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Abstract

The rapid growth of distributed databases, as
well as growing concerns over privacy in those
databases, has led to the existence of multiple
datasets for overlapping sets of variables.
Moreover, we often are interested in learning
more than just the structure underlying each of
the databases; we want to know the structure
underlying the full set of variables. In this paper,
we show that we can partially learn the structure
underlying the full set of variables given only the
learning output for each of the datasets. In fact,
we can — under certain conditions — remove
edges (from the final output) between variables
that do not appear in the same databases. These
results point towards parallelizable Bayes net
learning algorithms for very large (in the number
of variables) datasets, as well as possible
psychological theories of human causal learning.

1 INTRODUCTION

There are a variety of practical machine learning
problems in which we have multiple datasets over
overlapping (in a sense to be made precise later) variables
from a range of sources. For example, we might have a
range of medical data (e.g., from hospitals, insurance
claims, and doctors’ offices), or remote sensing data (e.g.,
meteorological measurements). Moreover, these multiple
datasets typically cannot be integrated into a single
complete dataset, whether because of privacy concerns (in
the former example) or asynchronous monitoring (in the
latter example). Despite this restriction, we still want to
recover as much information as possible about the
structure (either causal or correlational) underlying the
full set of variables.

Similar problems concerning structure learning from
datasets with overlapping variables arise when we have
very large (in the number of variables) datasets. In those
cases, we might want to pursue a “divide-and-conquer”
strategy for learning the full structure (though see
Friedman, et al., 1999, for a different strategy).
Unfortunately, that strategy requires some way of
integrating the learning results for each of the subsets.

This problem also arises in the context of human causal
learning. People appear to have relatively large-scale
causal knowledge, but clearly only obtain data on
relatively few variables at a time. We can thus ask
whether there is a normative theory for the integration of
people’s patchwork learning.

In this paper, we explore the learnability of underlying
structure given multiple datasets with overlapping
variables. These issues were previously addressed in
Danks (2002), but that work assumed (i) only two
overlapping datasets, and (ii) Causal Sufficiency: Every
common cause C of two variables in a dataset D is also in
D. In this paper, we remove both of those assumptions,
thereby yielding algorithms that are potentially useful for
realistic problems.

We will denote random variables by X, Y, Z, and assume
that they are all discrete, though this assumption is not
necessary; we only must be able to compute (conditional)
independence for any pair of variables. We further
assume that we have n distinct datasets (denoted by D,
..., D,), and that the variables in a particular dataset D are
given by w(D). Let V be the set of all variables that appear

n
in at least one data set; that is, V =} V(Di)'
i=1

A natural framework for this domain is that of Bayesian
networks (or Bayes nets). A Bayes net is composed of



two related elements: (i) a directed acyclic graph over
(nodes corresponding to) the random variables; and (ii) a
joint probability distribution over the random variables.
These two elements are connected vig two assumptions,
The Markov assumption is that every variable is
independent of its non-descendants conditional on its
parents. The Faithfulness assumption (Stability in Pearl,
2000) is that the only independencies in the joint
probability distribution are those implied by the Markov
assumption. Due to space considerations, we do not
provide a more detailed overview of Bayes nets here;
many detailed introductions are available elsewhere
(including Pearl, 1988, 2000; Spirtes, et al., 1993/2001).

If the variables in the datasets are non-overlapping, then
nothing can be learned beyond the learning results for
each individual dataset. The interesting case arises when
the variables in the datasets form a “connected” system, in
the sense that we can move from one dataset to another
using some “chain” of overlapping datasets. Formally
expressed, we assume that:
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Note that this assumption does not imply that any two
arbitrary datasets overlap; it is possible that each dataset
overlaps with only two other datasets, regardless of .

Given this way of structuring the problem, the central
questions we address in this paper are:

1. Given some learning results for the multiple
datasets, D,, ..., D,, what can be learned about
the structure for V, the union of the variables in
the datasets?

2. Given prior learning and data for all of the
variables, how can we most efficiently learn the
true underlying structure/equivalence class?

