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Conditional probability and defeasible inference

Abstract

We offer a probabilistic model of rational consequence relations [23] by
appealing to the extension of the classical Ramsey-Adams test proposed
by Vann McGee in [28]. Previous and influential models of non-monotonic
consequence relations have been produced in terms of the dynamics of
expectations [13], [12]. ‘Expectation’ is a term of art in these models,
which should not be confused with the notion of expected utility. The
expectations of an agent are some form of belief weaker than absolute
certainty. Our model offers a modified and extended version of an account
of qualitative belief in terms of conditional probability, first presented in
[36]. We use this model to relate probabilistic and qualitative models of
non-monotonic relations in terms of expectations. In doing so we propose
a probabilistic model of the notion of expectation.

We provide characterization results both for logically finite languages
and for logically infinite, but countable, languages. The latter case shows
the relevance of the axiom of countable additivity for our probability
functions. We show that a rational logic defined over a logically infi-
nite language can only be fully characterized in terms of finitely additive
conditional probability.

1 Introduction

Various methods of inference used in scientific and computational reasoning vi-
olate the law of monotonicity. This law stipulates that whenever a conclusion is
inferred from a given set of premises, the same conclusion is also a consequence
of that set of premises augmented by additional information. Dov Gabbay first
proposed to study these forms of defeasible reasoning through properties of its
associated consequence relation. Let L be a (finitary) language and let | be a
relation between sets of well-formed formulas (wfs) A and single wifs a (A}va)
which means that a is a non-monotonic consequence of A. In [11] Gabbay pro-
posed three minimal constraints that a supra-classical? consequence relation,
whether monotonic or non-monotonic, should obey.

Ayabb Apa

(R) abva (CUT) ARG

?Supra-classical means that ~C pv, where |- is the classical notion of consequence.




Aba, Anb

(CM) A,aleb

Reflexivity and CUT are self-explanatory. Cautious monotony (CM) is a
restricted form of monotony. A supra-classical consequence relation on L obey-
ing R, CUT and CM is usually called cumulative and is denoted C. Gabbay
defended the adequacy of C mainly in terms of proof-theoretical considerations.

Different semantics have since then been proposed for C. David Makinson
offered a first model in [27]. Then Kraus et al offered in [21] a comprehensive
semantical analysis of several extensions of C by appealing to the preferential
semantics of Shoham [34]. Finally Lehmann and Magidor studied in [23] one of
the strongest preferential systems, the rational system R.

The semantical approach used in preferential models is reminiscent of the
semantical techniques used in some branches of conditional logic. In particu-
lar preferential models and possible worlds models of conditionals share some
structure (see [7]). Nevertheless the relations between these two approaches are
more intricate than might seem at first sight. An obvious difference is that
conditional logic enriches the object language by adding a binary connective >
and giving axioms for it, while non-monotonic logic operates by adding a new
consequence relation to the standard one and postulating properties for it. Sev-
eral interesting correspondences between the two approaches have nevertheless
been established in recent papers (see, for example, [2], [9], [20]). Most of this
work focuses on finding useful model-theoretical correspondences and studying
the appropriate non-nested conditionals. This approach is, nevertheless, only
one of several different (and independently influential) manners of studying de-
feasible reasoning.

A rival approach treats non-monotonic relations as epistemic conditionals
(see the corresponding section in [7]) characterizable via some variant of the
so-called Ramsey test:

(Ramsey) al~ b if and only if b € p(E) xa

where a b ;b indicates that a [~ b holds with respect to the epistemic state
E, p(E) are the expectations associated with E, and p(E)  a is the result of
supposing that a is the case with respect to the state E. Intuitively, according
to this approach, non-monotonic relations are about conditional expectations:

(P) ap gbif and only if as many as possible of the ezpectations associated with
E as are compatible with a, together with a, entail b.




The underlying idea is that accepting a jv b in E is tantamount to accepting
that b is expected upon supposing that a (i.e., from the point of view of p(E)xa).
This idea has been technically articulated in recent papers. Some models are
purely qualitative in nature (see [13]), while others offer a decision-theoretical
account of the nature of the expectations used in (P) [25]. Different types of
Ramsey clauses are obtained by focusing on different possible representations
of the epistemic state E (as a logical theory, an ordinal conditional function,
etc). It should be remarked, nevertheless, that the models offered in [13] and
[12] do not appeal to a decision-theoretically motivated notion of expectation.
Peter Gérdenfors is quite clear about this in [12]:

The word ‘expectation’ as it is used in this paper should thus not
be confused with the notion of ‘expected utility’ in decision theory.
‘Expected utility’ has to do with expectations of the values of various
outcomes, while the notion of expectation studied here concerns be-
liefs about the world. In my opinion, this use of ‘expectation’ comes
much closer to the everyday use ([12], p. 5).

Finally non-monotonic consequence relations have also been characterized
in terms of probabilistic models. This semantic framework treats conditionals as
syntactic carriers of probability, rather than as carriers of truth [1]. The basic
idea in this tradition is that the probability of a simple, or un-nested conditional
a > b (corresponding in the language to a ) b) is given by the probability of (the
proposition corresponding to) its consequent, b, conditional in its antecedent,
a.3 The most sophisticated presentation of this idea appeals to a generalized
notion of conditional probability where it is also possible to condition on events
of zero measure. Let A, B, ... denote the propositions expressed by a,b, ....

