbol
and, secondly, that “for each set of natural numbers k;, ... , k,, there shall be exactly one
and only one m such that ¢(ky, ..., kn) =m is a derived equation.” The rules that were
allowed in derivations are simple substitution and replacement rules.

We should distinguish with Gédel two novel features in this definition: first, the
precise specification of mechanical rules for deriving equations, i.e., for carrying out
numerical computations; second, the formulation of the regularity condition requiring
computable functions to be total, but without insisting on a (finitist) proof. In his letter to
van Heijenoort of 14 August 1964, Godel asserts, “it was exactly by specifying the rules
of computation that a mathematically workable and fruitful concept was obtained.”
When making this claim Gddel took for granted that Herbrand's suggestion had been
“formulated exactly as on page 26 of my lecture notes, i.e. without reference to
computability.” As was noticed earlier, Godel had to rely on his recollection, which, he
said, “is very distinct and was still very fresh in 1934.” On the evidence of Herbrand’s
letter, it is clear that Godel misremembered. This is not to suggest that Godel was wrong
in viewing the specification of computation rules as extremely important, but rather to
point to the absolutely crucial step he had taken, namely, to disassociate general recursive
functions from the epistemologically restricted notion of intuitionist proof in Herbrand’s
sense.

Later on, Gddel dropped the regularity condition altogether and emphasized, “that
the precise notion of mechanical procedures is broughf out clearly by Turing machines
producing partial rather than general recursive functions.” At this earlier historical
Juncture the introduction of the equational calculus with particular computation rules was
important for the mathematical development of recursion theory as well as for the
underlying conceptual motivation. It brought out clearly, what Herbrand — according to
Godel in his letter to van Heijenoort — had failed to see, namely “that the computation

(for all computable functions) proceeds by exactly the same rules.” Godel was right, for
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stronger reasons than he put forward, when he cautioned in the same letter that Herbrand

had foreshadowed, but not introduced, the notion of a general recursive function.'?

Concluding remarks. What impact the introduction of the notion of general recursive
function had on the development of computability theory is an equally fascinating story,
which leads to a very satisfying conceptual analysis; the issue of “what precisely is
finitism” is by contrast still open. The former issue was not obtained along Godelian
lines by generalizing recursions, but by a quite different approach due to Alan Turing
and, to some extent, Emil Post. They focused on symbolic processes underlying
numerical computations instead of those computations themselves. This led to the
foundations of theoretical and, via Turing’s universal machine, also of practical computer
science. Consequently, those foundations emerged from what were, at the time, quite
obscure quasi-philosophical issues.

The general moral is, of course, that broad foundational questions can inspire
concrete mathematical work, and that concrete mathematical work can call for
philosophical analysis. There can be an extremely fruitful, but also subtle and delicate
interplay between wide-open conceptual reflections and hard-nosed technical
investigations. All of this is necessary for arriving at balanced positions. The historical
evolution of the particular issues at hand confirms this and helps us to grasp their
complexity. We see, finally, three specific and important points drawn from that
evolution, listed in order of their increasing significance: (i) the Gédel-Herbrand notion
of general recursive function is really G6del’s; (ii) in the early 1930s finitist mathematics
was viewed as going significantly beyond primitive recursive arithmetic; (iii) at that time,
finitist mathematics was viewed as coextensive with intuitionist mathematics. Each point
is counter to broadly held contemporary views and, indeed, undermines deeply held

convictions concerning our logical past.

'? Van Heijenoort analyzed Godel’s differing descriptions of Herbrand’s published proposals and the suggestion that
had been made to him in the “private communication.” References to this work and a discussion in light of the actual
letter are found in my paper Sieg 1994; see in particular section 2.2 and the Appendix.
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