We might naturally expect that the answer to question 1
would just be “Nothing.” That question asks what can be
learned about the structure for V, even though we have no
datapoints with values for every variable in V. Perhaps
surprisingly, we will find (in section 3) that we can
sometimes learn quite a bit about the structure underlying
V, including removing edges between variables that never
appear in the same dataset. Given a partial answer to
question 1, there turns out to be a simple algorithm that is
more efficient than ignoring the prior learning. Section 4
thus focuses on the question of finding the most efficient
algorithm. We first (in section 2) explore different
strategies for learning Bayes net structure from data in
order to determine which will be most effective for
answering these questions.

2 LEARNING STRATEGIES

There are essentially two different strategies for learning
Bayes mnets from data: Bayesian (score-based) and
constraint-based approaches (though see Spirtes & Meek,
1995, and Dash & Druzdzel, 1999, for examples of hybrid
approaches). In Bayesian learning, we attempt to find the
network(s) that best fits the observed data. Typically, we
do so by providing a scoring function for a network given
the data (e.g., the Bayes Information Criterion — BIC),
and we then search through the space of possible
networks to try to find the highest-scoring network (e.g.,
Cooper & Herskovits, 1992; Heckerman, et al., 1995;
Heckerman, 1998). Finding the optimal graph is NP-hard
(Chickering, 1996), and so a score-based search might (i)
start with some initial “seed graph,” (ii) consider all
possible one-edge changes in the graph (adding,
removing, or reversing an edge), (iii) select the highest-
scoring graph from this set, and then (iv) iterate until the
current graph remains the highest-scoring. Alternately, the
search procedure might use a technique such as simulated
annealing (with the same local changes as above). These
heuristic searches are computationally feasible, but not
asymptotically correct (though see Chickering, 2002, for
an expanded score-based algorithm that is asymptotically
correct).

The central questions of this paper can not, however, be
answered using the output of a score-based learning
algorithm. Score-based algorithms all rely on the fact that,
given a particular set of parents, the score for a particular
variable is uniquely determined. If we have no joint data
for a particular variable and a potential parent, however,
the score for that variable given a set of parents will not
be fully determined. Therefore, there will be significant
numbers of possible structures that cannot, even in theory,
be evaluated. This argument is not based on the
computational complexity of the learning problem, but
rather on the fact that the data needed to evaluate a
particular score are simply not available.

Perhaps these questions could be answered from within a
Bayesian framework if we used “true” Bayesian learning,
rather than score-based search. That is, suppose we have a
probability distribution over all possible networks (and
for each network, a distribution over the possible
parameters). We then update the probability distributions
given the data wusing (hopefully) straightforward
applications of Bayes’ rule. These updates are based on
scores similar to those used in standard score-based
searches. At the end, the output of our algorithm is a
probability distribution over the possible graphs.

Unfortunately, this strategy also faces serious difficulties.
The primary problem is that there does not appear to be
any principled way to reallocate the probability
distributions for all of the subsets into a single probability
distribution for the possible graphs over all of the



variables. The most natural strategy would be, for all
subset probability distributions, to redistribute the
probability for each graph G in that distribution over the
possible V-graphs whose marginal distributions are
Markov and faithful to G. Unfortunately, directed acyclic
graphs are not closed under marginalization: there are V-
graphs whose marginals over D; are not representable as a
(Markov and faithful) DAG. For example, the marginal
distribution of {W, X, ¥, Z} in the graph in Figure 1 is not
representable by any Markov and faithful DAG. Hence,
the “natural strategy” described above will lead to
possible V-graphs being assigned zero probability.
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Figure 1: DAG not closed under marginalization

We could also try Bayesian search over a representation
that is closed under marginalization, such as partial
ancestral graphs (PAGs). PAGs are graphical structures
that represent Markov equivalence classes over observed
variables in the possible presence of latent variables and
selection bias. Edges in a PAG convey ancestor relations.
Specifically, the ¥ end of an X — ¥ edge in a PAG can
have one of three endpoints: (i) an arrowhead, indicating
that X is not a descendant of Y; (ii) a straight edge,
indicating that Y is an ancestor of X; or (iii) a circle,
indicating that either of the above two cases is possible.
Note that all permutations of endpoints on an edge are
permissible, where a straight edge at both endpoints
indicates there is no DAG represented by the PAG. So,
for example, an X 0> Y edge means only that X cannot be
a descendant of Y; in causal language, either X causes Y,
there is an unobserved common cause of X and Y, or both.