(Ramsey-Adams-McGee) a bv b if and only if P(BJA) = 1

This modeling of defeasible consequence is ‘prima facie’ unconnected with
expectation tests. A bridge between conditional probability and the qualitative
notions of expectation and full belief is needed in order to articulate this connec-
tion. It is well-known, nevertheless, from [22], that it is hard to construct sound

3The parenthetical remark concerns the issue of what are the carriers of probability. Par-
enthetical additions are needed if the carriers of probability are propositions. Here we will
adopt this view. Some of the standard probabilistic models, nevertheless, prefer to use sen-
tences as probability carriers. This is perhaps motivated by the goal of developing not only
probabilistic models of modalities and conditionals, but also probabilistic models of classical
logic as well, an issue with which we will not be concerned here.



bridges linking probability and qualitative belief.* Some obvious solutions, like
defining full belief as unconditional measure one are known to be deeply defec-
tive. In this paper we appeal to a slight modification of a proposal presented
by Bas van Fraassen in [36]. This approach permits us to construct a reason-
able definition of both ezpectations and full beliefs for a generalized conditional
probability function. With the help of these definitions we can use the following
instance of (P):

(P) alv pbif and only if A, together with as many as possible of the qualitative
erpectations associated with P which are compatible with A, classically
entails B.

The probabilistic model of expectations presupposed by (P) helps to pro-
vide foundations for the primitive notion of expectation used in [13] and [12].
Even when the notion does not have an obvious decision-theoretical origin,? it
is possible to articulate it in terms of the notion of primitive conditional proba-
bility used in the proposed extension of the Ramsey-Adams acceptability tests
for conditionals. This links two areas of research on models of non-monotonic
consequence, which, up to now, have remained isolated from each other.

The probabilistic model offered here differs in important ways from previous
probabilistic accounts of rational inference, like the one produced by Judea
Pearl in [30} and by Lehmann and Magidor in [23]. In fact, the first appeals
to extremely high probability and the second to non-standard probability. Our
model uses a simpler account in terms of primitive conditional probability. On
the other hand, unlike other models in terms of conditional probability 18],
we link our model with previous qualitative accounts in terms of expectations.
The construction of this link depends on our choice of primitives in building the
probabilistic models. We should mention as well that our completeness results
for the system R of Lehmann-Magidor are valid both for finitary and infinitary
languages. The consideration of richer languages allows us to investigate the
role of countable additivity in probabilistic models of conditionals. We show
that a rational logic defined over a logically infinite language can only be fully
characterized in terms of finitely additive conditional probability.

4As is well-known that it is hard to construct bridges linking probability of conditionals
and conditional probability [26].

5 Arguments for the impossibility of providing decision-theoretic reconstructions of some
forms of defeasible inference are presented in [25).



2 Technical results

Our model uses two-place probability functions, i.e. we adopt basic axioms for
conditional probability, rather than defining it in the usual way from monadic
probability.® Bas van Fraassen developed in [36] a probabilistic definition of full
belief in terms of such functions.

We offer a modified and extended version of van Fraassen’s model of [36] and
use it to model Bayesian update. [36] studies two place probability functions
P(.|.) defined on a o-field F' over some set U. The requirements are that

(I) for any fixed A, the function P(X|A) as a function of X is either a
(countably additive) probability measure, or has constant value 1.
() P(BNClA) = P(B|A)P(C|BNn A) for all A,B,C in F.

If C € B C A, then (II) above can be simplified as
(Il'y P(C|A) = P(C|B)P(B|A).

The probability (simpliciter) of A, pr(A), is P(A|U). We will follow estab-
lished terminology by referring to (II) as the Multiplication Aziom.”

For fixed A, if P(X|A) is a probability measure as a function of X, then 4
is normal and otherwise it is abnormal - P(X|A) has constant value 1, and, in
particular, P(#|A) = 1. Now in fact a normal set may have measure 0 in which
case we do not ezpect to believe it, but we still might. E.g. the rationsls as a

6The terminology ‘Popper functions’ is sometimes used to refer to these two place functions.
This terminology is somewhat misleading. Popper was only one among many researchers who
have proposed to take conditional probability as an irreducible primitive. And these accounts
do not exhaust all approaches capable of representing conditioning with zero measure events.
The traditional Kolmogorovian account is already capable of doing this.

Karl Popper offered an account of primitive conditional probability in [31]. His main in-
tention was to characterize the notion of logical consequence in probabilistic terms. Popper
employed axioms previously used by Harold Jeffreys in [19]. But Popper’s proposal was pre-
ceded by the work of Bruno De Finetti [8] who also defended a variant of the view that all
probability is in fact conditional probability. Nevertheless, for reasons that we cannot dis-
cuss at length here, De Finetti’s account depends on assuming as basic a qualitative notion
of certainty. If one uses terminology that has some philosophical currency, De Finetti was
not a radical probabilist. I.e. he appealed to a non-probabilistic primitive (certainty) in
his characterization of conditional probability. Here we will adopt the viewpoint of radical
probabilism, given that this is the approach taken by contemporary defenders of probabilistic
semantics. Finally Alfred Renyi [32] was also a proponent of the view that all probability is
really conditional in nature. His work had a more direct connection with the mainstream of
contemporary theory of probability. In this paper we use the axioms proposed in [36], but
we will also study models where monadic probability is finitely additive. Those models are
not considered in [36]. Therefore we prefer to use the more neutral terminology of ‘two-place
probability functions’.