The problem is, however, that we cannot score PAGs
directly, and so we cannot update the probability
distributions as required in Bayesian search. Instead, we
can instantiate the PAG to a particular mixed ancestral
graph (MAG), and since all MAGs for a particular PAG
have the same BIC score, we can indirectly search over
PAGs (see Spirtes, et al., 1996, for an example of indirect
PAG search). However, there is no known,
computationally feasible algorithm for instantiating a
PAG to a particular MAG, nor is there a computationally
simple algorithm for determining which D;-PAGs are
marginally equivalent to a particular V-PAG.

Given the many difficulties facing the Bayesian/score-
based, approaches, we now consider whether a constraint-
based learning algorithm might fare better. In the abstract,
a constraint-based search procedure first calculates the set
of independencies and associations in the data (using
some statistical test), and then determines the equivalence
class of graphs that could possibly have produced that

data (i.e., the set of graphs whose Markov and faithful
distributions all have the same independencies/
associations as the data). In practice, these algorithms do
not compute all independencies/associations, but rather
dynamically select which tests to perform. Exponentially
many tests are required for the worst-case graphs.

The FCI algorithm of Spirtes, et al. (1993/2001) is fairly
efficient, and asymptotically correct with only the Markov
and Faithfulness assumptions. The output of the FCI
algorithm can be interpreted either as a PAG that is not
necessarily fully oriented, or else as a partially oriented
inducing path graph (POIPG - described below). The FCI
algorithm also outputs a function SepSet(X, Y) that
returns the set(s) S such that X || Y | S, or no return
value at all if X and Y are associated conditional on every
subset of the variables.

POIPGs do not focus on ancestral relations, but rather on
inducing paths: an undirected path P is an inducing path
between X and Y relative to O iff (i) every member of O
N P\ {X, Y} is a collider, and (ii) every collider on P is an
ancestor of either X or Y. Perhaps more intuitively, there
is an inducing path between X and Y relative to O iff X
and Y are d-connected given any subset of O \ {X, Y}. A
POIPG has the same endpoints as a PAG, but they have a
slightly different interpretation. For the Y end of an X - ¥
edge, (i) an arrowhead indicates that there is some
inducing path between X and Y into Y; (ii) a straight edge
indicates that every inducing path between X and Y is out
of Y; and (iii) a circle indicates that either of the above
cases is possible.

Regardless of the interpretation on the FCI output, the
graphical structure is essentially a representation of the
independencies and associations in the data. Thus, there is
no theoretical barrier to integrating the outputs from
overlapping sets of variables. The task at hand is thus one
of determining how much of the V-output structure can be
learned from partial independence information.

The primary drawback to constraint-based approaches is
that their output can be quite sensitive to mistaken
calculations of independence or association. Moreover,
these algorithms do not explicitly incorporate (possibly
relevant) information about the power and significance
level of the statistical tests used. However, this drawback
is not a significant problem whenever we have large
amounts of data, which will typically be the case when we
have distributed datasets.

Constraint-based learning algorithms thus seem to be
well-suited to the questions posed in Section 1. They
readily handle unobserved common causes (a likely
difficulty when learning from distributed datasets), and
their outputs can, in theory, be integrated. We now show
that this possible integration can practically be performed.



3 INTEGRATING NETWORKS

3.1 The ION Algorithm

Throughout the remainder of this paper, we will assume
that we have used the FCI algorithm of Spirtes, et al.
(1993, 2001) on each of the datasets, and we will adopt
the POIPG interpretation of the output.' We will denote
the POIPG output for dataset D; as G;. We further denote
the maximally informative (i.e., maximally oriented)
POIPG for all of V by 7. Note that 7 may actually contain
more orientation information than Gy, the output of the
FCI algorithm given complete data over V. The initial
questions can now be re-expressed as:

1. Given Gy, ..

2. Given Gy, ..., G, and complete data over V, how
can we efficiently learn 7?

., G, what can be learned about 7?

In this section, we focus on question 1, and consider
question 2 in the next section. Before providing a general
algorithm for obtaining (partial) information about 7, we
provide a series of results, which will be used to construct
the algorithm.

The absence of an X — Y edge in any particular POIPG
indicates that there is some subset S of the variables in
that POIPG such that X _||_ Y| S. Since V is a superset of
v(D;) for all i, any edge absent in one of Gy, ..., G, must
also be absent in 7 Note that this result resolves conflicts
in which G; has an X — Y edge but G; does not: we should
remove the edge.

We can actually do more than just reconcile differences
between the ‘subsets; we can also remove edges across
subsets. Before showing exactly how to remove those
edges, we first provide a theorem (all proofs provided in
the Appendix) about the continuity of definite ancestry
between some POIPG and the POIPG for any superset of
variables.

Theorem 1: Let F be a POIPG for variables T, G be the
true, underlying (unknown) DAG, V o T, and 7z be the
maximally oriented POIPG for the inducing path graph of
G over V. If X is a definite ancestor of Yin F, then X is a
definite ancestor of Y in 7.

We can then define the reachable ancestors of a variable
X in POIPG G relative to a blocking set S:

RAGX,S)={Y:IZ = {Z,, ..., Z,} (possibly empty)

' PAG versions of the theorems proven in this section are
almost certainly provable. We do not, however, explore
that possibility here.

Note that the edges in the definition must be fully
directed; a path is not suitable if it contains a Z; 0> Zu,
edge. Given this definition, we can then show that:

Theorem 2: Assume Markov and faithful data for POIPG
G. If X ||_Y|S, then X and Z € RA(Y, S) are
independent given S.

The absence of an X — Y edge in some G, indicates there is
some S such that X || Y | S. Therefore, X and Z e
RA4(Y, S) must be independent given S, and so cannot be
adjacent in 7z, even though X and Z might never appear in
the same dataset.

An example may help illustrate the use of this result.
Suppose we have two overlapping variable sets: {W, X,
Y} and {X, A, B}. The learned graphs are: W > X € ¥
and X 2 4 < B, and we are trying to learn (as much as
possible) about 7> The latter graph implies that X and B
are unconditionally independent, and so B is independent
(given the empty set) from all definite ancestors of X
reachable relative to the empty set (i.e., all definite
ancestors). Theorem 1 tells us that any definite ancestors
of X in some G; (W and Y in this particular example) are
definite ancestors of X'in 7. Therefore, W and Y cannot be
adjacent to B in 7. Notice that we have removed the W —
B and Y - B edges without seeing a single datapoint with
values for both W and B, or Y and B.

If S = J, then we can easily apply the above results, since
Theorem 1 says that a definite ancestor in G; is an
ancestor in the inducing path graph for any superset of
variables, and so we can conclude that any definite
ancestor of X in G; is reachable in 7 relative to the empty
set. In fact, a wider range of sets are unproblematic.
Define the potential ancestors of X in POIPG G as those Y
such that (i) there is an undirected path between X and 7,
and (ii) there are no arrowheads pointing towards Y on the
path. Note that any definite descendant of X is necessarily
not a potential ancestor of X. We can then prove the
following theorem.

Theorem 3: If S contains no potential ancestors of X in
G, then RAG(X, S) = RAX, D).

This theorem is not particularly helpful as it is currently
written, since we do not yet have a good algorithm for
determining the potential ancestors of X in G, the
unknown true, underlying graph. We can get around this
problem, though, using the following theorem.

*> We should note that FCI learning on {W, X, ¥} in the
absence of prior knowledge would return the POIPG: W
0> X €0 Y, and so W and Y would not be in R44(X, &).
This example requires further information (e.g., partial
temporal ordering of the variables).



Theorem 4: Let S be some subset of the variables in G,
(not containing X), and let X € G,. Forall s € S, if s is not
a potential ancestor of X in G, then s is not a potential
ancestor of X'in G.

By chaining Theorem 3 and Theorem 4, we have the
usable rule that: if no variable in SepSet(X, ¥) is a
potential ancestor of X in G, then any definite ancestor of
X is a reachable ancestor of X. In addition to removing
edges, we can also do some partial (tentative) orientation
of the edges in 7z, using the following corollary of
Theorem 1.

Corollary 1: Let F be a POIPG for variables T, G be the
true, underlying (unknown) DAG, V o T, and 7 be the
maximally oriented POIPG for the inducing path graph of
Gover V.IfX-> Yin F, and X and Y are adjacent in 7,
then X — Yis oriented as X 2> Yin 7.