7This axiom appears under the name *W. E. Johnson’s product rule’ in [19].



subset of the reals have measure 0, but if we pick a real at random and it turns
out to be rational we do not throw up our hands in despair! Thus the rationals -
@ are a normal set of measure 0, P(0|Q) = 0. An abnormal set by contrast
not only has measure 0, but it is so small that we do not know what to believe
if we believe in that. Indeed, if A is abnormal, then P($|A) = 1. Thus A is
normal iff P(@|A) = 0. van Fraassen shows in [36] that supersets of normal sets
are normal and that subsets of abnormal sets are abnormal. Assuming that the
whole space is normal, abnormal sets must have measure 0. Forif X Cc Y, Y
is normal and X is abnormal, then we have P(§|Y) = P(B|X)P(X]Y). Since
P(0]Y) = 0 and P(@|X) = 1, it must be the case that P(X|Y) = 0. However,
of course the converse need not hold, a normal set may also have measure 0.
We now show the following:

Lemma 2.1 A countable union of abnormal sets is abnormal, though an inter-
section of normal sets, even a finite intersection, need not be normal.

Proof 2.1 The second part is easy. Let X and Y be disjoint normal sets (e.g.
disjoint sets with positive measure) and W an abnormal set. Then since X UW
and YUW contain the normal sets X,Y respectively, they are both normal. But
their intersection is W which is by assumption not normal.

Coming to the first part, let us show first that the the union of two abnormal
sets X, Y is still abnormal. Note that PO X UY) = P(O|X)P(X|X UY) from
the multiplication aziom. Since X is abnormal, P(B|X) = 1. Thus if XUY
were normal, then P(O|X UY) = 0 and since P(0|X) = 1, P(X|X UY) must
be 0.

By a symmetric argument, P(Y|X UY) = 0. This is a contradiction since
X, Y make up all of X UY.

To come to the countable union case, suppose that X; :i € N are countably
many abnormal sets and by the argument above, we can suppose that i < j —
Xi C X;. Let Z = |JX;. Now we know that if Z were normal, then for
all i, P(X;|Z) = P(0]Z) = 0. But then continuity (a consequence of countable
additivity) yields P(Z|Z) = 0 which is absurd whether Z is normal or abnormal.

The last part of the previous proof depended on Countable Additivity, while
the first part did not. In the following we shall confine ourselves to the case
where the whole space U is normal. The notion of normality is closely connected
to an epistemic analysis of the notion of a priori: (A) A is a priori for P iff
P(A| X)=1forall X,iff U~ A is abnormal for P. For if U — A were normal



for P then we would have P(A |U—A) = P(AN({U—A) |U—-A) = P(0 | U—A)
=0.

Slightly modifying van Fraassen's definition we define a core as a set K
which is normal and satisfies the strong superiority condition (SSC) i.e. if Ais a
nonempty subset of K and B is disjoint from K, then P(B|AU B) = 0 (and so
P(AJAUB) = 1).8 Thus any non-empty subset of K is more “believable” than
any set disjoint from K. It can then be established that all non-empty subsets
of a core are normal.

Lemma 2.2 (Finesse): all non-empty subsets of K are normal.

Proof 2.2 Suppose that K is a core and A a nonempty subset of it. Let B = 0.
Then B is disjoint from K and hence, by SSC, P(B|A) = P(B|AUB) = 0.
Thus A is normal. e

van Fraassen’s characterization of cores requires a slightly different superior-
ity condition, and the property called (A3) according to which the complement
of a core should be normal. There might be arguments in favor of adopting this
point of view. For example, if the union of cores represents the strongest propo-
sition fully believed by the agent, one might want to preserve the possibility of
genuine revisions of this body of belief with normal propositions.® Neverthe-
less, the condition introduces certain asymmetries in the resulting probabilistic
models that we prefer to avoid. van Fraassen's solution entails that if we revise
with the largest core, such a core cannot be among the cores of the updated
function. Since we are interested in updating, we prefer to avoid this possibility.
Further arguments in favor of our reformulation will be offered later.

Formally many of the basic theorems proved by van Fraassen and other
scholars who worked in this area can be proved in our modified framework with
minor changes. The most salient results will be listed below.

Lemma 2.3 The family of cores induced by a two place probability function
P is nested, i.e. given any two cores Ky, Ko either Ky C Ky or Ko C K3
(vanFraassen, 1995).

Indeed we have the following important fact:

8A is superior to B if P(A | A + B) = 1, where + is symmetric difference.

9This might be so even when van Fraassen’s account does not give us the tools to perform
such a revision. Also for him the union of cores represents a proposition accepted by the agent
rather than its full beliefs.



Theorem 2.1 (Descending Chains). The chain of belief cores induced by a
non-coreless 2-place function P cannot contain an infinitely descending chain of
cores.

A proof of this fact was already given in [5], but since it is short we repeat
it here for the sake of completeness. Suppose that K; : i € N is a strictly
descending sequence of cores. Let p; € K; — K41 and let X; = {p;, pit1, .}
Each p; then dominates p; for j < ¢ since p; is in the core K; and p; is not.
Thus we get P(X;|X1) = 1 for all é. But then by continuity, P(( X;|X;) =1
which is absurd as [ X; is empty and X is normal.

Cores are well ordered under inclusion and closely resemble Grove spheres
[15] and Spohn’s ordinal conditional functions [35]. Indeed we can show that for
any successor ordinal o there is a space (U, F, P) such that the family of its cores
has ordinal a. Let o be any (von Neumann) ordinal. Then @ = {3|8 < a}. For
subsets X,Y of o with X C Y let P(X|Y) equal 1 if min(X) = min(Y) and
equal 0 otherwise, i.e. if min(Y") < min(X). Then all non-zero ordinals < « are
clearly cores, and for the sake of symmetry, as we indicated above, we include
« also as a core.

Lemma 2.4 There is a smallest as well as a largest core. Moreover, the small-
est core (and hence every core) has measure 1.

Proof 2.3 Since cores are well ordered by inclusion, there is naturally a small-
est core. There is also a largest core, namely the union of all cores. To see that
this union, say K, is also a core, note first that if X is a nonempty subset of
K then there must exist a core K' which overlaps X. Now the subset X N K’
of K’ is normal and thus X is also normal. To see superiority we use a similar
argument. Let X,K' be as before and let B be disjoint from K. Then B is
also disjoint from K' and hence X N K' is superior to B. Hence so is X itself.
That even the smallest core Ko has measure one follows from the fact that Ky
is superior to its complement and together they make up measure 1. Thus all
cores have measure 1. o

We propose that the smallest core be identified with (ordinary) beliefs or
expectations and the largest core with full beliefs, (i.e. a priori beliefs) so that
in general probability 1 is not sufficient for full belief, Arguments supporting
this interpretation are offered in the following section. The resulting notion of
full belief is quite strong epistemologically — but rather weak logically. In fact,
robustness under arbitrary suppositions (encoded as aprioricity for P) is both a



necessary and a sufficient condition for full belief for P. Unlike most of the recent
literature on belief change, which focuses on (full) belief revision, the proba-
bilistic framework we are studying is unable to characterize such revisions.!® It
really studies inductive expansions of the given body of full beliefs. Or, under
a different point of view, revisions of (ordinary) beliefs or expectations .

3 The countable case

If the set U is countable then very nice properties hold. There is a set of heavy
points p, i.e., those p such that P({p}{U) > 0, all of which are normal. There
may also be normal (light) points p such that pr({p}) = 0. These will be
normal because P(@|{p}) = 0. Finally there may be abnormal points p such
that pr({p}) = 0 and P(O|{p}) = 1.

Lemma 3.1 (Heavy Points) Let S = (U, F) be a countable space and P(.|.) a
two-place probability function defined on the space. The set H(P) of heavy points
of P constitute the smallest core, which, moreover, has measure 1.

Proof 3.1 We already showed that the smallest core has measure 1. Note that
no heavy point can be dominated, hence the smallest core contains at least the
heavy points. Moreover, any set of heavy points is normal, and finally any non-
empty set of heavy points is superior to any set of light points, whether normal
or abnormal.

Remark: the proof we just gave makes use of the countability of U, and
will not carry over to the uncountable case where various intuitions begin to
clash.

Let the ordering < on U be defined for all (distinct) pairs of points p, q,
such that {p, q} is normal, by p < ¢ & P({p}|{p,q}) = 1, i.e. if we know
that we have picked one of p,q then it must be p. Similarly, let p 2 g < 0 <
P{{p}{p,¢}) < 1. When {p, q} is abnormal, we set p = ¢ always, and all
normal points dominate abnormal points. Then < is a well quasi-ordering with
= as its associated equivalence relation and the cores are just sets of normal
points closed under <. The heavy points are all equivalent to each other and in
the smallest core. The light normal points are superior to the abnormal points
but may have superiority relations among themselves, as the ordinal example

10

van Fraassen’s unmodified theory makes these revisions entertainable, but it gives no
guidance for implementing them.

10



above shows. In that example 0 was the only heavy point, but all other points,
though light, were normal.

For a more general example, let o be any countable ordinal strictly greater
than w. We let P(X]Y) = 1 if min(X) = min(Y) < w. P(X|Y) = 0 if min(Y)
< w and min(Y) < min(X). And finally P(X|Y) = 1 if min(Y) > w. Now 0
will be the only heavy point, all finite points will be light but normal, and all
points greater than or equal to w will be abnormal. A set will be normal iff it
contains a finite ordinal.

The fact that (in the countable case) the heavy points constitute the smallest
core (which has measure 1), gives support to one of our proposed modifications
of van Fraassen’s account. In fact, one of the main purposes of the use of
two-place functions in the definition of full belief is to avoid a problematic
identification of belief and probability one (which yields the so-called (infinite)
lottery paradoxes - see [22]). But such a problematic identification would be
required if we interpreted the innermost core of P as an encoding of the body
of P’s full beliefs (in the countable case). By the same token, we did not wans
to make an identification of null measure with epistemic impossibility. It seems
more natural to say that P’s full beliefs are given by the union of P’s cores,
rather than by their intersection. The intersection of cores can, in turn, be
seen as the representation of P’s plain beliefs (or qualitative expectations). The
following example tries to provide more intuitive clues supporting this idea. The
example illustrates as well the interest of adopting our modified characterization
of cores.

Example: The sample space has a countable set of atoms, resulting from the
following: in independent trials, a fair coin is flipped until we get a head, and
then the trials stop. The set of possible outcomes is indexed by the number of
tails X = (0,1,2,.....,n,....,w), where w designates never stopping, i.e., flipping
forever and seeing only tails. Evidently pr(X is finite) = 1 and

pr(X =n)=(3)"D,(n=0,1,...), so that (obviously) pr(X = w) = 0, and
this is the only null event, apart from the impossible event. It seems
unreasonable in this case to require that a rational agent modeled by P ought
to fully believe that X is finite.

Notice that in this case it is not enough to interpret full beliefs as the union
of cores, as long as cores are defined in terms of an unmodified version of van
Fraassen’s original definition. In fact, according to that definition, P induces
a unique core U — {w}. Van Fraassen’s condition (A3) impedes considering

11




the entire space as a core. Our modified definition makes this limit case more
intuitive. According to our definition, P induces two cores, U — {w}, and U.
It is also reasonable to say, in the case under consideration, that a finite out-
come is ezpected, rather than fully believed. This intuition is captured by our
characterization of qualitative expectations as the intersection of cores.