This corollary results because other orientations would
imply the existence of either an underlying cycle, or else
an inducing path into X and into ¥ relative to T, contrary
to the X = Y edge in F (full proof provided in the
Appendix). Thus, if X = Y in some G;, we can tentatively
orient the X — Y edge in 7was X -> Y, recognizing that the
edge might not exist at all.

We can also conditionally orient some edges. Define the
“almost reachable” ancestors of X in G relative to S as
those variables Y that would be reachable ancestors,
except that the Y- Z, edgeis Y o> Z,. If X _|_ U|S (the
precondition of Theorem 2) and Y is an almost reachable
ancestor of X, then although we cannot remove the edge
between Y and U, we can determine that Y must be a
collider on the X — ... — Y — U path (if there is one), else X
and U would be associated given S. Therefore, we can
orient the tentative ¥ — U edge into Y. We also know that
the Y 0> Z, edge must be ¥ «»> Z, if there is a Y — U edge;
unfortunately, we have no easy way to express this sort of
conditional orientation, and so we exclude this step from
the ION algorithm below.

Finally, consider the conditions under which we can
assert that an X — ¥ edge must be in & Clearly, there must
be some G; such that X — Y occurs in that POIPG, and no
G; without X — Y. More importantly, the presence of the
edge in various of the subsets might be due to the
exclusion of certain variables from those subsets. Hence,
we can only assert the presence of an X — Y edge when
there is some D; containing every variable in every
potential trek between X and 7Y, as well as X and Y, This is
the only way that we can determine whether X and Y are
independent conditional on every potential trek.

We now introduce a new representation: a U-POIPG
(Uncertainty-POIPG) has the same edgetypes as a regular
POIPG, and some edges additionally have a subscript to
indicate that the presence or absence of that edge is

unknown: “*—*,’. More precisely, let D be some set of
datasets and G be the set of POIPGs that could have
produced the datasets in D. We say that a U-POIPG U
represents D iff (i) if every POIPG in G has some edge
(absence), then U has a definite edge (absence); (ii)
otherwise, U has an uncertain edge; and (iii) a definite
edge in U is partially oriented iff every POIPG in G has
the same partial orientation for that edge.

Given all of these results, we can provide the following
Integration of Overlapping Networks (ION) algorithm for
partially determining the structure of z given all G;s.
Recall that SepSet(X, ¥) returns the set S (if any) such
that X || ¥|S.

ION Algorithm:

Input: A set of POIPGs, {G), ..., G,} learned from the
datasets D = {D,, ..., D,}, and the SepSet outputs.

Output: A U-POIPG G for the datasets D

1. Construct G, the complete graph over V using oo,
for each ordered pair of edges.

2. For each G, and for all pairs, X, ¥ of non-adjacent
variables in G,

a. remove the corresponding edge from G,

b. if no variables in SepSet(X, Y) are potential
ancestors of X (alternately, ¥) in G,, then remove
all edges in G between Y (X) and any definite
ancestors of X (¥). We may have to consider
multiple G;’s to determine the full set of definite
ancestors (e.g., if Z> Xin G, and W > Z in
Gy).

3. Forall X = Y edges in some G, if the X 0—0, Y edge
still exists in G, orient it as X =, Y.

4. If X *-%, Y exists in G, let T(X, Y) be the set of
possible-treks between X and Y, and let var(T) be the
set of variables that appear on some T € T. If there is
a D; such that var(T) U {X, Y} < D, then replace X
*_%, Y with X *—* Y.

We do not provide here a proof that G represents the
datasets D, since it is an open question whether the ION
algorithm is complete (either for edge removal or edge
orientation). Since the edge removal step requires full
orientations, the ION algorithm will likely perform best
on datasets of moderate size; if the datasets are too small,
we likely will not be able to orient the edges sufficiently.

Note that the input to the algorithm is simply a set of
POIPGs (and the associated SepSets). Thus, we could (at
least in theory) use a Bayesian/score-based algorithm to
determine the POIPGs and separating sets, and then feed
that into the ION algorithm. This strategy, however,



would not exploit the advantages of Bayesian/score-based
learning, so we do not explore it further here.

3.2 Sample Run of the ION Algorithm

Suppose the true underlying structure is given in Figure 2,
and the overlapping variable sets are: D, = {X, Y, Z, B}
and D, = {4, B, C}. The FCI POIPG output for the two
datasets is given in Figure 3.