Returning to our previous example of an ordinal greater than w, note that
if we were to allow ordinals greater than w to be possible answers, then a finite
ordinal would represent an event of positive probability, w would be a normal
event of 0 probability, but an ordinal strictly greater than w would be an ab-
normal event for we would not know what to make of the report that the coin
landed heads w + 1 times.!!

If we learn some proposition A, even one whose probability pr(4) = 0, then
as long as A intersects the largest core A, P relativised to A has again an
elegant theory and its cores are essentially the old cores intersected with A.
Thus “revising” by A is well defined. A detailed axiomatic presentation of the
notion of belief change that thus arises is presented both in [5] and [4]. We do
not need to go through these details here, aside from noticing that the innermost
core of P(X|Y N A) encodes as many as possible of the expectations of P as are
compatible with A.

4 Countable Core Logic and Rational Logic
In 21}, Kraus, et al, present the following definition of a preferential model:

Definition 1 If P C S and < is a binary relation on S, P is a smooth subset
of S iff Vt € P, either there exists an s minimal in P such that s < ¢ or ¢ is
itself minimal in P.

Definition 2 A preferential model W for a universe U is a triple (5,1, <)
where S is a set, the elements of which will be called states, { : S — U is a
labelling function which assigns a world from the universe of reference U to
each state and < is a strict partial order on S (i.e., an irreflexive, transitive
relation) satisfying the following smoothness condition: for all a belonging to
the underlying propositional language L, the set of states: 4 = {s: s € 5,5 a}

11Even the statement that the coin landed heads w times requires some interpretation. But
we could certainly make sense of someone’s belief that the coin will land heads w times, i.e.
always.

12



is smooth; where s |z a (read s satisfies a) iff [(s) = a, where ’=’ is the classical
notion of logical consequence.

The definitions introduced above allow for a modification of the classical
notions of entailment and truth compatible with the idea of nonmonotonicity.
The following definition shows how this task can be done:

Definition 3 Suppose a model W = (S,1,<) and a,b € L are given. The
entailment relation defined by W will be denoted by |, and is defined by:
a by b iff for all s minimal in &, sf= b.

Preferential models were used in [21] to define a family of preferential logics.
In [23], Lehmann and Magidor focused on a subfamily of preferential models —
the so-called ranked models.

Definition 4 A ranked model R is a preferential model (5,1, <) where the
strict partial order < is defined in the following way: there is a totally ordered
set W (the strict order on W will be denoted by /) and a function r: § — W
such that s < t iff r(s) Zr(t).

The effect of the function r is to rank the states, i.e. a state of smaller rank
is more normal than a state of higher rank. The intuitive idea being that for
r(s) = r(t) the sates s and ¢ are at the same level in the underlying ordering.
In order to increase intuition about ranking it is useful to notice that, if < is a
partial order on the set T' the ranking condition presented above is equivalent
to the following property:

(Negative Transitivity) For any s,t,u in T, such that s < ¢, either u < t or
s <u.
Lehmann et al also introduce ranked models where the ordering of the states

does not need to obey the smoothness requirement,.

Definition 5 A rough ranked model V is a preferential model (5,1, <) for
which the strict partial order < is ranked and the smoothness requirement is
dropped.

From the syntactical point of view, Kraus et al. proved a representation
theorem for the following system P in terms of the above preferential models.

13



Faebale

(R) aha (LLE) broe
Ea—bcha afb,apoe
W e
apvb abe apre, bive
(AND) apbAc (OR) aVbive

LLE stands for ‘left logical equivalence’, RW for ‘right weakening’ and CM
for ‘cautious monotony’. Lehmann, et al., prove that the system R, complete
with respect to ranked models, can be obtained by adding the following rule of
rational monotony to the above set of rules.

afve, ~(apb)
aAbpe

(RM)

Naturally, if (RM) is added then (CM) is no longer necessary. Lehmann et
al. suggested in [23] that the syntactic system R'R obtained from R by dropping
the rule (CM) is sound and complete with respect to rough ranked models. They
obtain this conjecture from the work of James Delgrande in conditional logic.
This conjecture was proved true in [2].

4.1 Countable Core Logic and Probabilistic Models

8 = (U, F) is a probabilistic space, with U countable and where F is a Boolean
sub-algebra of the power set of U. The assumption about the size of U cannot
be dispensed with. It will be maintained throughout this paper.

Definition 6 M = (5, P, V) is a probabilistic model, if S = (U,F) is a
probabilistic space, U is a countable set, and F' is a Boolean sub-algebra. of the
power set of U. V is a classical valuation mapping sentences in L to measurable
events on F' and P is a two-place function on U obeying;:

(I) for any fixed A, the function P(X|A) as a function of X is either a
(finitely additive) probability measure, or has constant value 1.
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(I1) P(BN C|A) = P(B|A)P(C|BN A) for all A,B,C in F.

As we did above, we will abbreviate V(a), for a € L, as A. Of course, V
is defined inductively as usual for arbitrary formulae in L. So we will use the
aforementioned abbreviation only when there is no possible ambiguity.

Definition 7 A probabilistic model is countably additive (CA) iff for any
fixed A, the function P(X|A) as a function of X is either a countably additive
probability measure, or has constant value 1.12

Let the ordering < on U be defined by p < ¢ if and only if P({p}|{p,q}) = 1,
i.e. if we know that we have picked one of p, g then it must be p. Similarly, let
p = gifand only if 0 < P({p}|{p,¢}) < 1. From now on we will call the ordering
< induced by a probabilistic model M the ranking ordering for M. notice that
as a corollary of Theorem 2.1 stated above:

Lemma 4.1 The ranking ordering < for a CA probabilistic model M is well-
founded.

Now we can define: a fv )b iff for every u € U, such that v is minimal in 4,
according to the ranking ordering for M, u € B. Notice that the set of minimal
A-points, according to the ordering induced by P in M, is the innermost core
of P(X|Y N A), encoding as many as possible of the expectations of P as are
compatible with A. So, a|v )b iff as many as possible of the expectations of P
as are compatible with A, entail B. So, here we have an expectation test derived
probabilistically from conditional probability.

It is important to notice that there is an alternative probabilistic definition
of pv. Such a definition requires that: a v p,,b iff P(B|A) = 1. These two ways
of defining a supraclassical consequence relation are intimately related, but we
will verify below that they do not coincide in all cases. We have nevertheless
that:

Lemma 4.2 For a CA probabilistic model M, a v py,b iff aly b

Proof 4.1 In order to prove this result it is enough to show that if the universe
U of the underlying space is countable and normal for a function P, then for all
propositions A, B, P(B|A) = 1 if and only if the smallest core of P[A](X|Y) =
P(X]YNA) entails B. The lemma of Descending Chains and the lemma of Heavy

12Notice that CA is stronger than the simpler assumption that P(X|UY) is either a countably
additive measure or has constant value 1.
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Points are enough to prove this result, which appears in [5]. We reproduce it here
Jfor the sake of completeness. Let Ex(P) denote the ezpectations of P, i.e. the
innermost core of P; and let F(P) denote the full beliefs of P, i.e. the outermost
core of P. Assume Ex(P[A]) C B. Then if F(P)N A # 0 we have that Ex(P[A])
is non-empty (by the lemma of descending chains) and P[A](Ex(P[A])|U) = 1.
Therefore, the assumption yields P(Ex(P[A])|A) = 1 = P(B|A). When F(P)n A
=0, P[A] is abnormal. Therefore, P(X|A) = 1 for all X. In particular P(B|A)
= 1. Assume now P(B|A) = 1. Then Ez(P) is the support S(P) = {z € U: P(z)
> 0} - by the lemma of heavy points. So, if A N F(P) # § we have Ez(P[A])
= S(P[A]). Assume then by contradiction that Ex(P[A]) is not included in B.
The proof can then be completed by cases. First, consider the case Ez(P[A])
N B is empty. In this case, for all y in B, P[A](y|U) = 0 - again by heavy
points. Now, since the space is countable and normal for P, countable additivity
guarantees that 0 equals the sum over y of all values P[A] (4|U) = P[AJ(B|U)
= P(B|A) = 1. Contradiction. Second, consider the case when Ex(P[A]) N B
is non-empty. In this case there is a strict subset Z of Ex(P[A]), such that I =
P(B|A) = P(Z|A) < 1. Contradiction. Third, in order to finish the proof, we
should consider the case A N F(P) is empty. This case is immediate, because
by definition Ex(P[A]) =0 C B.

Some results about rational logic follow immediately from previous results.
In particular we have a soundness result for R in terms of CA models:

Lemma 4.3 For a CA probabilistic model M, if alv pyb (or ab b)), then
afv gh.

From now on it will be important to make precise distinctions about the
nature of the underlying language L used to define non-monotonic relations. If
the set of primitive propositional variables used in the definition of [ is finite,
we will call the language logically finite. Now, with the proviso that L is log-
ically finite we have a completeness result for Rational Logic in terms of CA
Probabilistic Models. Some preliminary definitions and intermediate lemmas
are needed in order to state the result.

Definition 8 Let M = (S,!, <) be a ranked model. Its associated spheres
model is a triple (S,1,S) where S is M’s universe of states, | is M’s original
labeling function, and 8 = {S; : z € S} U S, where S, = {y € §: y < z}

Since ranked models are smooth, we know that for every a € L, there is a
minimal &-sphere of states. Let the intersection of G with this sphere be called
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Sm,a- Therefore we can define that a v g is satisfied in the associated spheres
model corresponding to M = (5,1, <) as long as for every s in Sp, o we have
that s b.

It is important to notice that ranked models and their associated spheres
models can be correlated one-to-one. Therefore we can establish the following
useful result regarding the validity of Generalized Horn Patterns (GHP) of the
following form: If a; fvb1,...,a; by, . .., an by, then a v b.13

Lemma 4.4 A GHP is valid in a ranked model M = (5,1, <) if and only if it
is valid in its associated spheres model M’ = (3,1, S)

Proof 4.2 Essentially we need to show that every conditional assertion of the
form a b, is validated in a ranked model M if and only if it is validated in its
associated spheres model M’. a (b is valid in M (S,1,<) if and only if for every
state s in Mco, = {s € S:s€d and for all & € &, (s’ < 5)}, we have that
sE b.

On the other hand a b~ b is valid in the associated spheres model M’ = {S,1,S)
if and only if for every state s in Smo =& N (N{S €8S: SNa+#0}). we have
that s = b.

So, in order to complete the proof we have to show that Spme = Mc 4. As-
sume that s € Sy, o, but s € M< 4. Therefore there exists a sphere T € S, such
that TNa#0 and s g TNa.

We need to pause here for a moment. Notice that for every ranked model
M = (5,1,<) and its associated spheres model M’ = (S,1,S), there is a simple
manner of defining a relation <’ from M’, in such a way that <=<'.