We can now run the ION algorithm using these POIPGs
as input. First, we construct the complete graph over all of
the variables. We then remove edges that are absent in the
POIPGs (e.g., X — B, Y — B). Furthermore, for one of these
edges (B — (), SepSet = . Therefore, we can remove
edges between C and all definite ancestors of B: namely,
Z. Even though C and Z never occur in the same dataset,
we can remove the edge between them. Note that we
cannot remove edges between C and X, Y because the
latter two variables are not definitely ancestors, but we
can orient the tentative edge between C and X, Y into X, Y.

x || v c
z ™ =B A

Figure 2: Example graph

D, POIPG D, POIPG
X Y B C
VA » B A

Figure 3: Output POIPGs

The intuitive justification for the cross-dataset edge
removal and orientation can be seen quite easily in this
example. If there were a Z — C edge, then regardless of its
orientation, there would be a trek connecting B and C, so
they would be unconditionally associated. Similarly, if
there were an X — C edge that didn’t form a collider with
‘the Z — X edge, then there would again be a trek
connecting B and C (and similarly for ¥). The D, data
tells us that B and C are unconditionally independent,
though, so we can remove/orient these tentative edges.

4 PARALLELIZABLE LEARNING

We can now consider question 2, in which we want to use
the subset learning to learn 7 more efficiently when we
are given complete data over all V. The above results
point to the following simple strategy: (i) use the above
algorithm to reduce the search space as much as possible;
(ii) go through and check each X — Y edge (with the usual

steps of the FCI algorithm); then (iii) unorient all edges
and reorient them (to ensure that all orientations are
correct). Step (iii) could perhaps be optimized, but
orientation is computationally a low-cost operation, and
so it is unlikely that we would gain significantly from
optimizing this step.

This straightforward algorithm provides one answer to the
second question we originally asked, though we have not
answered the question: Given prior learning on some
subsets, how much faster is this algorithm than the FCI
algorithm (without prior learning)? In the remainder of
this section, we instead ask the reverse question:

3. Given complete data for V (of large cardinality),
how should we divide the variables in V so that
step (i) of the ION algorithm maximally (or
close to it) reduces uncertainty about 7?

That is, given that we have some very large (in the
number of variables) dataset, how should we divide the
variables into overlapping subsets so that we minimize the
amount of “clean-up” we have to do using the full data?

There are two different strategies we might pursue. One
would be to use the fact that all edges removed during
subset learning are also removed by the ION algorithm.
Therefore, we might try to construct overlapping subsets
of variables that are almost certainly not associated with
each other, so that each subset graph will (hopefully) be
quite sparse. For example, we might construct clusters of
variables that are all (or almost all) unconditionally
independent of each other, and then add variables to
ensure that the subsets overlap. This strategy, while
usable, does not seem to provide any significant
advantages over simply learning on the whole dataset for
V, since (by construction) these edges would have been
removed early in the learning algorithm anyway.

A second strategy would be to focus on learning
“families”: a variable and its parents. Suppose we first
learn the parents of X, and then we learn the parents of
some (probably) child of X, call it Y. Then by an
application of Theorem 2, no parents of X are adjacent to
any parent of Y that is not also adjacent to X itself.> This
result suggests trying to learn these local families,
because they will (hopefully) often have the appropriate
structure to. enable us to remove edges without checking
the data.

Of course, determining which variables to consider as
parents is a highly non-trivial task. As a first try, we
might consider some simple measure such as

* This claim is not quite right, since the FCI algorithm
will only orient the edges in a family as 4 0> X €o B.
We would actually need to include several grandparents
of X in order to fully orient the parent 0> X edges.



unconditional association or mutual information.
Regardless of our choice, however, our learning algorithm
is asymptotically correct (because we go back and check
uncertain edges). Therefore, clustering the variables into
suboptimal overlapping subsets will slow down the
algorithm, but not lead to incorrect output.

By separating the variables into overlapping subsets and
first learning on those subsets, we can easily parallelize
this algorithm so that it can be run on multiple processors.
We can thus potentially significantly reduce the effective
run time of this algorithm on very large (in the number of
variables) datasets.

This second strategy also points towards a normative
theory of human causal learning, as there is growing
evidence that people learn local causal families (e.g.,
Danks & McKenzie, submitted; Tenenbaum & Griffiths,
2000). The results here potentially provide a normative
theory to explain how people should integrate this local
causal knowledge into a large-scale causal structure.
Whether they actually follow this theory is, of course, a
separate empirical question.

This second strategy is related in end-goal to Friedman, et
al’s (1999) Sparse Candidate Algorithm. That algorithm
iteratively cycles between step (i): selecting potential
parents using a current “best guess network,” and step (ii):
finding the best-scoring Bayes net(s) with those potential
parents. There are three major differences between the
two approaches. First, the Sparse Candidate Algorithm is
based on a score-based search, as opposed to the
constraint-based search used here. Second, their algorithm
does not necessarily provide useful information if the
algorithm is stopped prior to finishing. If the above
strategy is stopped midway, there is a clear interpretation
to the output: every POIPG found to that point represents
the correct Bayes net for the (marginal) joint distribution
over the variables in that subset.

Third, and most importantly, the Sparse Candidate
Algorithm (unlike this proposed algorithm) is not
asymptotically correct for two different reasons. First,
Friedman, et al. assume that every variable has at most &
parents, and so their algorithm cannot learn the correct
Bayes net for denser graphs. Also, their iterative
procedure is not guaranteed to find all parents of a
variable, since there is no constraint that ensures that
every variable will (at some point) be considered as a
potential parent of every other variable.

5 CONCLUSION

The ION algorithm presented in this paper provides an
initial estimate of the amount of information regarding the
global structure that can be extracted from local learning.
Whether the JON algorithm is maximally informative or
efficient remains an open problem. Nevertheless, it is an

important first step, particularly since it demonstrates that
the learnable global structure includes some information
that, in a sense, goes beyond the information contained in
any particular local learning.

The work in this paper points towards two interesting
questions for future research. First, we have (by apparent
necessity) focused on constraint-based algorithms. The
most significant drawback of these algorithms, however,
is their sensitivity to mistaken independence/association
tests. With relatively small datasets, this sensitivity can
pose a significant problem. There might thus be
significant benefits on small datasets to exploring the
strategy (mentioned in an earlier footnote) of instead
using a Bayesian/score-based approach to determine the
POIPGs (equivalence classes) provided as input for the
ION algorithm. Unfortunately, that strategy faces the
serious difficulty of scoring latent variable models.

Second, this work has all presupposed that there is some
single underlying generative structure for the overlapping
subsets. This assumption can obviously be false,
particularly since the overlapping datasets will often have
been gathered at different spatiotemporal locations (which
explains the lack of a single integrated dataset). At the
very least, we need a set of statistical tests to try to test
this assumption. The most obvious test would simply be
to compute the joint distributions for the variables in each
overlap and check whether different subsets have
different marginal joint distributions. It is, to our
knowledge, an open question whether there are more
sophisticated statistical tests.
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Appendix

Theorem 1: Let F be a POIPG for variables T, G be the true,
underlying (unknown) DAG, V o T, and 7 be the maximally
oriented POIPG for the inducing path graph of G over V. If X is
a definite ancestor of Y in F, then X is a definite ancestor of ¥
in 7z

Proof: We first prove the following lemma for a directed edge.

Lemma 1.1: If U -> Win F, then there is a directed path from U
to Win G*.

Proof: U - W in F implies there is a set P of directed paths
from U to W in G. We need to show that there is some directed

path from U to W in G*. For some P € P, let P* be the ordered
sequence of variables in P " V. Choose the longest such P*.

Consider any arbitrary pair 4, B of neighboring variables in P*,
where A4 is closer to U on P. Since there is an inducing path
between 4 and B relative to V that is out of 4 and into B
(namely, the directed path in G), then by lemma 6.1.1 in Spirtes,
et al. (1993), for any subset S  V, there is an undirected path in
G* that d-connects 4 and B given S that is out of 4 and into B.
Let S = . The undirected path in G* must contain no colliders,
else it would not d-connect 4 and B given the empty set. The
only undirected path out of 4 and into B with no colliders is a
directed path from 4 to B in G*.