(Sto<)s<'tif and only if thereisV €S ands €V andt g V.14

Consider first <C<'. Assume by contradiction that for some s,t € S we
have =(s <’ t) and s < t. By (S to <) we have that for all spheres S such
that s € S, t € S, Since s < t we have that s € S;. Therefore we have that
t € S, which entails that t < t against the irreflezivity of <. Contradiciton.
For <'C<, assume by contradiction that for s,t in S, ~(s <t) and s <'t. By

13The techniques used here in order to eliminate states from ranked models follow a slightly
different (an improved) presentation of ideas first published in [2].

4In fact, as we claimed above, ranked models and its associated sphere models can be
correlated one-to-one. It is not difficult to show that if S is the system of spheres of a model
M’ = (5,1, 8) associated to a ranked model M = ($,[,<), and <’ is the relation extracted
from S via (S to <), then S = {Sz: z € S} US.
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(S to <) we have that there exists Sy such that s € Sy and t & S. Therefore
we have that s < k and —(t < k). Therefore s < t. Contradiction.

We can now return to the main proof, where we established that there exists
a sphere T € S, such that TNa # 0 and s ¢ T. Lett € TNa. By (S to <)
we have that t <’ s. But since s € M., we have that —(t < s). This extracts a
contradiction from assuming that s € Sp o, but s € M 4. In order to complete
the proof that Spm.qa = M« , we can assume by contradiction that s € Sm,e, but
s & Mc q. This proof proceeds along the same lines than the previous one.

Definition 9 Let M’ = (5,1, S) be the associated spheres model of a ranked
model M = (5,1, <). We can then construct a core system of possible worlds
corresponding to M’, and a core model for M, as follows. Let (W,C,V) be a
core model for M, where W = {w € U: thereis s € § and I(s) = w}, C =
{{w: thereis s € T and w = I(s)}: T € S} and V is the valuation used in
probabilistic models (i.e. a function from L to measurable events in a Boolean
sub-algebra of the power set of W).

If Cp o is the minimal V(a) core, we can define here as well that a fv gb is
satisfied in the core model (W, C,V) as long as every world w in V(a) N Cp g
is also a b-world.

‘Lehmann and Magidor point out in their paper that whenever a preferential
model contains two states which bear the same label (i.e, the labelling function
maps the two states to the same world), there might not exist an equivalent
model with the same domain in which the labeling function is the identity func-
tion. So, states cannot be straightforwardly eliminated from ranked models.
Notice, nevertheless, that given any ranked model M = (9,1, <) the core system
for its associated spheres model is such that for any assertion a f zb which is
satisfied in M, the assertion is also satisfied in (W, C, V). Or to put it in a dif-
ferent way, for every ranked model there is a semantically equivalent core model
with a different domain where the labeling function is the identity function.
Here is a more formal statement of this fact;

Lemma 4.5 A GHP is valid in an associated sphere model M’ = (S,1,S) if and
only if it is valid in its corresponding core model (W, C, V).

Proof 4.3 Let Cpn, o be defined as [a] N (N{C € C: CNla] # 0}). Then the
gist of the proof is to show that Spmq C b if and only if Cm,a C V(b).
Assume by contradiction that Sp, C 13, but that there is w € Cp o and
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w & V(b). Therefore there is s € Sm o, where l(s) = w. Since s C b, I(s) =
w € V(b). Contradiction.
Assume by contradiction that Cm,, C V(b) but that there is s € Sm,e and

s ¢ b. Now, notice that for every state s, if s € S 0, then l(s) € Cp o C V(B).
So, s € b. Contradiction.

Theorem 4.1 If the underlying language is logically finite, CA probabilistic
models are complete with respect to R i.e. if ap gD, then there is a CA proba-
bilistic model M, such that av _,,b.

Proof 4.4 The gist of this proof is as follows. The canonical models used in
[23] in order to characterize R are rarely well-founded. But it the underlying
language is finite, then all canonical models are well-founded. Therefore we know
(via the completeness result stated in [23]) that for any conditional assertion
a b g b there is a well-founded ranked model M = {S,1,<) such that a e
b is satisfied in M. Moreover, there is an associate spheres model for M, N =
(V,1,8), and a core model for N, (W, C, V) = C, both of which are semantically
equivalent to M.

Construct now the probabilistic model M’ = ((W, F), P, V), where the uni-
verse of the probabilistic space (W, F) is the universe of the core model C, V is
the valuation used in C and P is a two-place function such that its core system
is C.

As a result of a previous lemma we have that the ranking orderings of CA
models are well-founded. So, the model ((W,F), P,V is CA and when the model
is extended with I~ _,., we have that alv ..

When L is countable, the situation is a little more involved. In this case R
is no longer complete with respect to CA probabilistic models. The following
example (based on a similar example, presented in Lemma 1 of [23]) illustrates
this point.

Lemma 4.6 When L is countable, there is a rational relation that is defined by
no CA probabilistic model.

Proof 4.5 Let PL be the propositional calculus on the propositional letters p;,
i € N (N being the natural numbers). Define now M = {{U, F), P, V) as follows:
U={Si:7:€ NU{?.U}}
Nouw, let P be any two-place function such that its induced ranking ordering
< 1s defined:
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$; <m 8 iffi>j

Lets; € V(p;) iffj >4, fori € NU {w} andj € N. So, M defines a rational
relation such that for all i € N, we have p; I (s Pig1, Pis1 boop O pi but
po /I <pr false. Now, it is clear that any probabilistic model M = (S, P,V),
inducing such a relation needs to contain an infinitely descending chain of points
in the universe U of S. Therefore the model M is not CA.

So, a natural suggestion is to investigate probabilistic models where CA is
not necessarily required. We will call such models finitely additive (FA).