Furthermore, by lemma 6.2.3 of Spirtes, ez al. (1993), there must
be an edge between 4 and B in G*. Suppose the 4 — B edge is
not oriented in G* as 4 > B. Since there is a directed path from
A to B in G¥, there must be some other sequence of variables 4
> C = ... 2 B that is a directed path in G*. But this implies
that there is some directed path from U to W in G that involves
4, C, and B, contra the assumption that we had chosen the
longest P*,

Therefore, 4 — B must be oriented as 4 > B in G* The
concatenation of these 4 > B edges is a directed path out of U
and into W, and so U is a definite ancestor of W in G*. In fact,
for every P e P (the directed paths in G), the sequence of
variables in P* form a directed path from U'to W in G*. End of
proofof Lemma 1.1

Since X is a definite ancestor of ¥ in F, there is a sequence of
directed edges X => 4, > ... > 4; = Y in F. By the above
result, there is a directed path in G* for each of these directed
edges, and the concatenation of these directed paths is a directed
path from Xto V. w

Theorem 2: Assume Markov and faithful data for POIPG G. If
X _J|I_Y|S, then Xand Z € RAG(Y, S) are independent given S.

Proof: Prove the contrapositive. Assume X and Z € RA4(Y, S)
are associated given S, and so d-connected given S in the
underlying graph G. By definition of RAg(Y, S), there is a
directed path from Z to ¥ in G* with no nodes in S. If there is a
directed path from A to B in some inducing path graph G*, then
there is a directed path from 4 to B in the underlying graph G.
We can then append that directed path to the path (or paths) that
d-connects X and Z in G. Since no nodes in S are on the directed
path from Z to ¥, X and Y must also be d-connected given S.
Therefore, X and ¥ must be associated conditional on S. m

Theorem 3: If S contains no potential ancestors of X in G, then
RAG(X, §) = RAs(X, D).

Proof: Consider RA5(X, ©): the set of all definite ancestors of
X. For any variable Y in this set, the variables on the directed
path(s) from Y to X are also definite ancestors of X, and so are
not members of S (since there is a suitable undirected path — the
directed path itself). Therefore, every ¥ € RA4(X, @) is also a
member of RAg(X, S). The opposite direction, RA(X, S) <
RAGX, ©), follows immediately from the definition of RA;. m

Theorem 4: Let S be some subset of the variables in G,
(not containing X), and let X € G.. For all s € S, if s is not



a potential ancestor of X in G, then s is not a potential
ancestor of X'in G.

Proof: We prove the contrapositive: if s is a potential
ancestor of X in G, then s is a potential ancestor of X in
G;. Suppose that s is a potential ancestor of X in G. Then
there must be some undirected path P=X -2, — ... — s
such that there is no Z; *-> Z,,; edge in the path. Note that
this property implies that there are no colliders on P. Let
P; be the ordered sequence of variables on P that also
appear in G;. (Note that P; has at least two elements, since
both X and s are in G;) Consider any two sequential
variables 4, B on P;. Since there are no colliders on P, and
since no intervening variables on P appear in G, 4 and B
must be adjacent in G; (since they are associated
regardless of Gi-conditioning set). Without loss of
generality, let B be the variable closer to s on P;. The sub-
path of P between 4 and B is an inducing path over G,
but it cannot be into B (else P must contain Q *-» B for
some (), contradicting the directionality property of P). If
the 4 — B edge in G, is oriented as A *-> B, then every
inducing path (over G,) between 4 and B must be into B.
Since there is at least one inducing path (over G;) between
A and B that is not into B (namely, the sub-path of P), the
A — B edge in G; camnot be oriented as 4 *> B.
Therefore, P; is a path between X and s such that no edges
on the path have arrowheads on the s-end of the edge.
Hence, s is a potential ancestor of X'in G;. m

Proof of Corollary 1: Since X and Y are adjacent in G* and all
H* e Equiv(G*) have the same adjacencies, we need only show
that X < Yand X <> Y do not appear in any H* € Equiv(G*).

Suppose X & Y appears in some H*, and so there must be a
directed path from Y to X in the underlying graph. Since X 2> ¥
in F, there is also a directed path from X to Y in the underlying
graph, and so we have a cycle.

Suppose instead that X <> Y appears in some H* This edge
implies that there is some inducing path over V between X and Y
that is into X and into Y. An inducing path over V is an inducing
path over T ¢ V. Therefore, there must be an inducing path over
V between X and Y that is into X and into Y. The X = ¥ edge in
F, though, means that every inducing path over T is out of X and
into Y. Therefore, X <> Y cannot appear in any H*. m