Lemma 4.7 If the underlying language contains countably many propositional
letters, there is a FA probabilistic model M such that, a | py bifa v gy b,

Proof 4.6 Lehmann and Magidor prove in their paper (see section 5.4, theorem
10) a completeness result of R in terms of non-standard probabilistic models.
Basically if the language L is countable (this assumption cannot be dispensed
with):

a b g biff st(p(BlA)) = 1

where p(.|.) is a non-standard measure and st(v) is the unique standard num-
ber that differs from v by at most an infinitesimal amount. Now it is known,
by a result due to McGee [28], that if p is a non-standard measure, and p(A|U)
# q 0, then there is a FA two-place function such that:

P(BJA) = st(p(Bl4))

Therefore if a v b there is o FA probabilistic model where a |~ p,, b is
satisfied. So, a v p), b is complete with regard to a v 5 b.

It is not difficult to see that a [~ p,, b is also sound with respect to a | p
b. Nevertheless, a tv ., b fails to be sound with respect to a 5 b. All the
following results assume that the underlying language is countable.

Lemma 4.8 When M is finitely additive |~ _,, is not sound with respect to

br

Proof 4.7 Take U as before:
U={s;:ie NU{w}}
and let L contain a propositional letter p such that:
lpl = U - {sw}
(since F is closed under differences U - {s,} is a measurable event in F).
Therefore, we have p v ., = p, even when p v p = p.
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Nevertheless, soundness does hold with respect to the system RR introduced
in [23].

Lemma 4.9 When M is a FA probabilistic model < 5 sound with respect
to e

Definition 7 A probabilistic model M = (S, P,|..|) is smooth if and only
if for every sentence « its corresponding measurable event |a| is smooth with
respect to the ranking ordering induced by P.

Now, it is clear that the relation |v p,,, satisfied in all FA probabilistic
models, is identical to the relation fv _;, induced by the sub-class of smooth
and FA probabilistic models. In other words, when the language is infinite (but
countable) R can be characterized either in terms of the relation v p,, induced
by FA models; or in terms of the relation | _,, induced by the class of FA
models which are smooth.®

Expectation acceptance tests can be characterized nicely in probabilistic
terms. But, as we just showed, when the language is logically infinite, the char-
acterization is in terms of finitely additive probabilistic models. In this paper
we have focused on the countable case, i.e. when the universe is countable.
Acceptance tests can be extended to the uncountable case, but as it is argued
in [5] it is not clear that this extension preserves the main idea behind the use
of Ramsey’s bridges relating conditional probability and probability of condi-
tionals. When the models (and the language) are infinite, but countable, the
Ramsey-Adams tests seem to offer a probabilistic articulation of the notion of
expectation used in [13] and [12] in order to characterize defeasible inference.

5 Expectation test and epistemic paradox

When the underlying language is logically finite and Countable Additivity (CA)
is imposed we have a perfect alignment between acceptance of a rational con-
ditional a b p.b and the fact that B is ezpected for P, given A. Using the
terminology displayed in our Proof 4.1, a v b holds whenever Ez(P[A]) C B.

Now, we saw that the situation is more involved when we increase the expres-
sive power of the underlying language. In fact, when the language is infinite, but
countable, we saw that there are very good reasons for abandoning CA. What
can we say about the role of expectations in this case? To begin with we cannot

15An account of conditional probability compatible with our model is the one offered by
Lester Dubins in [10]. See [33] for an overview of the interest and limitations of finitely additive
measures.
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define expectations as propositions including the innermost core, because such
a core might not exist. An alternative definition can be used. The idea is to
define the expectations for a function P as follows:

Ezp(P) = {A: A is entailed by some core of P}.

As a matter of fact this is the spirit of the definition used by van Fraassen in
[36]. When CA holds P[A](B) = 1 guarantees that some core for P[A] entails B.
Once countable additivity is abandoned (as noted in [5]) it is possible that there
is no core for P[A] entailing B although P[A](B) = 1. In other words, P[A](B)
=1 is only a necessary but not a sufficient condition for B being expected given
A (for P).

As an example consider a universe  containing exactly the natural numbers
N. Let Cyp = N and let C; be N - S; where S; is the final initial segment of
the naturals of length 4. This determines a system of cores in the space. Let r,,
= Cp - Cyy1 be a rank for the system of cores (where ‘-’ is set substraciton).
Consider the probability function P(.[Q2) such that P(B[Q) = 1 if B is co-finite.
For the remaining infinite but not co-finite events in the space, set P(B|Q) to
1 if B is the proposition of the lowest rank among B and its complement, and
set P(B|2) to 0 otherwise. Even when P(Odd|Q?) = 1, the event Odd is not
expected for the given system of cores (it is not entailed by any core C;). This
seems a good feature of cores. Assume that P(B|Q) measures the likelihood
that the outcome of an experiment (measured as a value in N) is in B. Then
P assigns a uniform zero probability to each exact value in N (P({w}|?) = 0,
for every natural number w € N). And each co-finite set receives measure one.

Notice nevertheless that, counter to intuition, the agent represented by P
must assign measure one to the event stating that the value of the outcome is
Odd. Moreover, independently of the particular definition of P, the agent should
be certain that the outcome is odd or he should be certain that the outcome is
even. Of course he should be certain that the outcome is either odd or even,
but he need not be certain that it is odd or certain th at it is even, when the
initial uniform prior is zero. Notice that the core system provided above (which
is compatible with P) improves on this regard. In fact, even when Odd has
measure one, neither Odd nor Fven are expected events (they are not entailed
by any core for P).
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